Udledning af Keplers love

Størrelse: px
Starte visningen fra side:

Download "Udledning af Keplers love"

Transkript

1 Udledning af Keplers love Kristian Jerslev 8. december 009 Resumé Her præsenteres en udledning af Keplers tre love ud fra Newtonsk tyngdekraft. Begyndende med en analyse af et to-legeme problem vil jeg her gennemgå fysikken, der leder hen til Keplers første lov. Efterfølgende vil jeg udlede Keplers anden lov ud fra en overvejelse omkring det bevarede angulære moment for planetbaner. Til sidst vil jeg udlede Keplers tredje lov ud fra Keplers første og anden lov. To-legeme problemet er ofte omtalt i forbindelse med Keplers love. Her vil jeg præsentere en udledning af Keplers tre love ud fra Newtonsk tyngdekraft. For at gøre analysen nemmere, vil jeg dog benytte mig af Lagrange-formalismen, og jeg vil ydermere benytte mig af, at analysen bliver meget nemmere, hvis den laves i massemidtpunktssystemet. Lad R angive positionen af massemidtpunktet fra et arbitrært referencepunkt, og lad r 1 og r være stedvektorerne for de to legemer, som problemet involverer. Den relative vektor r = r 1 r vil dermed være vektoren fra legeme til legeme 1 I det følgende vil en prik over et symbol angive en tidsdifferentiation, altså Ṙ d dtr, hvor det er underforstået, at alle vektorer er tidsafhængige. Det kan vises, at den totale kinetiske energi i et to-legeme system er givet ved T = 1 MṘ + 1 µṙ, (1) der netop viser, at den totale kinetiske energi kan betragtes som den kinetiske energi fra et legeme med den totale masse M = m 1 + m, der bevæger sig med den samme hastighed som massemidtpunktet, og m i er massen af det i te legeme. Det andet led angiver den kinetiske energi af et legeme med massen µ, der er bevæger sig hastigheden svarende til den relative position. µ svarer til den reducerede masse af systemet; µ = m1m M. Lad os vende tilbage til problemet omtalt i første afsnit. I massemidtpunktssystemet vil massemidtpunktet naturligvis ikke bevæge sig, hvormed det haves, at Ṙ = 0, hvormed lagrangefunktionen reducerer til L = 1 µṙ U(r), () hvor U(r) angiver centralpotentialet i Newtonsk tyngdekraft. Det er nu fordelagtigt at udtrykke lagrangefunktionen i polære koordinater, så lagrangeligningen kan opsplittes i en ligning for den radielle afstand og en ligning for vinkelafhængigheden. Ud fra bevarelse af det angulære moment kan det vises, at bevægelsen 1

2 i massemidtpunktssystemet vil foregå i et plan, så dette plan vælges som koordinatsystem. I polære koordinater kan lagrangefunktionen opskrives som L = 1 µ(ṙ + r φ ) U(r). (3) Det kan ses, at lagrangefunktionen er uafhængig af φ, hvormed lagrangeligningen for vinkelafhængigheden blot reducerer til L φ = µr φ = l, (4) og da µr φ blot er det angulære moment siger denne ligning blot, at det angulære moment er konstant. Lagrangeligningen for den radielle del, L r = d L dt ṙ vil tage formen du dr = µ r µr φ, (5) hvor højresiden blot er den radielle del af Newtons anden lov, F = µa. Opgaven består nu i at løse bevægelsesligningerne for den radielle del og vinkeldelen, altså (4) og (5). Første skridt er at eliminere vinkelhastigheden fra (4) til fordel for det angulære moment l. Den radielle ligning kan da omskrives til µ r = du dr + µr φ = du dr + F cf, (6) der netop har formen for Newtons anden lov for en partikel i én dimension med massen µ, position r, der er under påvirkning af den virkelige kræft du dr samt den fiktive centrifugalkraft F cf = µr φ = µ v φ r. Problemet med bevægelsen af de to legemer vi startede med, er nu blevet reduceret til et et-dimensionelt problem. Det kan være meget lærerigt herfra at omskrive centrifugalledet ved at eliminere vinkelhastigheden til fordel for det angulære moment, F cf = l µr 3. (7) For at gøre det hele nemmere, kan vi nu betragte centrifugalkraften ved en centrifugal potentiel energi: F cf = d ( ) l dr µr = du cf dr, (8) med den centrifugale potentielle energi defineret som U cf (r) = disse omskrivninger kan (5) skrives som l µr. Ud fra µ r = d dr [U(r) + U cf (r)] = d dr U eff (r), (9) hvor jeg har indført den effektive potentielle energi som summen af den gravitationelle potentielle energi og den centrifugelle potentielle energi: U eff (r) = U(r) + l µr. (10)

