Taylorpolynomier og Taylors sætning

Størrelse: px
Starte visningen fra side:

Download "Taylorpolynomier og Taylors sætning"

Transkript

1 og Taylors sætning 10. november 2008

2 I Givet en funktion f og et udviklingspunkt x 0. Find et polynomium P n af grad højst n, så f og P n har samme nulte, første, anden, tredie,..., n te a edede i punktet x 0.

3 I Givet en funktion f og et udviklingspunkt x 0. Find et polynomium P n af grad højst n, så f og P n har samme nulte, første, anden, tredie,..., n te a edede i punktet x 0. I P n skal så opfylde ligningerne P n (x 0 ) = f (x 0 ) Pn 0 (x 0 ) = f 0 (x 0 ) Pn 00 (x 0 ) = f 00 (x 0 ). P n (n) (x 0 ) = f (n) (x 0 )

4 I Givet en funktion f og et udviklingspunkt x 0. Find et polynomium P n af grad højst n, så f og P n har samme nulte, første, anden, tredie,..., n te a edede i punktet x 0. I P n skal så opfylde ligningerne I Skriver vi P n på formen P n (x 0 ) = f (x 0 ) Pn 0 (x 0 ) = f 0 (x 0 ) Pn 00 (x 0 ) = f 00 (x 0 ). P n (n) (x 0 ) = f (n) (x 0 ) P n (x) = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +a 4 (x x 0 ) a n (x x 0 ) n søger vi nu a 0, a 1, a 2,..., a n.

5 I Vi ser med det samme, at a 0 = f (x 0 ). Da Pn 0 (x) = a 1 + 2a 2 (x x 0 ) + 3a 3 (x x 0 ) 2 +4a 4 (x x 0 ) na n (x x 0 ) n 1

6 I Vi ser med det samme, at a 0 = f (x 0 ). Da P 0 n (x) = a 1 + 2a 2 (x x 0 ) + 3a 3 (x x 0 ) 2 I fås, at a 1 = f 0 (x 0 ). Da +4a 4 (x x 0 ) na n (x x 0 ) n 1 P 00 n (x) = 2a a 3 (x x 0 ) a 4 (x x 0 ) n (n 1) a n (x x 0 ) n 2

7 I Vi ser med det samme, at a 0 = f (x 0 ). Da P 0 n (x) = a 1 + 2a 2 (x x 0 ) + 3a 3 (x x 0 ) 2 I fås, at a 1 = f 0 (x 0 ). Da +4a 4 (x x 0 ) na n (x x 0 ) n 1 P 00 n (x) = 2a a 3 (x x 0 ) a 4 (x x 0 ) n (n 1) a n (x x 0 ) n 2 I fås a 2 = 1 2 f 00 (x 0 ). Da P 000 n (x) = 3 2 a a 4 (x x 0 ) n (n 1) (n 2) a n (x x 0 ) n 3 fås, at a 3 = 1 23 f 000 (x 0 ).

8 Formlen I Generelt fås altså således at a k = 1 k! f (k) (x 0 ) P n (x) = f (x 0 ) + f 0 (x 0 ) (x x 0 ) f 00 (x 0 ) (x x 0 ) ! f 000 (x 0 ) (x x 0 ) n! f (n) (x 0 ) (x x 0 ) n

9 Formlen I Generelt fås altså således at a k = 1 k! f (k) (x 0 ) P n (x) = f (x 0 ) + f 0 (x 0 ) (x x 0 ) f 00 (x 0 ) (x x 0 ) ! f 000 (x 0 ) (x x 0 ) n! f (n) (x 0 ) (x x 0 ) n I Dette kan også skrives P n (x) = n k=0 1 k! f (k) (x 0 ) (x x 0 ) k idet vi de nerer 0! = 1 og f (0) = f.

10 I f (x) = e x med udviklingspunkt 0, orden n. Vi har jo f 0 (x) = f 00 (x) = f 000 (x) =... = f (n) (x) = e x.

11 I f (x) = e x med udviklingspunkt 0, orden n. Vi har jo f 0 (x) = f 00 (x) = f 000 (x) =... = f (n) (x) = e x. I Så f (k) (0) = e 0 = 1 for alle k 0.

12 I f (x) = e x med udviklingspunkt 0, orden n. Vi har jo f 0 (x) = f 00 (x) = f 000 (x) =... = f (n) (x) = e x. I Så f (k) (0) = e 0 = 1 for alle k 0. I Hermed fås P n (x) = f (0) + f 0 (0) x f 00 (0) x ! f 000 (0) x n! f (n) (0) x n

13 I f (x) = e x med udviklingspunkt 0, orden n. Vi har jo f 0 (x) = f 00 (x) = f 000 (x) =... = f (n) (x) = e x. I Så f (k) (0) = e 0 = 1 for alle k 0. I Hermed fås P n (x) = f (0) + f 0 (0) x f 00 (0) x ! f 000 (0) x 3 I Altså n! f (n) (0) x n P n (x) = 1 + x x ! x n! x n

14 I f (x) = e x med udviklingspunkt 0, orden n. Vi har jo f 0 (x) = f 00 (x) = f 000 (x) =... = f (n) (x) = e x. I Så f (k) (0) = e 0 = 1 for alle k 0. I Hermed fås P n (x) = f (0) + f 0 (0) x f 00 (0) x ! f 000 (0) x 3 I Altså n! f (n) (0) x n P n (x) = 1 + x x ! x n! x n I Dette kan også skrives P n (x) = n k=0 1 k! x k

15 I f (x) = x arctan x med udviklingspunkt 1, orden 2.

16 I f (x) = x arctan x med udviklingspunkt 1, orden 2. I Vi har f 0 (x) = arctan x + x 1 + x 2 f x (x) = x 2 (1 + x 2 ) 2

17 I f (x) = x arctan x med udviklingspunkt 1, orden 2. I Vi har f 0 (x) = arctan x + x 1 + x 2 f x (x) = x 2 (1 + x 2 ) 2 I Så f (1) = π 4, f 0 (1) = π , f 00 (1) = 1 2.

18 I f (x) = x arctan x med udviklingspunkt 1, orden 2. I Vi har f 0 (x) = arctan x + x 1 + x 2 f x (x) = x 2 (1 + x 2 ) 2 I Så f (1) = π 4, f 0 (1) = π , f 00 (1) = 1 2. I Hermed fås P 2 (x) = f (1) + f 0 (1) (x 1) f 00 (1) (x 1) 2 = π π (x 1) (x 1)2 2 = π π (x 1) + 1 (x 1)2 2 4

19 I f (x) = x arctan x med udviklingspunkt 1, orden 2. I Vi har f 0 (x) = arctan x + x 1 + x 2 f x (x) = x 2 (1 + x 2 ) 2 I Så f (1) = π 4, f 0 (1) = π , f 00 (1) = 1 2. I Hermed fås P 2 (x) = f (1) + f 0 (1) (x 1) f 00 (1) (x 1) 2 = π π (x 1) (x 1)2 2 = π π (x 1) + 1 (x 1)2 2 4 I Maple

20 I Find det 2. med udviklingspunkt 0 for løsningen til en x 0 (t) = t + sin (x (t)) med x (0) = π 2

21 I Find det 2. med udviklingspunkt 0 for løsningen til en x 0 (t) = t + sin (x (t)) med x (0) = π 2 I Vi skal nde P 2 (t) = x (0) + x 0 (0) t x 00 (0) t 2.

22 I Find det 2. med udviklingspunkt 0 for løsningen til en x 0 (t) = t + sin (x (t)) med x (0) = π 2 I Vi skal nde P 2 (t) = x (0) + x 0 (0) t x 00 (0) t 2. I Ved indsættelse af t = 0 i en fås x 0 (0) = 0 + sin (x (0)) = sin π 2 = 1.

23 I Find det 2. med udviklingspunkt 0 for løsningen til en x 0 (t) = t + sin (x (t)) med x (0) = π 2 I Vi skal nde P 2 (t) = x (0) + x 0 (0) t x 00 (0) t 2. I Ved indsættelse af t = 0 i en fås x 0 (0) = 0 + sin (x (0)) = sin π 2 = 1. I Ved di erentiation af en fås x 00 (t) = 1 + cos (x (t)) x 0 (t).

24 I Find det 2. med udviklingspunkt 0 for løsningen til en x 0 (t) = t + sin (x (t)) med x (0) = π 2 I Vi skal nde P 2 (t) = x (0) + x 0 (0) t x 00 (0) t 2. I Ved indsættelse af t = 0 i en fås x 0 (0) = 0 + sin (x (0)) = sin π 2 = 1. I Ved di erentiation af en fås x 00 (t) = 1 + cos (x (t)) x 0 (t). I Ved indsættelse af t = 0 heri fås x 00 (0) = 1 + cos (x (0)) x 0 (0) = 1.

25 I Find det 2. med udviklingspunkt 0 for løsningen til en x 0 (t) = t + sin (x (t)) med x (0) = π 2 I Vi skal nde P 2 (t) = x (0) + x 0 (0) t x 00 (0) t 2. I Ved indsættelse af t = 0 i en fås x 0 (0) = 0 + sin (x (0)) = sin π 2 = 1. I Ved di erentiation af en fås x 00 (t) = 1 + cos (x (t)) x 0 (t). I Ved indsættelse af t = 0 heri fås x 00 (0) = 1 + cos (x (0)) x 0 (0) = 1. I Altså fås P 2 (t) = π 2 + t t = π 2 + t t2.

26 I Find det 2. med udviklingspunkt 0 for løsningen til en x 0 (t) = t + sin (x (t)) med x (0) = π 2 I Vi skal nde P 2 (t) = x (0) + x 0 (0) t x 00 (0) t 2. I Ved indsættelse af t = 0 i en fås x 0 (0) = 0 + sin (x (0)) = sin π 2 = 1. I Ved di erentiation af en fås x 00 (t) = 1 + cos (x (t)) x 0 (t). I Ved indsættelse af t = 0 heri fås x 00 (0) = 1 + cos (x (0)) x 0 (0) = 1. I Altså fås P 2 (t) = π 2 + t t = π 2 + t t2. I Se også Maple.

27 I Hvad er den fejl man begår ved at erstatte en funktion f med dens P n?

28 I Hvad er den fejl man begår ved at erstatte en funktion f med dens P n? I Taylors formel: For givet x ndes et tal ξ mellem x 0 og x, så f (x) = f (x 0 ) + f 0 (x 0 ) (x x 0 ) f 00 (x 0 ) (x x 0 ) n! f (n) (x 0 ) (x x 0 ) n + 1 (n + 1)! f (n+1) (ξ) (x x 0 ) n+1

29 I Hvad er den fejl man begår ved at erstatte en funktion f med dens P n? I Taylors formel: For givet x ndes et tal ξ mellem x 0 og x, så f (x) = f (x 0 ) + f 0 (x 0 ) (x x 0 ) f 00 (x 0 ) (x x 0 ) n! f (n) (x 0 ) (x x 0 ) n + 1 (n + 1)! f (n+1) (ξ) (x x 0 ) n+1 I Altså f (x) = P n (x) + 1 (n+1)! f (n+1) (ξ) (x x 0 ) n+1 = P n (x) + R n (x).

30 I Hvad er den fejl man begår ved at erstatte en funktion f med dens P n? I Taylors formel: For givet x ndes et tal ξ mellem x 0 og x, så f (x) = f (x 0 ) + f 0 (x 0 ) (x x 0 ) f 00 (x 0 ) (x x 0 ) n! f (n) (x 0 ) (x x 0 ) n + 1 (n + 1)! f (n+1) (ξ) (x x 0 ) n+1 I Altså f (x) = P n (x) + 1 (n+1)! f (n+1) (ξ) (x x 0 ) n+1 = P n (x) + R n (x). I Beviset bruger en udvidet udgave af middelværdisætningen.

31 I. f (x) = e x, udviklingspunkt 0. Vi har P n (x) = 1 + x x ! x n! x n.

32 I. f (x) = e x, udviklingspunkt 0. Vi har P n (x) = 1 + x x ! x n! x n. I f (n+1) (x) = e x. Så je x P n (x)j = 1 (n + 1)! eξ x n+1 = e ξ (n + 1)! jxjn+1

33 I. f (x) = e x, udviklingspunkt 0. Vi har P n (x) = 1 + x x ! x n! x n. I f (n+1) (x) = e x. Så je x P n (x)j = 1 (n + 1)! eξ x n+1 = I Bestem n, så je x x 2 [ 0.1, 0.1]. P n (x)j 10 5 for alle e ξ (n + 1)! jxjn+1

34 I. f (x) = e x, udviklingspunkt 0. Vi har P n (x) = 1 + x x ! x n! x n. I f (n+1) (x) = e x. Så je x P n (x)j = 1 (n + 1)! eξ x n+1 = I Bestem n, så je x x 2 [ 0.1, 0.1]. P n (x)j 10 5 for alle e ξ (n + 1)! jxjn+1 I I Taylors formel gælder så jξj 0.1 og dermed je x P n (x)j = e ξ (n + 1)! jxjn+1 e0.1 (n + 1)! (0.1)n+1 2 (n + 1)! (0.1)n+1

35 I. f (x) = e x, udviklingspunkt 0. Vi har P n (x) = 1 + x x ! x n! x n. I f (n+1) (x) = e x. Så je x P n (x)j = 1 (n + 1)! eξ x n+1 = I Bestem n, så je x x 2 [ 0.1, 0.1]. P n (x)j 10 5 for alle e ξ (n + 1)! jxjn+1 I I Taylors formel gælder så jξj 0.1 og dermed je x P n (x)j = e ξ (n + 1)! jxjn+1 e0.1 (n + 1)! (0.1)n+1 2 (n + 1)! (0.1)n+1 I Vi vælger nu n, så 2 (n+1)! (0.1)n n = 3 er nok, idet 2 4! 10 4 = < 10 5.

36 I Lad f (x) for alle x være givet ved f (x) = Z x 0 (1 + t) cos t 3 dt

37 I Lad f (x) for alle x være givet ved f (x) = Z x 0 (1 + t) cos t 3 dt I Vurdér den fejl, der begås ved at erstatte f (x) med dets 2. P 2 (x) med udviklingspunkt 0, når x 2 1 2, 1 2.

38 I Lad f (x) for alle x være givet ved f (x) = Z x 0 (1 + t) cos t 3 dt I Vurdér den fejl, der begås ved at erstatte f (x) med dets 2. P 2 (x) med udviklingspunkt 0, når x 2 1 2, 1 2. I Vi nder f 0 (x) = (1 + x) cos x 3 f 00 (x) = cos x 3 (1 + x) 3x 2 sin x 3 f 000 (x) = 6x (1 + 2x) sin x 3 9x 4 (1 + x) cos x 3

39 I Lad f (x) for alle x være givet ved f (x) = Z x 0 (1 + t) cos t 3 dt I Vurdér den fejl, der begås ved at erstatte f (x) med dets 2. P 2 (x) med udviklingspunkt 0, når x 2 1 2, 1 2. I Vi nder f 0 (x) = (1 + x) cos x 3 f 00 (x) = cos x 3 (1 + x) 3x 2 sin x 3 f 000 (x) = 6x (1 + 2x) sin x 3 9x 4 (1 + x) cos x 3 I Heraf ndes P 2 (x) = x x 2.

40 I Lad f (x) for alle x være givet ved f (x) = Z x 0 (1 + t) cos t 3 dt I Vurdér den fejl, der begås ved at erstatte f (x) med dets 2. P 2 (x) med udviklingspunkt 0, når x 2 1 2, 1 2. I Vi nder f 0 (x) = (1 + x) cos x 3 f 00 (x) = cos x 3 (1 + x) 3x 2 sin x 3 f 000 (x) = 6x (1 + 2x) sin x 3 9x 4 (1 + x) cos x 3 I Heraf ndes P 2 (x) = x x 2. I Vha. Maple ndes, at jf 000 (x)j 1.59 for x 2 1 2, 1 2. Altså fås jf (x) P 2 (x)j jxj ' Den faktiske maksimale fejl kan ndes gra sk til

41 I Når Maplekommandoen taylor(sin(x),x=0,4); som resultat giver x 1 6 x 3 + O x 4, betyder der følgende:

42 I Når Maplekommandoen taylor(sin(x),x=0,4); som 1 resultat giver x 6 x 3 + O x 4, betyder der følgende: I Der ndes en konstant K, så x sin x 1 6 x 3 Kx 4 for alle x i et interval med 0 som indre punkt.

43 I Når Maplekommandoen taylor(sin(x),x=0,4); som 1 resultat giver x 6 x 3 + O x 4, betyder der følgende: I Der ndes en konstant K, så x sin x 1 6 x 3 Kx 4 for alle x i et interval med 0 som indre punkt. I Generelt betyder f (x) = O (u (x)) for x! a, at der ndes en konstant K, så jf (x)j K ju (x)j for alle x i et interval med a som indre punkt.

44 I Når Maplekommandoen taylor(sin(x),x=0,4); som 1 resultat giver x 6 x 3 + O x 4, betyder der følgende: I Der ndes en konstant K, så x sin x 1 6 x 3 Kx 4 for alle x i et interval med 0 som indre punkt. I Generelt betyder f (x) = O (u (x)) for x! a, at der ndes en konstant K, så jf (x)j K ju (x)j for alle x i et interval med a som indre punkt. I Vi har eksempelvis: sin x = O (x), sin x = x + O x 2, men også sin x = x + O x 3 og den allerede viste.

45 I Når Maplekommandoen taylor(sin(x),x=0,4); som 1 resultat giver x 6 x 3 + O x 4, betyder der følgende: I Der ndes en konstant K, så x sin x 1 6 x 3 Kx 4 for alle x i et interval med 0 som indre punkt. I Generelt betyder f (x) = O (u (x)) for x! a, at der ndes en konstant K, så jf (x)j K ju (x)j for alle x i et interval med a som indre punkt. I Vi har eksempelvis: sin x = O (x), sin x = x + O x 2, men også sin x = x + O x 3 og den allerede viste. I I Taylor-sammenhæng kan O ((x x 0 ) n ) tolkes som led af orden n og højere.

Taylorpolynomier. Preben Alsholm. 17. april 2008. Taylorpolynomier. Funktion af ere variable. Preben Alsholm. Taylorpolynomier

Taylorpolynomier. Preben Alsholm. 17. april 2008. Taylorpolynomier. Funktion af ere variable. Preben Alsholm. Taylorpolynomier . 17. april 008 for I Givet en funktion f og et udviklingspunkt x 0. Find et polynomium P n af grad højst n, så f og P n har samme nulte, første, anden, tredie,..., n te a edede i punktet x 0.. for I Givet

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

DiploMat. Eksempel på 4-timersprøve.

DiploMat. Eksempel på 4-timersprøve. DiloMat. Eksemel å 4-timersrøve. Preben lsholm Maj 4 Ogave Vi skal løse ligningen e i 4 z 3 i = Løsningen skal angives å olær form, dvs. å formen re i, hvor r > og R. Først nder vi e i 4 z = 3 Heraf fås

Læs mere

Noter om komplekse tal

Noter om komplekse tal Noter om komplekse tal Preben Alsholm Januar 008 1 Den komplekse eksponentialfunktion Vi erindrer først om den sædvanlige og velkendte reelle eksponentialfunktion. Vi skal undertiden nde det nyttigt, at

Læs mere

Eksempel på 2-timersprøve 2 Løsninger

Eksempel på 2-timersprøve 2 Løsninger Eksempel på -timersprøve Løsninger Preben lsholm Februar 4 Opgave Maplekommandoerne expand( (z-*exp(i*pi/))*(z-*exp(-i*pi/))*(z-exp(i*pi/))*(z-exp(-i*pi/))): sort(%); resulterer i polynomiet z 4 z + z

Læs mere

Taylors formel. Kapitel Klassiske sætninger i en dimension

Taylors formel. Kapitel Klassiske sætninger i en dimension Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f

Læs mere

Lokalt ekstremum DiploMat 01905

Lokalt ekstremum DiploMat 01905 Lokalt ekstremum DiploMat 0905 Preben Alsholm Institut for Matematik, DTU 6. oktober 00 De nition Et stationært punkt for en funktion af ere variable f vil i disse noter blive kaldt et egentligt saddelpunkt,

Læs mere

OPGAVER 1. Approksimerende polynomier. Håndregning

OPGAVER 1. Approksimerende polynomier. Håndregning OPGAVER 1 Opgaver til Uge 4 Store Dag Opgave 1 Approksimerende polynomier. Håndregning a) Find for hver af de følgende funktioner deres approksimerende polynomiumer af første og anden grad med udviklingspunkt

Læs mere

Noter til Computerstøttet Beregning Taylors formel

Noter til Computerstøttet Beregning Taylors formel Noter til Computerstøttet Beregning Taylors formel Arne Jensen c 23 1 Introduktion I disse noter formulerer og beviser vi Taylors formel. Den spiller en vigtig rolle ved teoretiske overvejelser, og også

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2018

Besvarelser til Calculus Ordinær Eksamen Juni 2018 Besvarelser til Calculus Ordinær Eksamen - 5. Juni 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2019

Besvarelser til Calculus Ordinær Eksamen Juni 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Mat 1. 2-timersprøve den 17. maj 2016.

Mat 1. 2-timersprøve den 17. maj 2016. Mat -timersprøve den 7 maj 6 JE 6 Opgave restart; Givet funktionen f:=x-sqrt(*x-); Spørgsmål f := x/ x K Funktionen er defineret for x K R x R Dvs Dm f er intervallet [ ;N[ Spørgsmål Med udviklingspunktet

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 4 1 enote 4 Taylor s approksimationsformler for funktioner af én variabel I enote 19 og enote 21 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier i

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018

Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018 Besvarelser til Calculus Ordinær Eksamen - 5. Januar 18 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Funktionsundersøgelse. Rasmus Sylvester Bryder

Funktionsundersøgelse. Rasmus Sylvester Bryder Funktionsundersøgelse Rasmus Sylvester Bryder 7. november 2008 Dette projekt aeveres i forbindelse med LA T EX 2ε-kurset vejledningsuge 2, 2008-09 på KU; til projektet benyttes noter givet til opgaveløsning.

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016 Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017 Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Differentialkvotient af cosinus og sinus

Differentialkvotient af cosinus og sinus Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Notesæt - Eksempler på polær integration

Notesæt - Eksempler på polær integration Notesæt - Eksempler på polær integration Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument forsøger blot at forklare,

Læs mere

DiploMat Løsninger til 4-timersprøven 4/6 2004

DiploMat Løsninger til 4-timersprøven 4/6 2004 DiploMa Løsninger il -imersprøven / Preben Alsholm / Opgave Polynomie p er give ved p (z) = z 8 z + z + z 8z + De oplyses, a polynomie også kan skrives således p (z) = z + z z + Vi skal nde polynomies

Læs mere

Komplekse tal. Preben Alsholm Juli 2006

Komplekse tal. Preben Alsholm Juli 2006 Komplekse tal Preben Alsholm Juli 006 Talmængder og regneregler for tal. Talmængder Indenfor matematikken optræder der forskellige klasser af tal: Naturlige tal. N er mængden af naturlige tal, ; ; 3; 4;

Læs mere

Eksempel på 2-timersprøve 1 Løsninger

Eksempel på 2-timersprøve 1 Løsninger Eksempel på -timersprøve Løsninger Preben lsholm Marts 4 Opgave Vi skal løse ligningen () z (8 + i) e i 6 = Løsningen ønskes angivet på rektangulær form, dvs. på formen x + iy, hvor x; y R. Vi nder umiddelbart

Læs mere

Oversigt [S] 8.7, 8.8, 8.9

Oversigt [S] 8.7, 8.8, 8.9 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Binomialformlen Binomialkoefficienter Binomialrækken Taylor polynomier Vurdering af Taylor s restled Eksponentialrækken konvereger mod eksponentialfunktionen

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

Preben Alsholm. 13. marts 2008

Preben Alsholm. 13. marts 2008 Arcus, I 13. marts 2008 I Funktionen f kaldes enentydig (1-1), hvis for alle x 1, x 2 : x 1 6= x 2 =) f (x 1 ) 6= f (x 2 ) Arcus, I I Funktionen f kaldes enentydig (1-1), hvis for alle x 1, x 2 : Arcus,

Læs mere

Partielle afledede og retningsafledede

Partielle afledede og retningsafledede Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen

Læs mere

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning EKSISTENS- OG ENTYDIGHEDSSÆTNINGEN Vi vil nu bevise eksistens- og entydighedssætningen for ordinære differentialligninger. For overskuelighedens skyld vil vi indskrænke os til at undersøge een 1. ordens

Læs mere

Taylor-polynomier. John V Petersen

Taylor-polynomier. John V Petersen Taylor-polynomier John V Petersen Taylor-polynomier 2018 John V Petersen art-science-soul Indhold 1. Indledning... 4 2. Udledning af Sætning om Taylor polynomiet... 4 3. Sætning og Definition af Taylor

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

Oversigt [S] 8.7, 8.8, 8.9

Oversigt [S] 8.7, 8.8, 8.9 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Potensrækker og opgaver Binomialformlen Binomialkoefficienter Binomialrækken Taylor polynomier Vurdering af Taylor s restled Eksponentialrækken konvereger

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge Forår 0 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En differentialligning,

Læs mere

Andengradspolynomier - Gymnasienoter

Andengradspolynomier - Gymnasienoter - Gymnasienoter http://findinge.com/ Tag forbehold for eventuelle fejl/typos. Indhold Forord 3 Toppunktsformlen - Bevismetode 1 4 Toppunktsformlen - Bevismetode 6 Andengradspolynomiets symmetri 7 Rodfaktorisering

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2017

Besvarelser til Calculus Ordinær Eksamen Juni 2017 Besvarelser til Calculus Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsholm 6. oktober 2008 1 Funktion af flere variable 1.1 Punktmængder i R k : Definitioner Punktmængder i flerdimensionale rum: Definitioner q Normen af x 2 R k er kxk

Læs mere

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 0. februar 019 Dette eksamenssæt

Læs mere

Grafisk bestemmelse - fortsat Støttepunkter. Grafisk bestemmelse y. giver grafen. Niveaukurver og retning u = ( 1

Grafisk bestemmelse - fortsat Støttepunkter. Grafisk bestemmelse y. giver grafen. Niveaukurver og retning u = ( 1 Oversigt [S]. Nøgleord og begreber Retningsafledt Gradientvektor Gradient i flere variable Fortolkning af gradientvektoren Agst, opgave 5 Delvis afledt [S]. Directional derivatives and te... Definition

Læs mere

Analyse 1, Prøve 2 Besvarelse

Analyse 1, Prøve 2 Besvarelse Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet maj Analyse, Prøve Besvarelse Opgave (3%) (a) (%) Bestem mængden af x R for hvilke rækken ( + (x) n ) er konvergent og angiv sumfunktionen

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 35-del 1, 2010 Redigeret af Jessica Carter efter udgave af Hans J. Munkholm 1 Nogle talmængder s. 4 N = {1,2,3, } omtales som de naturlige tal eller de positive heltal. Z =

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Førsteordens lineære differentialligninger

Førsteordens lineære differentialligninger enote 16 1 enote 16 Førsteordens lineære differentialligninger I denne enote gives først en kort introduktion til differentialligninger i almindelighed, hvorefter hovedemnet er en særlig type af differentialligninger,

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

DesignMat Uge 8 Integration og elementære funktioner

DesignMat Uge 8 Integration og elementære funktioner DesignMat Uge 8 Integration og elementære funktioner Preben Alsholm Forår 008 Hyperbolske funktioner. sinh og cosh sinh og cosh Sinus hyperbolsk efineres sålees for alle x R sinh x = ex e x Cosinus hyperbolsk

Læs mere

Besvarelser til Calculus Reeksamen August 2017

Besvarelser til Calculus Reeksamen August 2017 Besvarelser til Calculus Reeksamen -. August 7 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende til opgave

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.

Læs mere

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan Matematik 1 Semesteruge 5 6 (1. oktober - 12. oktober 2001) side 1 Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2017

Besvarelser til Calculus Ordinær Eksamen Juni 2017 Besvarelser til Calculus Ordinær Eksamen - 12. Juni 217 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Matematik 1 Semesteruge 5 6 (30. september oktober 2002) side 1. Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (30. september oktober 2002) side 1. Komplekse tal Arbejdsplan Matematik Semesteruge 5 6 (30. september -. oktober 2002) side Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med opgaveregning

Læs mere

Arealer som summer Numerisk integration

Arealer som summer Numerisk integration Arealer som summer Numerisk integration http://www.zweigmedia2.com/realworld/integral/numint.html Her kan ses formlerne, som er implementeret nedenfor med en effektiv kode. Antag, at funktionen er positiv,

Læs mere

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3.

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3. Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. januar 7 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Eksamen i Mat F, april 2006

Eksamen i Mat F, april 2006 Eksamen i Mat F, april 26 Opgave 1 Lad F være et vektorfelt, givet i retvinklede koordinater som: F x x F = F x i + F y j + F z k = F y = 2z F z y Udregn F og F: F = F x + F y + F z = 1 + +. F = F z F

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 37, 2010 Produceret af Hans J. Munkholm 2009 bearbejdet af Jessica Carter 2010 1 Hvad er et komplekst tal? Hvordan regner man med komplekse tal? Man kan betragte udvidelsen

Læs mere

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1 1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

DesignMat Uge 1 Repetition af forårets stof

DesignMat Uge 1 Repetition af forårets stof DesignMat Uge 1 Repetition af forårets stof Preben Alsholm Efterår 008 01 Lineært ligningssystem Lineært ligningssystem Et lineært ligningssystem: a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + +

Læs mere

Q (0, 1,0) MF(161): y a( x) y b( x) har løsningen: y e b( x) bx ( ) e dx e e dx e dx e. y e 8e. Delprøve uden hjælpemidler: kl

Q (0, 1,0) MF(161): y a( x) y b( x) har løsningen: y e b( x) bx ( ) e dx e e dx e dx e. y e 8e. Delprøve uden hjælpemidler: kl MatA Juni 7 Kr. Bahr Side af 5 Delprøve uden hjælpemidler: kl. 9.. Opgave ( %) To planer er givet ved ligningerne: : z og : z5. a) Gør rede for, at de to planer er parallelle. De to planer er parallelle,

Læs mere

Funktioner. 3. del Karsten Juul

Funktioner. 3. del Karsten Juul Funktioner 3. del 019 Karsten Juul Funktioner 3. del, 019 Karsten Juul 1/9-019 Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm. Hæftet må benyttes i undervisningen hvis læreren

Læs mere

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014 Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over

Læs mere

DesignMat Komplekse tal

DesignMat Komplekse tal DesignMat Komplekse tal Preben Alsholm Uge 7 Forår 010 1 Talmængder 1.1 Talmængder Talmængder N er mængden af naturlige tal, 1,, 3, 4, 5,... Z er mængden af hele tal... 5, 4, 3,, 1, 0, 1,, 3, 4, 5,....

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe

Læs mere

Numerisk. differentiation. Erik Vestergaard

Numerisk. differentiation. Erik Vestergaard Numerisk differentiation Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 25. Billeder: Forside: istock.com/iunewind Side 5: istock.com/cienpies Desuden egne illustrationer Erik

Læs mere

Kompleks Funktionsteori

Kompleks Funktionsteori Kompleks Funktionsteori Formelræs Holomorfe funktioner Sætning. (Caucy-Riemans ligninger). Funktionen f : G C, f = u+iv er holomorf i z 0 = x 0 + iy 0 hvis og kun hvis i punktet (x 0, y 0 ). du dx = dv

Læs mere

UGESEDDEL 9 LØSNINGER. Sydsæter Theorem 1. Sætning om implicitte funktioner for ligningen f(x, y) = 0.

UGESEDDEL 9 LØSNINGER. Sydsæter Theorem 1. Sætning om implicitte funktioner for ligningen f(x, y) = 0. UGESEDDEL 9 LØSNINGER Sydsæter 531 Theorem 1 Sætning om implicitte funktioner for ligningen f(x, y) = 0 Lad f(x, y) være C 1 i mængden A R n og lad (x 0, y 0 ) være et indre punkt i A hvor f(x 0, y 0 )

Læs mere

DiploMat 1 Inhomogene lineære differentialligninger

DiploMat 1 Inhomogene lineære differentialligninger DiploMat 1 Inhomogene lineære differentialligninger Preben Alsholm Uge Efterår 2008 1 Lineære Differentialligninger af anden orden 1.1 Den inhomogene ligning I Den inhomogene ligning I Vi betragter nu

Læs mere

Newton-Raphsons metode

Newton-Raphsons metode Newton-Raphsons metode af John V. Petersen Indhold Indledning: Numerisk analyse og Newton-Raphsons metode... 2 Udlede Newtons iterations formel... 2 Sætning 1 Newtons metode... 4 Eksempel 1 konvergens...

Læs mere

Om første og anden fundamentalform

Om første og anden fundamentalform Geometri, foråret 2005 Jørgen Larsen 9. marts 2005 Om første og anden fundamentalform 1 Tangentrummet; første fundamentalform Vi betragter en flade S parametriseret med σ. Lad P = σu 0, v 0 være et punkt

Læs mere

Prøveeksamen i Calculus

Prøveeksamen i Calculus Prøveeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Marts 6 Dette eksamenssæt består af 9 nummererede sider med 4 afkrydsningsopgaver.

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6. Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.

Læs mere

Besvarelser til Calculus Ordinær Eksamen Januar 2019

Besvarelser til Calculus Ordinær Eksamen Januar 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Januar 19 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

π can never be expressed in numbers. William Jones og John Machins algoritme til beregning af π

π can never be expressed in numbers. William Jones og John Machins algoritme til beregning af π can never be expressed in numbers. William Jones og John Machins algoritme til beregning af. Oprindelsen til symbolet Første gang vi møder symbolet som betegnelse for forholdet mellem en cirkels omkreds

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Figur 1: Kraftpåvirkning af vingeprol

Figur 1: Kraftpåvirkning af vingeprol 0.. AERODYNAMIK 0. Aerodynamik I dette afsnit opstilles en matematisk model for de kræfter, der virker på en vingeprol. Disse kræfter kan få rotoren til at rotere og kan anvendes til at krøje nacellen,

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 019 Opgave 1 (6 point) En

Læs mere

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design, Det Sundhedsvidenskabelige Fakultet samt Det Ingeniør- og Naturvidenskabelige Fakultet 14. juni 19 Opgave 1 (6 point) En funktion

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 5.

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 5. Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 5. januar 08 Dette eksamenssæt består af 8 nummererede sider med afkrydsningsopgaver.

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 1 Eventuelle besvarelser laves i grupper af - 3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 14MACB11E14

Læs mere

Klassisk Taylors formel

Klassisk Taylors formel p. 1/17 Klassisk Taylors formel Sætning Lad f : (a, b) R være n gange differentiabel. For x 0, x (a, b) findes et ξ mellem x 0 og x der opfylder at f(x) = f(x 0 )+ f (x 0 ) 1! (x x 0 )+...+ f(n 1) (x 0

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 9. august 6 Dette eksamenssæt består af nummererede sider med 4 afkrydsningsopgaver.

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner f : R R En funktion f : R R er differentiabel

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere