Kulstof-14 datering. Første del: Metoden. Isotoper af kulstof

Størrelse: px
Starte visningen fra side:

Download "Kulstof-14 datering. Første del: Metoden. Isotoper af kulstof"

Transkript

1 Kulstof-14 datering Første del: Metoden I slutningen af 1940'erne finder et team på University of Chicago under ledelse af Willard Libby ud af, at man kan bruge det radioaktive stof kulstof 14 ( 14 C), der findes i atmosfæren sammen med almindeligt kulstof 12, til at bestemme alder og datere fund fra ikke så fjerne begivenheder. Opdagelsen udløste en nobelpris i kemi i Levende organismer som mennesker, dyr og planter optager kulstof fra atmosfæren og føden livet igennem. Mens man lever, er der en ligevægt mellem indholdet af kulstof i kroppen og indholdet af kulstof i atmosfæren og biosfæren. Men når man dør, stopper udvekslingen af kulstof mellem kroppen og omgivelserne. Nedbrydningen af det radioaktive stof kulstof 14 betyder derfor, at mængden af kulstof 14 i kroppen ikke længere afspejler forholdene i omgivelserne, men nu aftager med tiden. Det omdannes med en halveringstid på 5730 år til ikke-radioaktivt kvælstof (nitrogen). Libbys ide var nu den enkle at antage, at andelen af radioaktivt kulstof 14 i atmosfæren og biosfæren er den samme overalt på Jorden, og at den har været nogenlunde konstant gennem de sidste år. Den samme andel i levende væv er derfor uafhængig af, hvor på Jorden vi er, og hvornår vævet var levende, fordi det levende væv er i ligevægt med omgivelserne. Hvis vi kan finde ud af, hvor meget kulstof 14 der er tilbage i et bestemt fund, må vi derfor kunne regne baglæns og finde ud af, hvornår det pågældende dyr eller menneske døde. Typisk finder man ud af, hvor meget kulstof 14 der er tilbage i fundet ved at måle på aktiviteten af den biologiske prøve med fx en geigertæller. Men målingen har sine udfordringer, da strålingen har meget kort rækkevidde i biologisk væv, og det er derfor kun stråling fra det alleryderste overfladelag, der umiddelbart har chance for at nå frem til tælleren. Det er imidlertid alt for lidt til, at man kan bruge metoden i praksis. Det kræver kemisk snilde at omdanne kulstofindholdet i prøven til en gas, der kan opsamles og måles på. Isotoper af kulstof En levende organisme udveksler gennem sin levetid kulstof med omgivelserne, fx gennem indtagelse af mad og udskillelse af afføring. Når organismen dør, stopper denne udveksling. 1

2 Øvelse 1 a) Hvilke kulstofisotoper er stabile, og hvilke kulstofisotoper er ustabile - dvs. henfalder? b) For hvilke typer af kulstofisotoper forbliver mængden den samme, når en organisme dør? c) For hvilke typer af kulstofisotoper ændres mængden, når en organisme dør? Følgende links kan være behjælpelige med information: Kulstof-14-datering ved Aarhus Universitet - HowStuffWorks, C-14 dating - Henfaldsloven Den lovmæssighed, som de ustabile kulstof isotoper henfalder efter, kaldes henfaldsloven, siger følgende: Antallet af ustabile (radioaktive) kerner af en bestemt isotop aftager eksponentielt med tiden. Den matematiske model, som så anvendes for kulstofisotoper, der henfalder, er altså den eksponentielle vækstmodel y = b a x. Her er b begyndelsesværdien og a er fremskrivningsfaktoren givet ved a = 1 + r, hvor er r er vækstraten. Ved henfald af kerner vil vækstraten være negativ, svarende til en fremskrivningsfaktor der er mindre end en. Øvelse 2 a) Giv en fortolkning af konstanterne og variablene i en sådan model for henfald af isotoper? b) Vis, at formlen for halveringskonstanten kan omskrives til: c) Anvend den naturlige eksponentialfunktion og potensregler til at omskrive til følgende: d) Omskriv modellen y = b a x til formlen: - Hvad står konstanterne og variablene for i denne model? 2

3 Øvelse 3 For kulstof-14 er halveringstiden 5730 år, og vi vælger begyndelsesværdien til 100%. a) Opstil en ligning for henfaldet af kulstof 14 som funktion af tiden. b) Hvilken af de to modeller er lettest at opstille? c) Fremstil en passende graf for henfaldet af kulstof 14 som funktion af tiden. d) Bestem tiden, der går, før der er 10%, 60% og 80% af de ustabile kerner tilbage. Bemærkning: Afhængig af analysemetoden måler man enten antallet af radioaktive henfald i et givet tidsrum, dette kaldes aktiviteten, eller forholdet mellem mængden af den radioaktive isotop og en ikke-radioaktiv isotop med en anden kernemasse. Denne metode kaldes massespektroskopi. Heldigvis er de to størrelser, aktiviteten A og antallet af radioaktive kerner N, indbyrdes proportionale: A = k N. Argument: Hvis der er dobbelt så mange radioaktive kerner, forventer vi også i gennemsnit et dobbelt så stort antal henfald i løbet af et kort tidsrum. Det sikrer derfor, at den samme eksponentielle vækstmodel kan bruges på begge størrelserne, eller sagt med andre ord: Både antallet og aktiviteten aftager eksponentielt med en fælles halveringstid. 3

4 De grønlandske mumier I 1972 fandt to grønlandske jægere, brødrene Hans og Jokum Grønvold, nogle yderst velbevarede grønlandske mumier i Qilakitsoq i Uummannaq-distriktet i NV-Grønland. To stendækkede grave rummede i alt seks kvinder og to børn, alle påklædte. De havde endda fået ekstra dragter med, og disse giver ny indsigt i den højt udviklede Thule-kultur. Grønlands Nationalmuseum begyndte dog først i 1978 en udgravning. Fundet blev bragt til Danmark til restaurering, konservering og tværfaglige undersøgelser, som bl.a. belyste datidens levevilkår og de gravlagtes helbredstilstand. Tre kvinder og et barn, de bedst bevarede af ligene, forblev urørte i deres skinddragter. De er nu sammen med de øvrige dragter udstillet på Grønlands Nationalmuseum i Nuuk. Foto - Nationalmuseet Øvelse 4 For at fastlægge det tidspunkt, hvorpå hvor de blev begravet, anvendte nationalmuseet kulstof 14- metoden. Ved måling af aktiviteten for et lille udsnit af en mumie fandt man 16,7 tællinger i minuttet. Da mumien var et levende menneske, forventede man 17,8 tællinger i minuttet. Da vi kender halveringstiden for aktiviteten, kan vi derfor regne baglæns og finde dødstidspunktet. Bestem det årstal, hvor mumierne blev begravede. 4

5 Grauballemanden I 1952 fandt nogle arbejdere under tørvegravning ved Grauballe nær Silkeborg et lig. Det var en yngre mand, der havde fået struben skåret over. Det var så velbevaret, at de troede, der var begået en forbrydelse, hvorfor de tilkaldte politiet. Det viste sig at være et moselig af en person, der engang i oldtiden af en eller anden grund var blevet ofret. Det velbevarede lig blev konserveret og er i dag udstillet på Moesgård Museum ved Århus. Øvelse 5 Efter fundet er Grauballemanden blevet undersøgt med kulstof 14-metoden. Aktiviteten i manden blev målt til 76% af aktiviteten af den forventede værdi, da han var i live. Hvor længe siden er det, at Grauballemanden døde? 5

Projekt 4.6 C-14 Datering

Projekt 4.6 C-14 Datering Projekt 4.6 C-4 Datering Første del: Metoden I slutningen af 940 erne finder et team på University of Chicago under ledelse af Willard Libby ud af, at man kan bruge det radioaktive stof kulstof 4 ( 4 C

Læs mere

Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald

Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald Der findes mange situationer, hvor en bestemt størrelse ændres som følge af vekselvirkninger med

Læs mere

Hvad er en funktion? Funktioner og graftegning. Funktioners egenskaber. Funktioners egenskaber. f(b) y = f(x) f(a) f(a)

Hvad er en funktion? Funktioner og graftegning. Funktioners egenskaber. Funktioners egenskaber. f(b) y = f(x) f(a) f(a) Funktioner og graftegning Jeppe Revall Frisvad September 29 Hvad er en funktion? En funktion f er en regel som til hvert element i en mængde A ( A) knytter præcis ét element y i en mængde B Udtrykket f

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG INDHOLDSFORTEGNELSE Formelsamling... side Grundlæggende færdigheder... side 4 a Finde konstanterne a og b i en regneforskrift (og p eller r)... side 4 b

Læs mere

Massespektrometri og kulstof-14-datering

Massespektrometri og kulstof-14-datering Massespektrometri og kulstof-14-datering Opgavehæfte AMS 14 C Daterings Center Institut for Fysik og Astronomi, Aarhus Universitet JO\ AUG 2004 BP\FEB 2010 Opgaverne 5,6 og 7 er hentet eller modificeret

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere

er den radioaktive kildes aktivitet til tidspunktet t= 0, A( t ) er aktiviteten til tidspunktet t og k er henfaldskonstanten.

er den radioaktive kildes aktivitet til tidspunktet t= 0, A( t ) er aktiviteten til tidspunktet t og k er henfaldskonstanten. Fysikøvelse Erik Vestergaard www.matematikfysik.dk Radioaktive henfald Formål Formålet i denne øvelse er at eftervise henfaldsloven A( t) = A0 e kt, hvor A 0 er den radioaktive kildes aktivitet til tidspunktet

Læs mere

Supplerende opgaver til TRIP s matematiske GRUNDBOG. Forlaget TRIP. Opgaverne må frit benyttes i undervisningen.

Supplerende opgaver til TRIP s matematiske GRUNDBOG. Forlaget TRIP. Opgaverne må frit benyttes i undervisningen. 37-43. Side 1 af 8 Eksponentiel udvikling ( 37-43) Opgaverne med svar starter på side 4, og deres numre har et s efter nummeret. Deres nummerering starter forfra. Svarene står fra side 7 med et s foran

Læs mere

Lektion 7 Eksponentialfunktioner

Lektion 7 Eksponentialfunktioner Lektion 7 Eksponentialfunktioner Den naturlige eksponentialfunktion ep) = e Andre eksponentialfunktioner a Regneregler ep0) =, ep + y) = ep) epy) Potensfunktioner r En berømt grænseværdi Uegentlige integraler

Læs mere

Partikler med fart på Ny Prisma Fysik og kemi 9 Skole: Navn: Klasse:

Partikler med fart på Ny Prisma Fysik og kemi 9 Skole: Navn: Klasse: Partikler med fart på Ny Prisma Fysik og kemi 9 Skole: Navn: Klasse: Opgave 1 Et atom har oftest to slags partikler i atomkernen. Hvad hedder partiklerne? Der er 6 linjer. Sæt et kryds ud for hver linje.

Læs mere

Projekt 4.2. Nedbrydning af rusmidler

Projekt 4.2. Nedbrydning af rusmidler Projekt 4.2. Nedbrydning af rusmidler Dette projekt lægger op til et samarbejde med biologi eller idræt, men kan også gennemføres som et projekt i matematik, hvor fokus er at studere forskellen på lineære

Læs mere

Eksamensspørgsmål: Eksponentiel vækst

Eksamensspørgsmål: Eksponentiel vækst Eksamensspørgsmål: Eksponentiel vækst Indhold Definition:... Eksempel :... Begndelsesværdien b... Fremskrivningsfaktoren a... Eksempel :... Formlerne for a og b... 3 Eksempel 3:... 3 Bevis for formlen

Læs mere

9 Eksponential- og logaritmefunktioner

9 Eksponential- og logaritmefunktioner 9 Eksponential- og logaritmefunktioner Hayati Balo, AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2 2. Crone og Rosenquist, Matematiske elementer

Læs mere

Du sætter 2300 kr ind på en konto med en rente på 3,5 % p.a. a. Hvor meget står der efter 3 år? b. 5 år? c. 10 år?

Du sætter 2300 kr ind på en konto med en rente på 3,5 % p.a. a. Hvor meget står der efter 3 år? b. 5 år? c. 10 år? 6. 6.1 Rentesregning Du sætter 2300 kr ind på en konto med en rente på 3,5 % p.a. a. Hvor meget står der efter 3 år? b. 5 år? c. 10 år? 6.2 Vækst i antal besøgende I 1999 var det årlige besøgstal i Grønkøbing

Læs mere

Marie og Pierre Curie

Marie og Pierre Curie N Kernefysik 1. Radioaktivitet Marie og Pierre Curie Atomer består af en kerne med en elektronsky udenom. Kernen er ganske lille i forhold til elektronskyen. Kernens størrelse i sammenligning med hele

Læs mere

Lektion 9 Vækstmodeller

Lektion 9 Vækstmodeller Lektion 9 Vækstmodeller Eksponentiel vækst 1. Eksponentielt voksende funktioner 2. Eksponentielt aftagende funktioner 3. Halverings- og fordoblingstider Vækst mod asymptotisk grænse Logistisk vækst 1.

Læs mere

Tekstiler fortæller Europas historie

Tekstiler fortæller Europas historie Tekstiler fortæller Europas historie På det gamle Københavns Universitet Amager sidder en gruppe kvinder i et stort lyst lokale med kunstfærdige og farverige billedtæpper på væggene. De har på få år formået

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Afleveringsopgaver i fysik

Afleveringsopgaver i fysik Afleveringsopgaver i fysik Opgavesættet skal regnes i grupper på 2-3 personer, helst i par. Hver gruppe afleverer et sæt. Du kan finde noget af stoffet i Orbit C side 165-175. Opgave 1 Tegn atomerne af

Læs mere

Sæt GM-tællererne til at tælle impulser i 10 sekunder. Sørg for at alle kendte radioaktive kilder er placeret langt væk fra målerøret.

Sæt GM-tællererne til at tælle impulser i 10 sekunder. Sørg for at alle kendte radioaktive kilder er placeret langt væk fra målerøret. Forsøge med stråling fra radioaktive stoffer Stråling fra radioaktive stoffer. Den stråling, der kommer fra radioaktive stoffer, kaldes for ioniserende stråling. Den kan måles med en Geiger-Müler-rør koblet

Læs mere

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal.

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal. Eksponentielle funktioner Indhold Definition:... 1 Om a og b... 2 Tegning af graf for en eksponentiel funktion... 3 Enkeltlogaritmisk koordinatsstem... 4 Logaritmisk skala... 5 Fordoblings- og halveringskonstant...

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Matematisk modellering og numeriske metoder. Lektion 1

Matematisk modellering og numeriske metoder. Lektion 1 Matematisk modellering og numeriske metoder Lektion 1 Morten Grud Rasmussen 4. september, 2013 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).

Læs mere

Eksempler på differentialligningsmodeller

Eksempler på differentialligningsmodeller 1 Indledning Matematisk modellering er et redskab, som finder anvendelse i et utal af både videnskabelige og samfundsmæssige sammenhænge. En matematisk model søger at knytte en sammenhæng mellem et ikke-matematisk

Læs mere

Nr Isotoper fortæller om fortidens kost Fag: Fysik A/B, Biologi A/B Udarbejdet af: Ole Ahlgren, Rønde Gymnasium, april 2009

Nr Isotoper fortæller om fortidens kost Fag: Fysik A/B, Biologi A/B Udarbejdet af: Ole Ahlgren, Rønde Gymnasium, april 2009 Nr. 4-2008 Isotoper fortæller om fortidens kost Fag: Fysik A/B, Biologi A/B Udarbejdet af: Ole Ahlgren, Rønde Gymnasium, april 2009 Spørgsmål til artiklen 1. Stenalderen opdeles i flere aldre. Hvad hedder

Læs mere

Hvad er drivhusgasser

Hvad er drivhusgasser Hvad er drivhusgasser Vanddamp: Den primære drivhusgas er vanddamp (H 2 O), som står for omkring to tredjedele af den naturlige drivhuseffekt. I atmosfæren opfanger vandmolekylerne den varme, som jorden

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK NOVEMBER 008 MATEMATIK A-NIVEAU g Prøve november 008 1. delprøve: 1 time med formelsamling samt. delprøve: timer med alle hjælpemidler Alle delspørgsmål indenfor hver af

Læs mere

Marie og Pierre Curie

Marie og Pierre Curie N Kernefysik 1. Radioaktivitet Marie og Pierre Curie Atomer består af en kerne med en elektronsky udenom. Kernen er ganske lille i forhold til elektronskyen. Kernens størrelse i sammenligning med hele

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

RAPPORT Karakteristik af tangtag nedbrydelighed og kemisk sammensætning

RAPPORT Karakteristik af tangtag nedbrydelighed og kemisk sammensætning RAPPORT Karakteristik af tangtag nedbrydelighed og kemisk sammensætning Forfattere: Lektor Erik Kristensen og Professor Marianne Holmer, Biologisk Institut, Syddansk Universitet, Campusvej 55, 523 Odense

Læs mere

Lektion 13 Homogene lineære differentialligningssystemer

Lektion 13 Homogene lineære differentialligningssystemer Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer

Læs mere

Matematik B. Studentereksamen. Torsdag den 22. maj 2014 kl stx141-MAT/B

Matematik B. Studentereksamen. Torsdag den 22. maj 2014 kl stx141-MAT/B Matematik B Studentereksamen 1stx141-MAT/B-22052014 Torsdag den 22. maj 2014 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Fortiden i landskabet - Kom og hør eksperterne fortælle om Nordsjællands arkæologiske hot-spots

Fortiden i landskabet - Kom og hør eksperterne fortælle om Nordsjællands arkæologiske hot-spots Fortiden i landskabet - Kom og hør eksperterne fortælle om Nordsjællands arkæologiske hot-spots Fem søndage i træk inviterer Museum Nordsjælland alle interesserede til at opleve nogle af de mest spændende

Læs mere

fs10 1 Folkeskoler og privatskoler 2 Undervisningsudgifter 3 En skoles idrætsområde 4 Et fysikforsøg 5 En rosette 6 Figurer af kugler og magneter

fs10 1 Folkeskoler og privatskoler 2 Undervisningsudgifter 3 En skoles idrætsområde 4 Et fysikforsøg 5 En rosette 6 Figurer af kugler og magneter fs10 10.-klasseprøven Matematik December 2013 Et svarark er vedlagt som bilag til dette opgavesæt 1 Folkeskoler og privatskoler 2 Undervisningsudgifter 3 En skoles idrætsområde 4 Et fysikforsøg 5 En rosette

Læs mere

Salt 2. ovenfor. x = Tid (minutter) y = gram salt i vandet

Salt 2. ovenfor. x = Tid (minutter) y = gram salt i vandet Projekt om medicindosering Fra http://www.ruc.dk/imfufa/matematik/deltidsudd_mat/sidefagssupplering_mat/rap_medicinering.pdf/ Lav mindst side 1-4 t.o.m. Med 7 Ar b ejd ssed d el 0 Salt 1 Forestil Jer at

Læs mere

Strålings indvirkning på levende organismers levevilkår

Strålings indvirkning på levende organismers levevilkår Strålings indvirkning på levende organismers levevilkår Niveau: 7.-9. klasse Varighed: 8 lektioner Præsentation: I forløbet Strålingens indvirkning på levende organismer arbejdes der med, hvad bestråling

Læs mere

Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven

Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven 2014-0522 1stx141-MAT-B - eksemplarisk besvarelse Bemærk, at i opgaverne uden hjælpemidler er Maple blot benyttet som tekstbehandling. Til eksamen skal besvarelsen laves med papir og blyant. Opgavetksten

Læs mere

Eksponentiel regression med TI-Nspire ved transformation af data

Eksponentiel regression med TI-Nspire ved transformation af data Eksponentiel regression med TI-Nspire ved transformation af data En vigtig metode til at få overblik over data er at tranformere dem, således at der fremkommer en lineær sammenhæng. Ordet transformation

Læs mere

INTRODUKTION Maple Funktioner Regression

INTRODUKTION Maple Funktioner Regression INTRODUKTION Maple Funktioner Regression x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse PAPIR, BLYANT OG COMPUTER... 3 LEKTIELÆSNING... 3 3 FØRSTE MATEMATIKMODULER... 3 KOM I GANG MED MAPLE...

Læs mere

Matematik Grundforløbet

Matematik Grundforløbet Matematik Grundforløbet Mike Auerbach (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Matematik: Grundforløbet 2. udgave, 2015 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Forløbet består 4 fagtekster, 19 opgaver og 10 aktiviteter. Derudover er der Videnstjek.

Forløbet består 4 fagtekster, 19 opgaver og 10 aktiviteter. Derudover er der Videnstjek. Radioaktivitet Niveau: 9. klasse Varighed: 11 lektioner Præsentation: I forløbet Radioaktivitet arbejdes der med den naturlige og den menneskeskabte stråling. Der arbejdes endvidere med radioaktive stoffers

Læs mere

HVAD ER RADIOAKTIV STRÅLING

HVAD ER RADIOAKTIV STRÅLING 16. Radioaktiv stråling kaldes i videnskabelige kredse Joniserende stråling Stråling som påvirker alt stof ved at danne joner, som er elektrisk ladede atomer eller molekyler. Joniserende stråling skader

Læs mere

Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer

Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer Dansk Fysikolympiade 2007 Landsprøve Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar Prøvetid: 3 timer Opgavesættet består af 6 opgaver med tilsammen 17 spørgsmål. Svarene på de stillede

Læs mere

Matematik A og Informationsteknologi B

Matematik A og Informationsteknologi B Matematik A og Informationsteknologi B Projektopgave 2 Eksponentielle modeller Benjamin Andreas Olander Christiansen Jens Werner Nielsen Klasse 2.4 6. december 2010 Vejledere: Jørn Christian Bendtsen og

Læs mere

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Isotoper fortæller om fortidens kost

Isotoper fortæller om fortidens kost A k t u e l N a t u r v i d e n s k a b 4 2 0 0 Isotoper fortæller om fortidens kost Ved at analysere knogler fra fortidens mennesker for isotoper af kulstof og kvælstof, kan man afsløre, om de spiste

Læs mere

Der hænger 4 lodder i et fælles hul på hver side af en vægtstang. Hvad kan du sige med hensyn til ligevægt?:

Der hænger 4 lodder i et fælles hul på hver side af en vægtstang. Hvad kan du sige med hensyn til ligevægt?: 1 At skabe ligevægt Der er flere måder hvorpå man med lodder som hænger i et fælles hul på hver sin side af en vægtstang kan få den til at balancere - at være i ligevægt. Prøv dig frem og angiv hvilke

Læs mere

Rækkevidde, halveringstykkelse og afstandskvadratloven

Rækkevidde, halveringstykkelse og afstandskvadratloven Rækkevidde, halveringstykkelse og afstandskvadratloven Eval Rud Møller Bioanalytikeruddannelsen VIA University College Marts 008 Program Indledende kommentarer. Rækkevidde for partikelstråling Opbremsning

Læs mere

Differensligninger og populationsstørrelser

Differensligninger og populationsstørrelser Differensligninger og populationsstørrelser Søren Højsgaard Department of Mathematical Sciences Aalborg University, Denmark October 22, 2015 Printed: October 22, 2015 File: differensligninger-slides.tex

Læs mere

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU Tirsdag den 18. december 2007 Kl. 09.00 13.00 STX073-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål

Læs mere

Læringsmål i fysik - 9. Klasse

Læringsmål i fysik - 9. Klasse Læringsmål i fysik - 9. Klasse Salte, syrer og baser Jeg ved salt er et stof der er opbygget af ioner. Jeg ved at Ioner i salt sidder i et fast mønster, et iongitter Jeg kan vise og forklare at salt, der

Læs mere

Eksponentiel vækst/sammensat rente

Eksponentiel vækst/sammensat rente Eksponentiel vækst/sammensat rente 1. Danmarks befolkning var i 2005 på 5,43 millioner mennesker. Hvis vi regner med, at folketallet i Danmark stiger med 0,34 % om året... Hvor mange mennesker vil der

Læs mere

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives.

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives. Eksamensspørgsmål - maj/juni 2016 1. Tal Du skal redegøre for løsningsregler for ligninger. Forklar, hvordan følgende ligning kan løses grafisk: x + 4 = 3x - 2 Redegør for opstilling af formler til løsning

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Projekt 5.3. Kropsvægt og andre biologiske størrelser hos pattedyr

Projekt 5.3. Kropsvægt og andre biologiske størrelser hos pattedyr Projekt 5.3. ropsvægt og andre biologiske størrelser hos pattedyr (Projektet er en let bearbejdelse af et materiale, der indgår i Væksthæftet, udgivet af matematiklærerforeningen, og som er stillet til

Læs mere

Naturfag - naturligvis. 3. Vækstmodeller

Naturfag - naturligvis. 3. Vækstmodeller Naturfag - naturligvis af Kenneth Hansen 3. Vækstmodeller Verdens befolkning 14 12 10 8 6 4 2 0 0 10 20 30 40 50 År 1984-2034 I 1984 var verdensbefolkningen 4,7 mia. og voksede med 1,8% om året Hvornår

Læs mere

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner: Afsnit 4.2, 4.3 og 4.4 Poissonprocessen/eksponentialfordelingen

Læs mere

Lektion ordens lineære differentialligninger

Lektion ordens lineære differentialligninger Lektion 11 1. ordens lineære differentialligninger Lineære differentialligninger Lineære differentialligninger af 1. orden 1. homogene 2. inhomogene Lineære differentialligninger af 1. orden med konstante

Læs mere

Eksponentielle funktioner

Eksponentielle funktioner Eksponentielle funktioner http://en.wikipedia.org/wiki/rabbits_in_australia 4. udg. 2011 12-12-2011 Eksponentielle funktioner Vækst Udfyld tabellen ved: at skrive begyndelsesværdien b = f(0) = 30 under

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Grauballemanden.dk i naturfag

Grauballemanden.dk i naturfag Lærervejledning: Gymnasiet Grauballemanden.dk i naturfag Biologi Introduktion I biologiundervisningen i gymnasiet fokuseres der på, at eleverne får biologisk indsigt gennem faglig fordybelse, og at de

Læs mere

Mørteldatering og kirkearkæologi

Mørteldatering og kirkearkæologi 30 Mørteldatering og kirkearkæologi Kulstof-14-analyse bruges normalt til at datere organisk materiale som træ eller knogler. De seneste tiår er metoden blevet udviklet, så den også kan bruges på mørtel

Læs mere

Solindstråling på vandret flade Beregningsmodel

Solindstråling på vandret flade Beregningsmodel Solindstråling på vandret flade Beregningsmodel Formål Når solens stråler rammer en vandret flade på en klar dag, består indstrålingen af diffus stråling fra himlen og skyer såvel som solens direkte stråler.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2016 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Indholdsfortegnelse Kernefysik... 5 1. Facts om kernen i atomet... 5 2. Gammastråling og energiniveauer

Læs mere

M A T E M A T I K G R U N D F O R L Ø B E T

M A T E M A T I K G R U N D F O R L Ø B E T M A T E M A T I K G R U N D F O R L Ø B E T M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Matematik: Grundforløbet 3. udgave, 2016 Disse noter er skrevet til matematikundervisning

Læs mere

Projekt: Logistisk vækst med/uden høst

Projekt: Logistisk vækst med/uden høst Projekt: Logistisk vækst med/uden høst I dette projekt skal vi arbejde med differentialligninger, specielt med logistisk vækst og med en udvidelse, hvor der indgår høst. Den eksponentielle vækst (type:

Læs mere

Variable. 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0

Variable. 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0 Variable 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0 2 a x = 5 b x = 1 c x = 1 d y = 1 e z = 0 f Ingen løsning. 3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Hvor mange neutroner og protoner er der i plutonium-isotopen

Hvor mange neutroner og protoner er der i plutonium-isotopen Atomet Tjek din viden om atomet. 3.1 4.1 Atommasse måles i Skriv navnene på partiklerne i atomet. Hvad angiver tallene i den kernefysiske skrivemåde? 4 2 He 13 6 Tegn atomkernen til kulstof-isotopen C.

Læs mere

Baggrundsmateriale til Minigame 7 side 1 A + B C + D

Baggrundsmateriale til Minigame 7 side 1 A + B C + D Baggrundsmateriale til Minigame 7 side 1 Indhold Kernestof... 1 Supplerende stof... 1 1. Differentialligninger (Baggrundsmateriale til Minigame 3)... 1 2. Reaktionsorden (Nulte-, første- og andenordensreaktioner)...

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

Grauballemanden.dk i historie

Grauballemanden.dk i historie Lærervejledning: Folkeskolen, 3.-6. klasse Grauballemanden.dk i historie Historie Introduktion Historieundervisningen i folkeskolen skal stimulere elevernes evne til indlevelse, analyse og vurdering og

Læs mere

Strontium afslører levesteder

Strontium afslører levesteder 18 Strontium afslører levesteder Strontiumisotoper i skeletter, hår og tekstiler fra fortidens mennesker kan afsløre, hvor disse mennesker voksede op eller levede de sidste år af deres liv. Det skyldes,

Læs mere

Undervisningsbeskrivelse for 1ama

Undervisningsbeskrivelse for 1ama Undervisningsbeskrivelse for 2016-2017 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2017 Institution Uddannelse Fag og niveau Lærer(e) Hold Horsens HF og VUC HF2 Matematik

Læs mere

HBV 1212 Mannehøjgård

HBV 1212 Mannehøjgård HBV 1212 Mannehøjgård Bygherrerapport for den arkæologiske undersøgelse HBV 1212 Mannehøjgård, matr.nr. 9m, Askov By, Malt sogn, Malt herred, Ribe amt Udarbejdet af Steffen Terp Laursen for Museet på Sønderskov

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016 Institution HF & VUC Nordsjælland, Hillerød afdeling Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

9. Er jorden i Arktis en tikkende bombe af drivhusgasser?

9. Er jorden i Arktis en tikkende bombe af drivhusgasser? 9. Er jorden i Arktis en tikkende bombe af drivhusgasser? Af Peter Bondo Christensen og Lone Als Egebo I det højarktiske Nordøstgrønland ligger forsøgsstationen Zackenberg. Her undersøger danske forskere,

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2008.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2008. Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 008. Billeder: Forside: Collage af foto fra blandt andet: istock.com/chuntise istock.com/ihoe Side 11: istock.com/jamesbenet Side 14: Tegning af

Læs mere

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10.

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10. Form Undervisningen vil veksle mellem individuelt arbejde, gruppearbejde og tavleundervisning. Materialer Undervisningen tager udgangspunkt i følgende grundbøger og digitale lærings- og undervisningsplatforme.

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Teknisk anvisning for marin overvågning

Teknisk anvisning for marin overvågning NOVANA Teknisk anvisning for marin overvågning 5.3 Pb datering af sediment Henrik Fossing Finn Adser Afdeling for Marin Økologi Miljøministeriet Danmarks Miljøundersøgelser 5.3-1 Indhold 5.3 Pb datering

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2015, skoleåret 14/15 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

TEORETISKE MÅL FOR EMNET:

TEORETISKE MÅL FOR EMNET: TEORETISKE MÅL FOR EMNET: Kendskab til organiske forbindelser Kende alkoholen ethanol samt enkelte andre simple alkoholer Vide, hvad der kendetegner en alkohol Vide, hvordan alkoholprocenter beregnes;

Læs mere

Nogle åbne spørgsmål (1)

Nogle åbne spørgsmål (1) Kulstof-14-datering: Nogle åbne spørgsmål (1) Af cand. polyt. Finn Lykke Nielsen Boelsmand Indledning Denne artikel bygger på mit ingeniørspeciale Radioaktive dateringsmetoder, 1985 1, hvor jeg bl.a. havde

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

KONDENSATORER (DC) Princip og kapacitans Serie og parallel kobling Op- og afladning

KONDENSATORER (DC) Princip og kapacitans Serie og parallel kobling Op- og afladning KONDENSATORER (DC) Princip og kapacitans Serie og parallel kobling Op- og afladning Dagsorden: Opladningens principielle forløb En matematisk tilgang til opladning (og kort om afladning afslutningsvis)

Læs mere

Vi søger efter livsbetingelser og/eller liv i rummet (evt. fossiler) med det mål at få svar på spørgsmålet:

Vi søger efter livsbetingelser og/eller liv i rummet (evt. fossiler) med det mål at få svar på spørgsmålet: Liv i Universet De metoder vi anvender til at søge efter liv i Universet afhænger naturligvis af hvad vi leder efter. Her viser det sig måske lidt overraskende at de processer vi kalder for liv, ikke er

Læs mere

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger Eksamensspørgsmål 11q sommer 01. Gør rede for omformningsreglerne for ligninger. Spørgsmål 1: Ligninger Giv eksempler på hvordan forskellige ligninger løses. Du bør her komme ind på flere forskellige ligningstyper,

Læs mere

Forholdet mellem kapitalværdi og kapitalmængde I

Forholdet mellem kapitalværdi og kapitalmængde I Danmarks Statistik MODELGRUPPEN Arbejdspapir* Tony Maarsleth Kristensen 22. september 1997 Forholdet mellem kapitalværdi og kapitalmængde I Resumé: Forholdet mellem kapitalværdi og kapitalmængde indgår

Læs mere

TØ-opgaver til uge 46

TØ-opgaver til uge 46 TØ-opgaver til uge 46 Først laver vi en liste over de ligninger med mere i [ITP], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Sætning 3.1, ligning (3.3) på side 7. [3]: Sætning 3.1, ligning (3.4)

Læs mere

Undervisningsplan for fysik/kemi, 9.A 2015/16

Undervisningsplan for fysik/kemi, 9.A 2015/16 Undervisningsplan for fysik/kemi, 9.A 2015/16 Formålet med undervisningen er, at eleverne tilegner sig viden om vigtige fysiske og kemiske forhold i naturen og teknikken med vægt på forståelse af grundlæggende

Læs mere

STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december 2008. Kl. 09.00 13.00 STX083-MAB

STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december 2008. Kl. 09.00 13.00 STX083-MAB STUDENTEREKSAMEN DECEMBER 008 MATEMATIK B-NIVEAU Fredag den 1. december 008 Kl. 09.00 13.00 STX083-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.

Læs mere