3 Ud fra denne analyse er det tydeligt, at den radielle bevægelse er præcis den samme som hvis legemet bevægede sig en én dimension under det effektive potentiale. Det er i mange tilfælde praktisk at udtrykke r som funktion af φ i stedet for som funktion af tiden. Derfor ville det være praktisk at overgå fra r(t) til r(φ). Lad mig derfor starte med at omskrive (8) til en differentialligning i en ny variabel, u = 1 r. Første skridt er at omskrive radialligningen ved at indføre F = du dr : µ r = F (r) + l µr 3. (11) Herefter bruges kædereglen til at omskrive differentialoperatoren d dt : d dt = dφ d dt dφ = φ d dφ = lu d µ dφ. (1) Via lidt omskrivning af tidsdifferentiationen af radius (i forbindelse med r og ṙ) fås da, at l u µ d u dφ = F + l u 3 µ u (φ) = u(φ) Løsning af differentialligning under centralfelt µ l F. (13) u(φ) Lad mig nu vende tilbage til det oprindelige formål med denne note: At udlede Keplers love ud fra Newtonsk tyngdekraft. Det vil altså indebære, at vi skal få løst (13) under betingelsen af, at kræften, F, er Newtons version af tyngdekraften. Det vil altså derfor være gældende, at F (r) = G m 1m r = γu, (14) hvor γ = Gm 1 m og u = r 1. Ved at indsætte i (13) fås da, at u (φ) = u(φ) + l. (15) Denne differentialligning er simpel at løse, hvis vi laver substitutionen fra u(φ) til ω(φ) via ω(φ) = u(φ) l, (16) der netop giver den simple differentialligning Den generelle løsning til denne differentialligning er ω (φ) = ω(φ). (17) ω(φ) = A cos(φ δ), (18) hvor A er en positiv konstant og δ er en konstant, der kan vælges således, at den er nul, når φ = 0. Ved tilbageskift til u(φ) fås den generelle løsning til u(φ) = + A cos φ = (1 + ɛ cos φ), (19) l l 3

4 hvor ɛ blot er et nyt navn til den dimensionsløse konstant Al. Ved at indføre konstanten c, der har enhed af længde som c = l og ved at skifte tilbage til r(φ) fås løsningen til differentialligningen til r(φ) = Bundne kredsløb (Keplers første lov) c 1 + ɛ cos φ. (0) Det er tydeligt fra (0), at bevægelsen er bestemt ud fra den positive konstant ɛ. Hvis ɛ < 1 vil nævneren i (0) være forskellig fra nul og større end 1 til alle vinkler, hvorfor r(φ) er bundet for alle vinkler. Netop da nævneren svinger mellem værdierne 1 ± ɛ vil r(φ) oscillere mellem r min = c 1 + ɛ og r max = c 1 ɛ, med koordinatsystemet lagt således, at ved r = r min vil φ = 0. I solsystemet vil r min blive kaldt for perihelion og r max for aphelion - henholdsvis afstanden, når himmellegemet er tættest og længst væk fra solen. Hvis r(φ) plottes som funktion af φ, der løber fra 0 til π fås en figur, der ligning en ellipse. Det kan vises, at (0) kan omskrives til den kartesiske form for en ellipse (x + d) a + y = 1, (1) b hvis det udnyttes, at a = c(1 ɛ ) 1, b = c(1 ɛ ) 1 og med d = aɛ. (1) er standardligningen for en ellipse med den halve storakse a og halve lilleakse b med den forskel, at vi har skrevet x + d, hvor vi normalt ville have x. Denne forskel viser, at midtpunktet, i solsystemets tilfælde solen, ikke er i midten af ellipsen men derimod en afstand d fra centrum. Den positive konstant ɛ kan nu identificeres ved hjælp af a og b: b a = 1 ɛ, () der netop er definitionen på eccentriciteten af en ellipse. Denne ligning fortæller altså, at ɛ er eccentriciteten på kredsløbet. Nu hvor ɛ er blevet identificeret kan vi finde positionen af solen i forhold til centrum på ellipsen. Fra tidligere har vi kigget på størrelsen d = aɛ, der netop angav solens position i forhold til centret på ellipsen. Samme størrelse angiver netop det ene brændpunkts afstand fra centret til ellipsen, og Keplers første lov er dermed udledt. Vi har vist, at planeterne og andre bundne legemers kredsløb er elliptiske, hvor solen befinder sig i det ene brændpunkt. Keplers anden lov I forhold til hvad jeg lige har gennemgået, er udledningen af den anden lov utrolig simpel. Betragt en elliptisk bane omkring solen. Lad positionsvektoren for et legeme i kredsløb om solen være r og lad v være hastighedsvektoren for legemet. Naturligvis er begge disse vektorer afhængig af tiden. Kigger vi nu på et bestemt tidspunkt på banen og lader positionen til dette tidspunkt være r vil 4

5 positionen et stykke tid, dt efter, være r + dr, hvor dr = vdt. Gøres tidspunktet infinitisimalt víl de to vektorer r og dr udspænde en trekant, der vil have arealet da = 1 r dr = 1 r vdt. Ved nu at omskrive legemets hastighedsvektor v via impulsen p = mv og ved at dividere på hver side med dt fås da da dt = 1 1 r p = l, (3) m m hvor l = r p blot er det angulære moment for legemet. Siden en planets angulære moment omkring solen er bevaret ses det her, at da/dt er konstant og dermed er Keplers anden lov vist. Keplers tredje lov Som det blev set ovenfor, er arealhastigheden for en planet konstant. Da det totale areal af en impuls er A = πab vil perioden da være τ = A da/dt = πabµ. (4) l Kvadreres begge sider og erstattes b med b = a (1 ɛ ) fås da τ = 4π a4 (1 ɛ )µ l = 4π a3 cµ og da konstanten c fra tidligere var defineret som c = l l, (5) fås da, at τ = 4π a3 µ γ, (6) hvor vi ved indførelse af γ = Gm 1 m GµM s, hvor M s er solens masse, får der netop er Keplers tredje lov. τ = 4π GM s a 3, (7) Jeg har nu udledt Keplers tre love ud fra Newtonsk tyngdekraft. Det er muligt at betragte de ikke-bundne baner ved at lave begrænsninger på eccentriciteten i (0). Dette vil jeg dog ikke gøre her på grund af omfanget af denne note. Det er også muligt at lave energibetragtninger, så eccentriciteten kan kobles til den totale energi af et legeme i kredsløb om solen eller en anden stjerne. Igen vil jeg ikke gøre dette her på grund af omfanget. Hvis en sådan analyse ønskes kan jeg anbefale at kigge i referencen. Litteratur REFERENCER [1] Classical Mechanics, John R. Taylor, University Science Books

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Keplers love og Epicykler

Keplers love og Epicykler Keplers love og Epicykler Jacob Nielsen Keplers love Johannes Kepler (57-60) blev i år 600 elev hos Tyge Brahe (546-60) i Pragh, og ved sidstnævntes død i 60 kejserlig astronom. Kepler stiftede således

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Kometer. Af Mie Ibsen & Marcus Guldager Nordsjællands Grundskole & Gymnasium. http://esamultimedia.esa.int/images/science/rosetta2.

Kometer. Af Mie Ibsen & Marcus Guldager Nordsjællands Grundskole & Gymnasium. http://esamultimedia.esa.int/images/science/rosetta2. Kometer Af Mie Ibsen & Marcus Guldager Nordsjællands Grundskole & Gymnasium http://esamultimedia.esa.int/images/science/rosetta2.jpg Indholdsfortegnelse side Introduktion... 2 Problemformulering... 2 Baggrund...

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30.

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30. Opgaver Polære koordinater Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 15, 70, 60, 0. Opgave Bestem sin π Opgave. Et punkt p i xy-planen er givet ved de kartesiske koordinater,. Bestem p s polære

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere

Keplers Love. Om Kinematik og Dynamik i Renæssancens Astronomi. Folkeuniversitetet 9. oktober 2007

Keplers Love. Om Kinematik og Dynamik i Renæssancens Astronomi. Folkeuniversitetet 9. oktober 2007 Keplers Love Om Kinematik og Dynamik i Renæssancens Astronomi Folkeuniversitetet 9. oktober 2007 Poul Hjorth Institut for Matematik Danmarke Tekniske Universitet Middelalderens astronomi var en fortsættelse

Læs mere

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X

Læs mere

Newtons love - bevægelsesligninger - øvelser. John V Petersen

Newtons love - bevægelsesligninger - øvelser. John V Petersen Newtons love - bevægelsesligninger - øvelser John V Petersen Newtons love 2016 John V Petersen art-science-soul Indhold 1. Indledning og Newtons love... 4 2. Integration af Newtons 2. lov og bevægelsesligningerne...

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Matematikkens mysterier - på et højt niveau. Kenneth Hansen. 5. Kurver og keglesnit

Matematikkens mysterier - på et højt niveau. Kenneth Hansen. 5. Kurver og keglesnit Matematikkens mysterier - på et højt niveau af Kenneth Hansen 5. Kurver og keglesnit 5. Kurver og keglesnit 5.1 Kurver: Parameterfremstilling og ligning 5. Hastighed, acceleration og tangenter 7 5.3 Kurveundersøgelser

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

Venus relative størrelse og fase

Venus relative størrelse og fase Venus relative størrelse og fase Steffen Grøndahl Planeten Venus er værd at studere i teleskop. Med blot en forstørrelse på 20-30 gange, kan man se, at Venus ikke er punktformet og at den ligesom Månen

Læs mere

Hvordan Kepler fandt sine love

Hvordan Kepler fandt sine love Hvordan Kepler fandt sine love stronomerne forstod ikke at overmande denne krigsgud (Mars). Men den fortræffelige hærfører Tycho har under 0 års nattevågen udforsket al hans krigslist; og jeg omgik ved

Læs mere

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter.

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. Kræfter og Energi Jacob Nielsen 1 Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. kraften i x-aksens retning hænger sammen med den

Læs mere

To-legemeproblemet Michael Andrew Dolan Møller Rosborg Gymnasium og Hf-kursus November 2012 Trykfejl rettet 14. oktober 2013

To-legemeproblemet Michael Andrew Dolan Møller Rosborg Gymnasium og Hf-kursus November 2012 Trykfejl rettet 14. oktober 2013 To-legemeproblemet Michael Andrew Dolan Møller Rosborg Gymnasium og Hf-kursus November 01 Trykfejl rettet 14. oktober 013 To-legemeproblemet af Michael A. D. Møller. November 01. side 1/0 Indholdsfortegnelse

Læs mere

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006 Den Naturvidenskabelige acheloreksamen Københavns Universitet Fysik 1-14. september 006 Første skriftlige evaluering 006 Opgavesættet består af 4 opgaver med i alt 9 spørgsmål. Skriv tydeligt navn og fødselsdato

Læs mere

Note om Laplace-transformationen

Note om Laplace-transformationen Note om Laplace-transformationen Den harmoniske oscillator omskrevet til et ligningssystem I dette opgavesæt benyttes laplacetransformationen til at løse koblede differentialligninger. Fordelen ved at

Læs mere

RKS Yanis E. Bouras 21. december 2010

RKS Yanis E. Bouras 21. december 2010 Indhold 0.1 Indledning.................................... 1 0.2 Løsning af 2. ordens linære differentialligninger................ 2 0.2.1 Sætning 0.2............................... 2 0.2.2 Bevis af sætning

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk Mekanik 2 Skriftlig eksamen 16. april 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner Besvarelsen må

Læs mere

FYSIK RAPPORT. Fysiske Kræfter. Tim, Emil, Lasse & Kim

FYSIK RAPPORT. Fysiske Kræfter. Tim, Emil, Lasse & Kim FYSIK RAPPORT Fysiske Kræfter Tim, Emil, Lasse & Kim Indhold Indledning... 2 Newtons love... 3 1. Lov: Inertiloven... 3 2. Lov: Kraftloven... 3 3. Lov: Loven om aktion/reaktion... 3 Kræfter... 4 Formler:...

Læs mere

INERTIMOMENT for stive legemer

INERTIMOMENT for stive legemer Projekt: INERTIMOMENT for stive legemer Formålet med projektet er at træne integralregning og samtidig se en ikke-triviel anvendelse i fysik. 0. Definition af inertimoment Inertimomentet angives med bogstavet

Læs mere

Kræfter og Arbejde. Frank Nasser. 21. april 2011

Kræfter og Arbejde. Frank Nasser. 21. april 2011 Kræfter og Arbejde Frank Nasser 21. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Fysik i billard. Erik Vestergaard

Fysik i billard. Erik Vestergaard Fysik i billard Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/aviad Desuden egne illustrationer Erik Vestergaard www.matematikfysik.dk

Læs mere

Projekt 6.5 Ellipser brændpunkter, brændstråler og praktisk anvendelse i en nyrestensknuser

Projekt 6.5 Ellipser brændpunkter, brændstråler og praktisk anvendelse i en nyrestensknuser Projekt 65 Ellipser brændpunkter brændstråler og praktisk anvendelse i en nyrestensknuser Ellipsens ligning undersgte vi kapitel i bog B I det flgende skal vi undersge ellipser som banekurver og vise hvorledes

Læs mere

Formelsamling i astronomi. November 2015.

Formelsamling i astronomi. November 2015. Formelsamling i astronomi. November 015. Formelsamlingen er ikke komplet det bliver den nok aldrig. Men måske kan alligevel være til en smule gavn. Sammenhæng mellem forskellige tidsenheder: Jordens sideriske

Læs mere

Formelsamling til fysik 11. Sebastian B. Simonsen, Asger B. Hansen og Lykke Pedersen

Formelsamling til fysik 11. Sebastian B. Simonsen, Asger B. Hansen og Lykke Pedersen Formelsamling til fysik 11 Sebastian B. Simonsen, Asger B. Hansen og Lykke Pedersen 1 CONTENTS 2 Contents 1 Kap.1 - The foundation af Classical Mechanics (1) 4 1.1 Galileo (2).............................

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

DETTE OPGAVESÆT INDEHOLDER 6 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE

DETTE OPGAVESÆT INDEHOLDER 6 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE DETTE OPGAVESÆT INDEHOLDER 6 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE SPØRGSMÅL ENS. SPØRGSMÅLENE I DE ENKELTE OPGAVER KAN LØSES UAFHÆNGIGT AF HINANDEN. 1 Opgave 1 En cylinderkapacitor

Læs mere

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at GEOMETRI-TØ, UGE 3 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad γ : (α, β) R 2 være en regulær kurve i planen.

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Teoretiske Øvelser Mandag den 13. september 2010

Teoretiske Øvelser Mandag den 13. september 2010 Hans Kjeldsen hans@phys.au.dk 6. september 00 eoretiske Øvelser Mandag den 3. september 00 Computerøvelse nr. 3 Ligning (6.8) og (6.9) på side 83 i Lecture Notes angiver betingelserne for at konvektion

Læs mere

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål.

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. Labøvelse 2, fysik 2 Uge 47, Kalle, Max og Henriette Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. 1. Vi har to forskellige størrelser: a: en skive

Læs mere

Keplers ellipse. Perihel F' Aphel

Keplers ellipse. Perihel F' Aphel Keplers ellipse Keplers udgangspunkt er ellipsen opfattet som en fladtrykt cirkel. Han har selfølgelig stadigæk brug for brændpunkter mm. Konstruktionen af disse er simpel ud fra ellipsens omskrene rektangel.

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1

David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1 1 Pendul David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1 1.1 Hvad er et pendul? En matematiker og en ingeniør ser tit ens på mange ting, men ofte er der forskelle

Læs mere

Tillæg til partikelfysik (foreløbig)

Tillæg til partikelfysik (foreløbig) Tillæg til partikelfysik (foreløbig) Vekselvirkninger Hvordan afgør man, hvilken vekselvirkning, som gør sig gældende i en given reaktion? Gravitationsvekselvirkningen ser vi bort fra. Reaktionen Der skabes

Læs mere

Teoretiske Øvelser Mandag den 31. august 2009

Teoretiske Øvelser Mandag den 31. august 2009 agpakke i Astronomi: Introduktion til Astronomi Hans Kjeldsen hans@phys.au.dk 3. august 009 Teoretiske Øvelser Mandag den 31. august 009 Øvelse nr. 1: Keplers og Newtons love Keplers 3. lov giver en sammenhæng

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

Formler til den specielle relativitetsteori

Formler til den specielle relativitetsteori Formler til den specielle relativitetsteori Jeppe Willads Petersen 25. oktober 2009 Jeg har i dette dokument forsøgt at samle de fleste af de formler, vi har brugt i forbindelse med den specielle relativitetsteori,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 4 sider Skriftlig prøve, den 29. maj 2006 Kursus navn: Fysik 1 Kursus nr. 10022 Tilladte hjælpemidler: Alle "Vægtning": Eksamenssættet vurderes samlet. Alle svar

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011 Matematik A Højere teknisk eksamen Forberedelsesmateriale htx112-mat/a-26082011 Fredag den 26. august 2011 Forord Forberedelsesmateriale til prøverne i matematik A Der er afsat 10 timer på 2 dage til

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Vejledende eksamensopgaver 16. januar 2008 Tilladte hjælpemidler: Medbragt litteratur, noter

Læs mere

AARHUS UNIVERSITET. Det naturvidenskabelige fakultet 3. kvarter forår OPGAVESTILLER: Allan H. Sørensen

AARHUS UNIVERSITET. Det naturvidenskabelige fakultet 3. kvarter forår OPGAVESTILLER: Allan H. Sørensen AARHUS UNIVERSITET Det naturvidenskabelige fakultet 3. kvarter forår 2006 FAG: Elektromagnetisme OPGAVESTILLER: Allan H. Sørensen Antal sider i opgavesættet (inkl. forsiden): 5 Eksamensdag: fredag dato:

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Theory Danish (Denmark)

Theory Danish (Denmark) Q1-1 To mekanikopgaver (10 points) Læs venligst den generelle vejledning i en anden konvolut inden du går i gang. Del A. Den skjulte metalskive (3.5 points) Vi betragter et sammensat legeme bestående af

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen Matematik A 215 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen skal afleveres renskrevet, det er tilladt at skrive med blyant. Notatpapir

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Oversigt [S] 9.6, 11.1, 11.2, App. H.1

Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Her skal du lære om 1. Funktioner i flere variable 2. Grafen og niveaukurver 3. Grænseovergange og grænseværdier 4. Kontinuitet i flere variable 5. Polære koordinater

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, lørdag den 13. december, 2014 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle tilladte hjælpemidler på

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 23. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 13 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

1 Løsningsforslag til årsprøve 2009

1 Løsningsforslag til årsprøve 2009 1 Løsningsforslag til årsprøve 009 Opgave 1 Figur 1 viser en tegning af en person der står på en skrænt og smider en sten ud over vandet. Vandet har overflade i t-aksen. Stenen følger grafen for funktionen

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Her er der en kort introduktion til forskellige teknikker efterfulgt af opgaver hvor man kan

Læs mere

Exoplaneter fundet med Kepler og CoRoT

Exoplaneter fundet med Kepler og CoRoT Exoplaneter fundet med Kepler og CoRoT Analyse af data fra to forskningssatellitter Af Hans Kjeldsen, Institut for Fysik og Astronomi, Aarhus Universitet I denne artikel demonstreres det hvordan man kan

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Andengradsligninger i to og tre variable

Andengradsligninger i to og tre variable enote 0 enote 0 Andengradsligninger i to og tre variable I denne enote vil vi igen beskæftige os med andengradspolynomierne i to og tre variable som også er behandlet og undersøgt med forskellige teknikker

Læs mere

Kortprojektioner L mm Analytisk beskrivelse af egenskaber ved kort Første fundamentalform og forvanskninger.

Kortprojektioner L mm Analytisk beskrivelse af egenskaber ved kort Første fundamentalform og forvanskninger. Kortprojektioner L4 2016 2.mm Analytisk beskrivelse af egenskaber ved kort Første fundamentalform og forvanskninger. Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet L4 April 2016 Lisbeth

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 8 sider Skriftlig prøve, den 24. maj 2005 Kursus navn: Fysik 1 Kursus nr.: 10022 Tilladte hjælpemidler: Alle hjælpemidler tilladt. "Vægtning": Besvarelsen vægtes

Læs mere

Besvarelse til eksamen i Matematik F2, 2012

Besvarelse til eksamen i Matematik F2, 2012 Besvarelse til eksamen i Matematik F2, 202 Partiel besvarelse - har ikke inkluderet alle detaljer! Med forbehold for tastefejl. Opgave Find og bestem typen af alle singulariteter for følgende funktioner:

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Cavendish forsøg og gravitation

Cavendish forsøg og gravitation Cavendish forsøg og gravitation Af Jerôme Baltzersen Indholdsfortegnelse: Historisk indledning. Videnskabelig indledning...... 3 Beskrivelse af cirkulær bevægelse...3 Masse og kraft for roterende legemer.....4

Læs mere

Tilstandssummen. Ifølge udtryk (4.28) kan MB-fordelingen skrives , (5.1) og da = N, (5.2) . (5.3) Indføres tilstandssummen 1 , (5.

Tilstandssummen. Ifølge udtryk (4.28) kan MB-fordelingen skrives , (5.1) og da = N, (5.2) . (5.3) Indføres tilstandssummen 1 , (5. Statistisk mekanik 5 Side 1 af 10 ilstandssummen Ifølge udtryk (4.28) kan M-fordelingen skrives og da er μ N e e k = N g ε k, (5.1) N = N, (5.2) μ k N Ne g = e ε k. (5.3) Indføres tilstandssummen 1 Z g

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

LINEÆRE DEFORMATIONER AF PLANE FIGURER OG MODELERING AF GÆRCELLERS VÆKST

LINEÆRE DEFORMATIONER AF PLANE FIGURER OG MODELERING AF GÆRCELLERS VÆKST Temaøvelsesopgave 2A Rev. 08.10.10. LINEÆRE DEFORMATIONER AF PLANE FIGURER OG MODELERING AF GÆRCELLERS VÆKST Figur 1 NB: Denne version er ikke til udprintning. Hvis I vil udprinte teksten så fjern midlertidigt

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen htx112-mat/a-30082011 Tirsdag den 30. august 2011 kl. 9.00-14.00 Side 1 af 7 sider Matematik A 2011 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen

Læs mere

Peter Orthmann Nielsen og Jørgen Franck. Dansk Amatør Raket Klub

Peter Orthmann Nielsen og Jørgen Franck. Dansk Amatør Raket Klub Beregning af areal, volumen, massemidtpunkt og inertimomenter for en klasse af omdrejningslegemer med cirkelbuegeometri af Peter Orthmann Nielsen og Jørgen Franck Dansk Amatør Raket Klub Introduktion Denne

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

Differentialkvotient af cosinus og sinus

Differentialkvotient af cosinus og sinus Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises

Læs mere

Lineær beamoptik 1. Koordinatsystem

Lineær beamoptik 1. Koordinatsystem Lineær beamoptik 1 1 Wille kapitel 3.1 til og med 3.6 (undtagen 3.3) Koordinatsystem Indledning / overblik Rækkeudvikling af feltet Bevægelsesligningen Løsning af bevægelsesligningen Transfermatricer og

Læs mere

3D-grafik Karsten Juul

3D-grafik Karsten Juul 3D-grafik 2005 Karsten Juul Når der i disse noter står at du skal få tegnet en figur, så er det meningen at du skal få tegnet den ved at taste tildelinger i Mathcad-dokumentet RumFig2 Det er selvfølgelig

Læs mere

Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge.

Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge. Cykloider Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge Retningspunkt (repetition) Figur 1 viser enhedscirklen Det viste punkt P er anbragt sådan at den øverste af buerne

Læs mere

Vektorfunktioner vha. CAS

Vektorfunktioner vha. CAS Vektorfunktioner vha. CAS 1 Forord Vi skal i de kommende uger arbejde med emnet Vektorfunktioner ved: 1) at I selv arbejder med siderne 3 10 som en opstart. Siderne baserer sig på CAS-programmet TI-Nspire.

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Impuls og kinetisk energi

Impuls og kinetisk energi Impuls og kinetisk energi Peter Hoberg, Anton Bundgård, and Peter Kongstad Hold Mix 1 (Dated: 7. oktober 2015) 201405192@post.au.dk 201407987@post.au.dk 201407911@post.au.dk 2 I. INDLEDNING I denne øvelse

Læs mere

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas UVB Skoleår: 2013-2014 Institution: Fag og niveau: Lærer(e): Hold: Teknisk Gymnasium Skive Matematik A Claus Vestergaard og Franka Gallas 3. A Titel 1: Rep af 1. og 2. år + Gocart Titel 2: Vektorer i rummet

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

MATEMATIK A. Indhold. 92 videoer.

MATEMATIK A. Indhold. 92 videoer. MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, torsdag den 24. maj, 2007, kl. 9:00-13:00 Kursus navn: Fysik 1 Kursus nr. 10022 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning":

Læs mere

Differentiation af Trigonometriske Funktioner

Differentiation af Trigonometriske Funktioner Differentiation af Trigonometriske Funktioner Frank Villa 15. oktober 01 Dette dokument er en del af MatBog.dk 008-01. IT Teaching Tools. ISBN-13: 978-87-9775-00-9. Se yderligere betingelser for brug her.

Læs mere

Mælkevejens rotation

Mælkevejens rotation Kineæstetisk øvelse. September 2014. Side 1/5 Mælkevejens rotation Kineæstetisk aktivitet - Lærervejledning 1 Alexander L. Rudolph Professor i fysik og astronomi, Cal Poly Pomona Professeur Invité, Université

Læs mere

Wigner s semi-cirkel lov

Wigner s semi-cirkel lov Wigner s semi-cirkel lov 12. december 2009 Eulers Venner Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Diagonalisering af selvadjungeret matrix Lad H være en n n matrix med komplekse

Læs mere

Kortprojektioner L mm Referencesystemer. Ellipsoider og geoider. Ombecifring. Helmerttransformation.

Kortprojektioner L mm Referencesystemer. Ellipsoider og geoider. Ombecifring. Helmerttransformation. Kortprojektioner L4 2016 6.mm Referencesystemer. Ellipsoider og geoider. Ombecifring. Helmerttransformation. Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet L4 maj 2016 Lisbeth Fajstrup

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Skriftlig eksamen 25. januar 2008 Tillae hjælpemidler: Medbragt litteratur, noter og lommeregner

Læs mere

Opgave 1. (a) Bestem de to kapacitorers kapacitanser C 1 og C 2.

Opgave 1. (a) Bestem de to kapacitorers kapacitanser C 1 og C 2. 2 Opgave 1 I første del af denne opgave skal kapacitansen af to kapacitorer bestemmes. Den ene kapacitor er konstrueret af to tynde koaksiale cylinderskaller af metal. Den inderste skal har radius r a

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere