F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L

Størrelse: px
Starte visningen fra side:

Download "F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L"

Transkript

1 RÆSONNEMENT & 1BE V I S F I N N H. K R I S T I A N S E N GNING 2 EGNEARK KUGLE 5 MÅLING SIMULATIONER 3 G Y L D E N D A L MÅLSCORE I HÅNDBOLD

2 Faglige mål: Håndtere simple modeller til beskrivelse af sammenhænge mellem variable og kunne diskutere rækkevidde af sådanne modeller. Anvende it-værktøjer til løsning af givne matematiske problemer. Forudsatte begreber: Observation, hyppighed, frekvens, kumuleret frekvens, middeltal, sandsynlighed/chance. Inddragelse af supplerende stof: Indsamling og bearbejdning af data, herunder diskussion af hypoteser og af repræsentativitet af stikprøver. SIMULATIONER TIL BESTEMMELSE AF SANDSYNLIGHEDER I kender begreberne observation, hyppighed, frekvens, kumuleret frekvens og middeltal fra deskriptiv statistik. Disse begreber skal i det følgende anvendes i forbindelse med beregning af sandsynligheder. Når man skal bestemme sandsynligheder, er der i princippet to forskellige måder at gå frem. Ved den ene metode argumenterer man logisk og laver udregninger ved hjælp af passende formler. Hvis man fx vil bestemme, hvad sandsynligheden er for at slå de 6 forskellige øjental ved kast med en terning, så kunne man passende argumentere sådan: Da terningen har 6 sider (og i øvrigt er pænt symmetrisk), er der ingen grund til at tro, at nogen af siderne kommer op hyppigere end andre. Derfor er sandsynligheden for hvert af de 6 øjental den samme, nemlig 1 6. Hvis vi imidlertid har mistanke om, at terningen er falsk, så duer denne metode ikke. Vi er nødt til at prøve os frem, så vi beslutter at kaste terningen et stort antal gange. De frekvenser, vi får for de forskellige øjental, kalder vi sandsynlighederne. Sandsynligheder, der er fremkommet på den sidste måde, kalder man sædvanligvis for statistiske sandsynligheder, mens sandsynligheder fremkommet gennem logiske argumenter og beregninger kaldes kombinatoriske sandsynligheder. Hvis man vil beregne sandsynligheden for at vinde de forskellige gevinster i Lotto, så behøver man ikke spille et stort antal gange. Her kan man beregne sig frem til sandsynlighederne. Man bruger altså kombinatoriske sandsynligheder. Hvis man derimod vil beregne sandsynligheden for, at en tegnestift, der kastes på gulvet, lander, så man ikke træder stiften op i foden, hvis man er så uheldig at træde på den, så kan man ikke beregne sig frem Kugle 2

3 til resultatet. Man er nødt til at udføre forsøget et stort antal gange og herigennem finde ud af, hvor mange procent af gangene dette sker. Så måske vælger man at kaste 1000 tegnestifter ud på et gulv og lave en optælling. Den sandsynlighed, man her når frem til, er statistisk, da den baserer sig på statistik. Man bruger altså statistiske sandsynligheder. Med computeren kan man lave simulationer (at simulere betyder at "lade som om ) som middel til at bestemme sandsynligheder i situationer, hvor man ellers ville regne sig frem med formler. Man kan altså benytte sig af statistiske sandsynligheder i stedet for kombinatoriske sandsynligheder. Det kunne man fx gøre i forbindelse med bestemmelse af sandsynlighederne for at vinde en lottogevinst. Det ville nemlig være forholdsvis enkelt at lave et computerprogram, som simulerer et lottospil. Man bruger betegnelsen computermodel for en sådan efterligning af lottospillet. SIMULATIONER MED COMPUTER Vi skal nu arbejde med et simulationsprogram, KUGLESIM, der simulerer udtagelse af kugler fra en krukke. Kuglerne er røde eller hvide. Den slags udtagelser kan tjene som model for mange forskellige typer af chanceeksperimenter. Programmet KUGLESIM kan håndtere chancesituationer, som kan udtrykkes på følgende måde: 1. Et grundeksperiment resulterer i en enten/eller situation. 2. Grundeksperimentet gentages et antal gange. 3. Til slut optælles, hvor mange gange grundeksperimentet giver en enten situation Et terningkast kan bruges som eksempel. Lad os forestille os, at vi er interesseret i sandsynlighederne for at få 0, 1, 2, 3, 4 eller 5 seksere, når vi kaster en terning fem gange (eller hvad der er det samme: kaster fem terninger på én gang). Dette eksperiment opfylder de tre krav: Ad 1. Vi interesserer os kun for 6 er eller ikke 6 er (enten/eller) Ad 2. Eksperimentet udføres fem gange. Ad 3. Vi optæller til slut det samlede antal 6 ere. Sandsynligheden for at få 0, 1, 2, 3, 4 eller 5 seksere kan udregnes med en passende formel, men i stedet sætter vi computeren til at simulere det. Vi laver en computermodel af spillet. Vi forestiller os, at computeren indeholder en krukke med seks kugler, hvoraf den ene er rød. Hvis vi udtager en tilfældig kugle og får fat på den røde, så svarer det til at slå en 6 er med terningen. Begge har nemlig sandsynligheden 1 6. Kugle 3

4 Computersimulationen af fem terningkast består i fem gange at udtage en kugle og registrere farven. Kuglen lægges tilbage i krukken efter hver udtagning. Det kalder vi én serie, som vi siger har længden fem i denne situation. Resultatet af serien er antallet af gange, en rød kugler blev udtaget. Tallet registreres i computeren, som på få sekunder kan lave serier, og vi kan nu bruge frekvenserne for de seks forskellige resultater som sandsynligheder. Ved simulation af terningkastet ovenfor lagde vi kuglen tilbage i krukken efter hver udtagning. Det skyldes selvfølgelig, at sandsynligheden for at slå en 6 er hele tiden er den samme. Det er imidlertid let at udtænke situationer, hvor man ikke skal lægge kuglen tilbage: Anne skal på ferie og har i sit klædeskab otte T-shirts liggende. Hun har lidt travlt, og griber helt tilfældigt tre af dem og lægger dem i kufferten. Hun har imidlertid glemt, at blandt de otte, er der én, som er for lille og én, som er gået i stykker. Hvad er risikoen for, at hun får begge de ubrugelige T-shirts med på ferie? Her lægger vi otte kugler i krukken, hvoraf to er røde. Vi udtager tre kugler fra krukken. Men denne gang skal vi selvfølgelig ikke lægge kuglen tilbage igen efter hver udtagelse. Anne kan jo ikke udtage den samme T-shirt flere gange. INDFØRING I BRUG AF PROGRAMMET, KUGLESIM Programmet KUGLESIM er meget simpelt at bruge. Brugerfladen er vist her under med tallene til Annes ferie. Den indeholder blot indstillingsmuligheder for de variable, som er nævnt ovenfor. I skal: vælge med/uden TILBAGELÆGNING vælge hvor mange kugler krukken indeholder i alt: KUGLER I ALT vælge hvor mange kugler, der er røde: HERAF RØDE vælge SERIENS LÆNGDE. I kan ikke skrive et antal røde kugler, som er større end KUGLER I ALT, og I kan heller ikke udtage flere kugler, end der er i krukken, når I udtager uden tilbagelægning. SERIENS LÆNGDE må ikke være over 2000, og ANTAL SERIER må ikke være over Simulationen starter, når I trykker på knappen START SIMULATIONEN. Det tager nogle sekunder, afhængigt af hvor mange serier I vil lave, og hvor mange kugler I udtager fra krukken. I kommentarfeltet har I mulighed for at skrive en tekst, som kommer ud sammen med resultaterne. Der kunne fx stå, hvilken opgave simulationen omhandler og dine initialer. I behøver ikke skrive noget. Kugle 4

5 Resultaterne bliver præsenteret med det samme på skærmen, men anbringes også i en rapport, som I kan hente frem ved at klikke på det tilhørende ikon, som er vist til venstre. Her er resultaterne af en kørsel af Annes ferie, som de ser ud i rapporten. KOMMENTAR: Annes ferie TILBAGELÆGNING: UDEN KUGLER I ALT: 8 DERAF RØDE: 2 SERIENS LÆNGDE: 3 ANTAL SERIER: UDSKREVET : 9:27:01 PM Sunday, September 04, 2005 RØDE ANTAL FREKV. KUM.FR Hver gang I laver et nyt eksperiment, så tilføjes resultaterne til de, som allerede stod i rapporten. Hvis I altså har lavet ti eksperimenter med KUGLESIM, så står der ti sæt resultater i rapporten. I kan frit skifte frem og tilbage imellem KUGLESIM og jeres rapport. Men da KUGLESIM er et web-program, så slet- Kugle 5

6 tes jeres rapport, når I lukker programmet! Hvis I derfor skal bruge nogle af resultaterne senere til jeres projekt-rapport, så kan I markere det, I skal bruge, og kopiere det over i et tekstdokument på jeres egen computer, før I lukker KUGLESIM. OPGAVER Lav Annes ferie som vist ovenfor og kør simulationen nogle gange efter hinanden Studer derefter resultaterne ved at åbne rapporten. Prøv at sikre dig, at du forstår, hvad tallene i de tre søjler med resultater betyder. Hvad var svaret på spørgsmålet, der blev stillet ovenfor: Hvad er chancen for at Anne får begge de ubrugelige T-shirts med på ferie? Opgave 1 Læg mærke til, at resultaterne varierer lidt fra simulation til simulation. Prøv derefter at sætte ANTAL SERIER til i stedet for Bliver resultaterne mere stabile fra simulation til simulation? I Danmark regner man med, at ca. 64% har blå øjne (grønne og grå regnes med her). Opgave 2 Hvis der i en klasse er 28 elever, hvad er så chancen for, at der er højst 18 elever med blå øjne? Hvad er chancen for, at der er præcis 18 elever med blå øjne? Christian skal lave omelet med 6 æg. I køleskabet står en bakke med 12 æg. To af æggene er dårlige, men det kan man hverken se eller lugte. Opgave 3 Hvad er chancen for, at Christian undgår de dårlige æg, når han vælger de 6 æg ud? Hvis han i stedet havde haft en bakke med 24 æg, hvoraf 4 æg var dårlige, og igen skulle lave en omelet med 6 æg. Ville chancen for at undgå de dårlige æg så være den samme som før? En bestemt multiple-choice test består af 19 spørgsmål. Til hvert spørgsmål er der tre svarmuligheder. Hvis man har over halvdelen rigtig, består man testen. Opgave 4 Hvad er chancen for at bestå, hvis man intet kender til det emne, der bliver testet i, og derfor vælger svar helt tilfældigt? Kugle 6

7 På et bestemt HF-kursus går der flest kvinder, nemlig 70%. En dag udtages der tilfældigt blandt samtlige elever 6 personer til at repræsentere skolen ved et møde. Opgave 5 Hvad er chancen for, at der kommer lige mange mænd og kvinder med? I 1600-tallet var sandsynlighedsregningen først så småt i gang med at blive udviklet. Adelsmanden Chevalier de Meré mente at kunne konstatere, at der var lidt større chance for slå mindst én 6 er ved fire kast med en terning, end der var for at slå mindst én dobbelt-6 er ved 24 kast med to terninger. Han bad derfor matematikeren og filosoffen Blaise Pascal ( ) om at hjælpe med at afklare spørgsmålet. Pascal beviste, at de Meré havde ret, og han bestemte de to sandsynligheder. Opgave 6 Find de to sandsynligheder (tip: en dobbelt-6 er har chancen 1/36). Bekræfter dine tal, hvad Pascal fandt frem til? Røde Kors sælger lodsedler ved døren. Britt har kun 10 lodsedler tilbage, da hun ringer på min dør. Blandt disse 10 er der faktisk hele tre, som giver gevinst, men det ved hverken Britt eller jeg. Jeg beslutter mig for at købe 5 lodsedler af Britt. Opgave 7 Hvad er chancen for, at jeg ingen gevinst får ud af det? Hvad er chancen for, at jeg får mindst én gevinst? Hvad har resultaterne fra de to foregående spørgsmål med hinanden at gøre? En forhandler af blomsterløg har modtaget et stort parti. Leverandøren meddeler, at man må regne med, at 4% af løgene ikke spirer. Forhandleren vil sælge løgene i pakker 50 løg, og vil nødigt have klager over at færre end 50 løg spirer. Opgave 8 Overvej, hvilken sikkerhed han har for at få tilfredse kunder, hvis han putter lidt flere end 50 løg i pakkerne. Udregn middeltallet for antal røde kugler, når man udtager kugler med tilbagelægning. Brug den metode, du kender fra deskriptiv statistik. Opgave 9 (Prøv fx med en krukke med 20 kugler, hvoraf 8 er røde, og hvor serielængden er 5.) Resultatet skulle blive 5 (8/20) = 2. Kugle 7

8 Passer det nogenlunde med dit resultat? Tallet 5 (8/20) = 2 angiver vi som formel således: n p = 2, hvor n er serielængden, mens p angiver brøkdelen af røde kugler.) Eksperimentér med andre sammensætninger af krukken og med andre serielængder. Udregn hver gang middeltallet for antallet af røde kugler. Passer det stadig med, at middeltallet bliver cirka n p? Som hjælp kunne du evt. udfylde et skema som dette: N = SERIENS LÆNGDE P = HERAF.RØDE KUGLER.I.ALT N P MIDDELTAL FOR ANTAL RØDE KUGLER Gælder der en tilsvarende formel, når vi udtager kugler uden tilbagelægning? Prøv selv. Simulér ét møntkast, hvor du registrerer, om du får krone (serielængden er 1). Prøv først at udføre forsøget med ANTAL SERIER = 10. Lad derefter ANTAL SERIER være 20, 50, 100, 1000, og til slut Opgave 10 Hvad viser frekvenserne for krone efterhånden, som serielængden forøges? Beskriv hvad du ser. Når geologer undersøger hvilke mineraler, der findes i bjergarter i bestemte områder, benytter de undertiden metoder, der kan beskrives ved modeller, som dem vi arbejder med her. I Gros Ventre River i Wyoming, USA blev der i 1967 lavet en undersøgelse for at fastslå forekomsten af mineralet kvarts blandt småsten i floden. Det foregik ved, at man gentagende gange udtog tilfældige stikprøver på ti sten ad gangen. Hver gang blev de ti sten undersøgt for kvarts. Resultaterne kan ses her: Opgave 11 Antal sten med kvarts ud af 10 sten i alt Frekvens Kugle 8

9 Hvilken model passer disse resultater bedst med? Du skal altså prøve dig frem med forskellige værdier af kugler i alt, heraf røde, samt afgøre, om vi her har at gøre med stikprøveudtagelse med eller uden tilbagelægning. Når du har fundet den model som passer bedst, har du et bud P, hvor stor en brøkdel af stenene der er kvartsholdige (nemlig HERAF RØDE divideret med KUGLER I ALT). Man siger, at vi hermed har foretaget en estimation af denne brøkdel (dvs. vurderet størrelsen af den). Det diskuteres med mellemrum flittigt, om der findes mennesker, som har evner, der ikke kan forklares indenfor den etablerede videnskabs rammer. Er det fx muligt for enkelte særligt sensitive mennesker at føle farver med fingerspidserne? Det er der nogen, som hævder de kan. Dette spørgsmål er faktisk blevet undersøgt videnskabeligt ved flere lejligheder. Et af forsøgene forløb således: Der blev anbragt 20 almindelige spillekort på et bord, alle med bagsiden opad. Kortene var ens, bortset fra at bagsiden på de fire var røde, mens bagsiden på resten var blå. Kortene blev blandet grundigt, og forsøgspersonen skulle føle på kortenes bagsider, mens han havde et tæt bind for øjnene. Opgaven gik ud på at finde de fire røde kort. Opgave 12 Prøv at undersøge chancerne for få et godt resultat, selvom man vælger de fire kort fuldstændigt tilfældigt. Hvad synes du i øvrigt, et godt resultat er? Prøv evt. at udføre forsøgte i praksis. Kugle 9

10 Projekter Projekt C OPINIONSUNDERSØGELSER Ved opinionsundersøgelser udspørger man en gruppe mennesker om fx deres politiske ståsted. Man kunne fx udspørge 2000 mennesker, som man tror, er repræsentative for vælgerne i Danmark. Vi vil her ved hjælp af simulationer med KUGLESIM undersøge, hvilken lid man kan fæste til resultaterne af en sådan undersøgelse. For at gøre det enkelt forestiller vi os her, at man kun undersøger tilslutningen til et enkelt parti. Vi vil altså bruge KUGLESIM til at lave en estimation af vælgertilslutningen til dette parti. Spørgsmålet til deltagerne i undersøgelsen er derfor kun, om man ville stemme på det pågældende parti, eller man ikke ville. Vi forestiller os endvidere, at vi kender tilslutningen til partiet allerede, fx 30%. Det problem, der skal undersøges, er altså: Hvor sikre prognoser får vi for tilslutningen til partiet ved en opinionsundersøgelse? Hvis vi lader krukken indeholde 100 kugler, hvoraf 30 er røde, og udtager en serie på 2000 med tilbagelægning, simulerer vi en opinionsundersøgelse med 2000 deltagere. Når vi har udtaget en enkelt stikprøve, vil antallet af røde kugler i stikprøven være det antal personer, som har sagt, at de er tilhængere af det pågældende parti. Prøv at overveje, hvorfor vi tillader os at lave eksperimentet med tilbagelægning, når vi i praksis aldrig ville spørge den samme person to gange. Prøv at lave eksperimentet i KUGLESIM med ANTAL SERIER = 1. Det ville være rart hvis I fik præcis 30% af 2000 = 600 røde kugler som resultat, for så ville vores opinionsundersøgelse passe præcist med virkeligheden. Men så pænt går det sjældent, som I vil se! Lav eksperimentet med fx ANTAL SERIER = Hvor mange procent af eksperimenterne ramte præcist 600 røde kugler? Måske synes vi, det ville være nok at ramme indenfor intervallet 29% - 31%, hvilket svarer til et antal røde kugler imellem 580 og 620. Kugle 10

11 I hvor mange procent af eksperimenterne skete det? Intervallet ovenfor var 30% ± 1%. Hvis vi vil lave et nyt interval, som skal rumme 90% af de røde kugler, hvor bredt skal dette interval så være? Hermed har vi lavet en række udregninger, som kan sige os noget om, hvor sikre (eller usikre!) prognoser vi får, når man lave opinionsundersøgelser med 2000 deltagere. Forudsætningen var, at partiet (eller synspunktet) havde en tilslutning på 30% i befolkningen. I 90% af tilfældene vil man ramme indenfor det pågældende procentinterval; men i 10% vil man desværre ramme udenfor. Prøv selv at tilrettelægge en videre undersøgelse af problemet. Prøv evt. at undersøge via internettet, hvor mange personer man udspørger ved opinionsundersøgelser. Brug dette antal i de videre beregninger. Hvor sikre prognoser får man, hvis partiet er mindre end det ovenfor (prøv også gerne med et helt lille parti)? Få eventuelt hjælp fra din lærer. VARIANSBEGREBET Hvis I har simuleret udtagelsen af stikprøver ved at udtage de serier, som er det højest tilladte, har I fået ret pålidelige resultater. Hvis I imidlertid gentager helt det samme forsøg igen og igen, så vil der dog optræde små afvigelser, når I ser på kolonnen frekvens, selv med udtagelse af serier. Projekt D Prøv at udføre det samme eksperiment nogle gange og beskriv disse afvigelser. Prøv nu at vælge en model, altså vælge udseendet af jeres krukke, og om I vil udtage med eller uden tilbagelægning. Eksperimentér med at lave meget få serier fx 100 og lav eksperimentet flere gange efter hinanden. Beskriv forskellene i kolonne antal og i kolonne frekvens Når statistikere skal beskrive den tendens, som tallene i fx kolonnen frekvens har til at variere fra gang til gang, bruger de som regel et begreb, der hedder varians. Vi prøver at forklare begrebet med et eksempel. Kugle 11

12 Vi vælger et eksperiment med 10 kugler, heraf 3 røde, og vælger en serielængde på 10. Vi vælger med tilbagelægning og vi udfører 100 serier. De 11 tal i kolonnen frekvens kalder vi f 0, f 1,., f 10. Vi vælger én af dem, fx f 4, og vi interesserer os nu kun for f 4. (f 4 er frekvensen for fire røde kugler). Vi antager nu, at f 4 i dette eksperiment er blevet 0,1984. Hvis man gentager eksperimentet nogle gange, så vil man ganske rigtigt se, at frekvensen ud for f 4 varierer, altså ikke er det samme fra gang til gang. Næste gang vi udfører eksperimentet, er frekvensens for f 4 måske blevet til 0,2029, altså ikke det samme som før. Når vi har lavet eksperimentet fx 10 gange, står vi med 10 tal, hvoraf de to første var 0,1984 og 0,2029. Vi finder nu middeltallet (altså gennemsnittet) for dem. Vi antager at middeltallet, m = 0,2005. Variansen udregnes ved at udregne størrelsen ((r 1 m) 2 + (r 2 m) 2 + (r 3 m) (r 10 m) 2 ), 10 hvor m altså er 0,2005 og de 10 r er er 0,1984, 0,2029, osv. Hvis alle r erne havde været 0,2005, så havde der i hver parentes stået (0,2005-0,2005), altså 0. Når vi opløfter i anden potens giver det stadigt 0, og summen af de 10 tal delt med 10 er derfor også 0. Altså er variansen 0. Denne situation svarer til samme resultat hver gang, altså nul variation. Det er vist klart, at jo større forskel der er imellem r erne og m, jo større bliver slutsummen, altså jo større bliver variansen. Vælg selv tal for KUGLER I ALT og for HERAF RØDE og udfør hver gang 100 serier som i eksemplet ovenfor. Skaf jer på denne måde 10 forskellige tal for én bestemt af frekvenserne (igen som ovenfor). Lav et regneark, som kan udregne middeltallet og variansen, når I indtaster de 10 frekvenser. Eksperimenter med forskellige tal i feltet antal serier, og se, at der sker noget med variansen, når serielængden går op. Hvad sker der? Kugle 12

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Hvad er meningen? Et forløb om opinionsundersøgelser

Hvad er meningen? Et forløb om opinionsundersøgelser Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Allan C. Malmberg. Terningkast

Allan C. Malmberg. Terningkast Allan C. Malmberg Terningkast INFA 2008 Programmet Terning Terning er et INFA-program tilrettelagt med henblik på elever i 8. - 10. klasse som har særlig interesse i at arbejde med situationer af chancemæssig

Læs mere

Fig. 1 Billede af de 60 terninger på mit skrivebord

Fig. 1 Billede af de 60 terninger på mit skrivebord Simulation af χ 2 - fordeling John Andersen Introduktion En dag kastede jeg 60 terninger Fig. 1 Billede af de 60 terninger på mit skrivebord For at danne mig et billede af hyppighederne flyttede jeg rundt

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Mattip om. Statistik 2. Tilhørende kopier: Statistik 3, 4 og 5. Du skal lære om: Faglig læsning. Chance og risiko. Sandsynlighed

Mattip om. Statistik 2. Tilhørende kopier: Statistik 3, 4 og 5. Du skal lære om: Faglig læsning. Chance og risiko. Sandsynlighed Mattip om Statistik Du skal lære om: Faglig læsning Kan ikke Kan næsten Kan Chance og risiko Sandsynlighed Observationer, hyppighed og frekvens Gennemsnit Tilhørende kopier: Statistik, og mattip.dk Statistik

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Allan C. Malmberg LÆR OM CHANCER! Sanne og Malene går på opdagelse med computeren

Allan C. Malmberg LÆR OM CHANCER! Sanne og Malene går på opdagelse med computeren Allan C. Malmberg LÆR OM CHANCER! Sanne og Malene går på opdagelse med computeren INFA 2005 Forord Denne INFA-publikation giver en indføring i arbejdet med begreber fra sandsynlighedernes verden. Den henvender

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

Ved et folketingsvalg eller en folkeafstemning spørger man alle stemmeberettigede, og kun en del af dem stemmer.

Ved et folketingsvalg eller en folkeafstemning spørger man alle stemmeberettigede, og kun en del af dem stemmer. Matematik C (må anvendes på Ørestad Gymnasium) Statistik Statistik er bearbejdning af talmaterialer, der ofte indeholderstore mængder af tal. De indsamles og registreres i mange forskellige sammenhænge

Læs mere

EMMA*-Tema: Chancetræer

EMMA*-Tema: Chancetræer EMMA*-Tema: Chancetræer Indhold 1. Vi tegner et chancetræ 2. Lidt om programmet TRÆ 3. Udtagelse med tilbagelægning 4. Programmet ÆSKE 5. Opgaver 6. Reducerede chancetræer 7. Hvor sikker er diagnosen?

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Statistik og sandsynlighedsregning

Statistik og sandsynlighedsregning Statistik og sandsynlighedsregning DLF-Kursus Ringsted 17.-18.9 2015 Eva Rønn UCC Indhold og mål Mål At I får får overblik over statistik og sandsynlighed som fagområde i folkeskolen får indblik i didaktiske

Læs mere

Hvad siger statistikken?

Hvad siger statistikken? Eleverne har tidligere (fx i Kolorit 7, matematik grundbog) arbejdet med især beskrivende statistik (deskriptiv statistik). I dette kapitel fokuseres i højere grad på, hvordan datamateriale kan tolkes

Læs mere

Prevalens af navnet Lars i det danske folketing

Prevalens af navnet Lars i det danske folketing Prevalens af navnet Lars i det danske folketing Ege Rubak Institut for Matematiske Fag Aalborg Universitet 18. januar 011 Som udgangspunkt oplyses det fra Danmarks Statistik at der er 46.440 personer der

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

Regnetest B: Praktisk regning. Træn og Test. Niveau: 9. klasse. Med brug af lommeregner

Regnetest B: Praktisk regning. Træn og Test. Niveau: 9. klasse. Med brug af lommeregner Regnetest B: Praktisk regning Træn og Test Niveau: 9. klasse Med brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag Et forskningsprogram

Læs mere

T ALKUNNEN. Stikprøver. Stikprøver ved brug af computer Stikprøveregler Hverdagens stikprøver. INFA-Matematik: Informatik i matematikundervisningen

T ALKUNNEN. Stikprøver. Stikprøver ved brug af computer Stikprøveregler Hverdagens stikprøver. INFA-Matematik: Informatik i matematikundervisningen T ALKUNNEN INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag Et forskningsprogram på Danmarks Lærerhøjskole Projektledelse: Allan C. Malmberg Inge

Læs mere

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24.

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. 10. 10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. Bestem udfaldsrummet for lykkehjulet. 10.2 En tegnestift Du putter en tegnestift i et raflebæger, ryster det godt og smider

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Kombinatorik. M-serien består af disse arbejdskort: M1 Formler til kombinatorik M2 Pascals trekant M3 Binomialformlen

Kombinatorik. M-serien består af disse arbejdskort: M1 Formler til kombinatorik M2 Pascals trekant M3 Binomialformlen 1 Statistik og sandsynlighedsregning er et relativt nyt emne i folkeskolens matematikundervisning. Ja, det er for den sags skyld et relativt nyt emne også i fagmatematikken og i anvendelser af matematik.

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Løsninger til kapitel 5

Løsninger til kapitel 5 1 Løsninger til kapitel 5 Opgave 51 Det nemmeste er her at omskrive alle sandsynlighederne til differenser mellem kumulerede sandsynligheder, dvs af sandsynligheder af formen, og derefter beregne disse

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

Kombinatorik og Sandsynlighedsregning

Kombinatorik og Sandsynlighedsregning Kombinatorik Teori del 1 Kombinatorik er en metode til at tælle muligheder på. Man kan f.eks. inden for valg til en bestyrelse eller et fodboldhold, kodning af en lås, valg af pinkode eller telefonnummer,

Læs mere

Excel-6: HVIS-funktionen

Excel-6: HVIS-funktionen Excel-6: HVIS-funktionen Regnearket Excel indeholder et væld af "funktioner" som kan bruges til forskellige ting indenfor f.eks. finans, statistik, logiske beregninger, beregninger med datoer og meget

Læs mere

Lidt historisk om chancelære i grundskolen

Lidt historisk om chancelære i grundskolen Lidt historisk om chancelære i grundskolen 1976 1.-2.klassetrin Vejledende forslag til læseplan:.det tilstræbes endvidere at eleverne i et passende talmaterialer kan bestemme for eksempel det største tal,

Læs mere

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske

Læs mere

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium Man kan nemt lave χ 2 -test i GeoGebra både goodness-of-fit-test og uafhængighedstest. Den følgende vejledning bygger på GeoGebra version

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sandsynlighedsregning En note om sandsynlighedsregning. Den er tænkt som supplement til Vejen til Matematik B2. Henrik S. Hansen, Sct. Knud Version 2.0 Indhold Indledning... 1 Sandsynlighedsregning...

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

for matematik pä B-niveau i hf

for matematik pä B-niveau i hf for matematik pä B-niveau i hf 75 50 5 016 Karsten Juul GRUPPEREDE DATA 1.1 Hvad er deskriptiv statistik?...1 1. Hvad er grupperede og ugrupperede data?...1 1.1 Eksempel pä ugrupperede data...1 1. Eksempel

Læs mere

F I N N H. K R I S T I A N S E N TES REGNING MED REGNEARK KUGLE SIMULATIONER G Y L D E N D A L LANDMÅLING

F I N N H. K R I S T I A N S E N TES REGNING MED REGNEARK KUGLE SIMULATIONER G Y L D E N D A L LANDMÅLING F I N N H. K R I S T I A N S E N RÆSONNEMENT & 1BEVIS 4 2 TES REGNING MED REGNEARK KUGLE G Y L D E N D A L 5 LANDMÅLING SIMULATIONER Faglige mål: Gennemføre simple matematiske ræsonnementer. Håndtere simple

Læs mere

Løsninger til kapitel 1

Løsninger til kapitel 1 Opgave. a) observation hyppighed frekvens kum. frekvens 2,25,25 3,875,325 2 3,875,5 3 3,875,6875 4,625,75 5,625,825 6,,825 7 2,25,9375 8,,9375 9,625, Frekvenser illustreres i et pindediagram,2,8,6,4,2,,8,6,4,2

Læs mere

WORKSHOP 2C, DLF-kursus, Krogerup, 26. november 2015

WORKSHOP 2C, DLF-kursus, Krogerup, 26. november 2015 WORKSHOP 2C, DLF-kursus, Krogerup, 26. november 2015 At I får overblik over statistik og sandsynlighed som fagområde i folkeskolen indblik i didaktiske forskeres anbefalinger til undervisningen i statistik

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten

Læs mere

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2.

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2. C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b. 5.000 4.800 4.600 4.400 4.00 4.000 3.800 3.600 3.400 3.00 3.000 1.19% 14.9% 7.38% 40.48% 53.57% 66.67% 79.76% 9.86% 010 011

Læs mere

9 Statistik og sandsynlighed

9 Statistik og sandsynlighed Side til side-vejledning 9 Statistik og sandsynlighed Faglige mål Kapitlet Statistik og sandsynlighed tager udgangspunkt i følgende faglige mål: Deskriptorer: kunne gennemføre og beskrive en statistisk

Læs mere

Meningsmålinger - hvad kan vi sige med sikkerhed?

Meningsmålinger - hvad kan vi sige med sikkerhed? Meningsmålinger - hvad kan vi sige med sikkerhed? af Kenneth Madsen - søndag, oktober 28, 2012 http://www.opensamf.dk/2012/10/meningsmalinger-hvad-kan-vi-sige-med-sikkerhed/ Jeg vil i dette indlæg præsentere

Læs mere

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING MANDATFORDELING Dette materiale er lavet som supplement til Erik Vestergaards hjemmeside om samme emne. 1 http://www.matematiksider.dk/mandatfordelinger.html I dette materiale er en række øvelser der knytter

Læs mere

9 Statistik og sandsynlighed

9 Statistik og sandsynlighed 9 Statistik og sandsynlighed Faglige mål Kapitlet Statistik og sandsynlighed tager udgangspunkt i følgende faglige mål: Enkeltobservationer: kunne skabe overblik over statistisk materiale og anvende udvalgte

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

Søren Christiansen 22.12.09

Søren Christiansen 22.12.09 1 2 Dette kompendie omhandler simpel brug af Excel til brug for simpel beregning, såsom mængde og pris beregning sammentælling mellem flere ark. Excel tilhører gruppen af programmer som samlet kaldes Microsoft

Læs mere

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM FORMÅL - BEKENDTGØRELSEN STX MATEMATIK A Kompetencer anvende simple statistiske eller sandsynlighedsteoretiske modeller

Læs mere

SANDSYNLIGHED FACIT SIDE 154-155

SANDSYNLIGHED FACIT SIDE 154-155 SIDE 154-155 Opgave 1 A. Data (x) h(x) f(x) 2 1 0,042 3 3 0,125 4 6 0,25 5 3 0,125 6 4 0,16 7 1 0,042 8 2 0,0833 9 1 0,042 10 2 0,0833 11 1 0,042 B. C. Diagrammet (et søjlediagram) er lavet ud fra hyppigheden,

Læs mere

Fortsættelse af Regneark II. Indhold. Side 1 af 14. Regneark EXCEL

Fortsættelse af Regneark II. Indhold. Side 1 af 14. Regneark EXCEL Side 1 af 14 Fortsættelse af Regneark II Indhold Telefonliste...2 Budget...4 Diagram...7 Regning...9 Underskrift...9 Rundt om Jorden...11 Matematisk problem...13 Et sidste eksempel...14 Side 2 af 14 Telefonliste

Læs mere

Statistisk beskrivelse og test

Statistisk beskrivelse og test Statistisk beskrivelse og test 005 Karsten Juul Kapitel 1. Intervalhyppigheder Afsnit 1.1: Histogram En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Sandsynlighedsregning og statistik

Sandsynlighedsregning og statistik og statistik Jakob G. Rasmussen, Institut for Matematiske Fag jgr@math.aau.dk Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides

Læs mere

Maple 11 - Chi-i-anden test

Maple 11 - Chi-i-anden test Maple 11 - Chi-i-anden test Erik Vestergaard 2014 Indledning I dette dokument skal vi se hvordan Maple kan bruges til at løse opgaver indenfor χ 2 tests: χ 2 - Goodness of fit test samt χ 2 -uafhængighedstest.

Læs mere

Spil. Chancer gennem tællemetoder. Chancelære: MI 82 INF. INFA-Chancelæreserien:

Spil. Chancer gennem tællemetoder. Chancelære: MI 82 INF. INFA-Chancelæreserien: INFA-Chancelæreserien: Chancer gennem eksperimenter Chancer gennem optællinger CHANCETRÆ - Chancer gennem beregninger SPIL - Chancer gennem tællemetoder LOD - Chancer gennem simuleringer KUGLE - Chancer

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

Dig og din puls. 17-10-2004 Dig og din puls Side 1 af 17

Dig og din puls. 17-10-2004 Dig og din puls Side 1 af 17 Dig og din puls Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Dig og din puls Side 1 af 17

Læs mere

statistik og sandsynlighed

statistik og sandsynlighed brikkerne til regning & matematik statistik og sandsynlighed trin 1 preben bernitt brikkerne statistik og sandsynlighed 1 1. udgave som E-bog ISBN: 978-87-92488-19-0 2004 by bernitt-matematik.dk Kopiering

Læs mere

Antal timer 19 5 7 10 0 6 6 3 7 6 4 14 6 5 12 10 Køn k m k m m k m k m k k k m k k k

Antal timer 19 5 7 10 0 6 6 3 7 6 4 14 6 5 12 10 Køn k m k m m k m k m k k k m k k k Statistik 5 Statistik er en meget omfattende matematisk disciplin, og den anvendes i meget stor udstrækning i vores moderne samfund. Den handler om at analysere et (ofte meget stort) talmateriale. Det

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Vikar-Guide. 1. Fælles gennemgang: Vikarguiden findes på side 5. 2. Efter fælles gennemgang: Venlig hilsen holdet bag Vikartimen.

Vikar-Guide. 1. Fælles gennemgang: Vikarguiden findes på side 5. 2. Efter fælles gennemgang: Venlig hilsen holdet bag Vikartimen. Vikar-Guide Fag: Klasse: OpgaveSæt: Fysik/Kemi 7. klasse Reaktionstid 1. Fælles gennemgang: Vikarguiden findes på side 5. 2. Efter fælles gennemgang: Venlig hilsen holdet bag Vikartimen.dk Hjælp os med

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Andreas Lauge V. Hansen klasse 3.3t Roskilde HTX

Andreas Lauge V. Hansen klasse 3.3t Roskilde HTX IT -Eksamen Andreas Lauge V. Hansen klasse 3.3t Roskilde HTX [Vælg en dato] Indhold Indledning... 2 Teori... 3 Hvorfor dette design... 4 Produktet... 4 Test og afprøvning... 9 Konklusion... 10 Indledning

Læs mere

1. Opbygning af et regneark

1. Opbygning af et regneark 1. Opbygning af et regneark Et regneark er et skema. Vandrette rækker og lodrette kolonner danner celler, hvori man kan indtaste tal, tekst, datoer og formler. De indtastede tal og data kan bearbejdes

Læs mere

1 Problemformulering CYKELHJELM

1 Problemformulering CYKELHJELM 1 Problemformulering I skal undersøge hvor mange cyklister, der kommer til skade og hvor alvorlige, deres skader er. I skal finde ud af, om cykelhjelm gør nogen forskel, hvis man kommer ud for en ulykke.

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard Mandags Chancen En optimal spilstrategi Erik Vestergaard Spilleregler denne note skal vi studere en optimal spilstrategi i det spil, som i fjernsynet går under navnet Mandags Chancen. Spillets regler er

Læs mere

Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode

Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode Man kan skifte mellem tekst- og matemamatikmode ved at trykke på F5. I øjeblikket er jeg i tekstmode.. 2. lektion.

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Lektion 9s Statistik - supplerende eksempler

Lektion 9s Statistik - supplerende eksempler Lektion 9s Statistik - supplerende eksempler Middelværdi for grupperede observationer... Summeret frekvens og sumkurver... Indekstal... Lektion 9s Side 1 Grupperede observationer Hvis man stiller et spørgsmål,

Læs mere

SPSS introduktion Om at komme igang 1

SPSS introduktion Om at komme igang 1 SPSS introduktion Om at komme igang 1 af Henrik Lolle, oktober 2003 Indhold Indledning 1 Indgang til SPSS 2 Frekvenstabeller 3 Deskriptive statistikker gennemsnit, standardafvigelse, median osv. 4 Søjlediagrammer

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

Hårde nanokrystallinske materialer

Hårde nanokrystallinske materialer Hårde nanokrystallinske materialer SMÅ FORSØG OG OPGAVER Side 54-59 i hæftet Tegnestift 1 En tegnestift er som bekendt flad i den ene ende, hvor man presser, og spids i den anden, hvor stiften skal presses

Læs mere

ALMINDELIGT ANVENDTE FUNKTIONER

ALMINDELIGT ANVENDTE FUNKTIONER ALMINDELIGT ANVENDTE FUNKTIONER I dette kapitel gennemgås de almindelige regnefunktioner, samt en række af de mest nødvendige redigerings- og formateringsfunktioner. De øvrige redigerings- og formateringsfunktioner

Læs mere

Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4

Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4 BH Test for normalfordeling i WordMat Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4 Grupperede observationer Vi tager udgangspunkt i

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold: Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og

Læs mere

5. Statistik. Hayati Balo,AAMS. 1. Carstensen, Frandsen og Studsgaard, stx mat B2, systime

5. Statistik. Hayati Balo,AAMS. 1. Carstensen, Frandsen og Studsgaard, stx mat B2, systime 5. Statistik Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Carstensen, Frandsen og Studsgaard, stx mat B2, systime 1. Ugrupperede Observationer Hvis der foreligger et antal målinger eller observationer

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Talrækker. Aktivitet Emne Klassetrin Side

Talrækker. Aktivitet Emne Klassetrin Side VisiRegn ideer 3 Talrækker Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Talrækker 2-4 Elevaktiviteter til Talrækker 3.1 Talrækker (1) M-Æ 5-9 3.2 Hanoi-spillet

Læs mere

Elevmateriale. Forløb Statistik

Elevmateriale. Forløb Statistik Elevmateriale Forløb Statistik Første lektion: I første lektion skal eleverne reflektere over, hvordan man sammenligner datasæt. Hvordan afgør man, hvor høj man er i 5. klasse? I andre dele af matematikken

Læs mere

Simulering af chancer. Aktivitet Emne Klassetrin Side. Vejledning til Simulering af chancer 2-11

Simulering af chancer. Aktivitet Emne Klassetrin Side. Vejledning til Simulering af chancer 2-11 VisiRegn ideer 6 Simulering af chancer Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Simulering af chancer 2-11 Elevaktiviteter til Simulering af chancer

Læs mere

Kapitel 2: Statistik og Sandsynlighed

Kapitel 2: Statistik og Sandsynlighed Kapitel : Statistik og Sandsynlighed.1 Middelværdi og spredning Hvis man foretager eksperimenter i laboratoriet eller går ud og gør observationer i naturen eller samfundet, vil resultaterne af disse eksperimenter

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat8 Noter: Kompetencemål efter 9. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Faglige mål: Håndtere simple formler og ligninger, herunder kunne oversætte fra symbolholdigt sprog til naturligt sprog og omvendt. Håndtere simple mo

Faglige mål: Håndtere simple formler og ligninger, herunder kunne oversætte fra symbolholdigt sprog til naturligt sprog og omvendt. Håndtere simple mo C A R S T E N C R A M O N PASCALS TREKANT G Y L D E N D A L Faglige mål: Håndtere simple formler og ligninger, herunder kunne oversætte fra symbolholdigt sprog til naturligt sprog og omvendt. Håndtere

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Statistik (deskriptiv)

Statistik (deskriptiv) Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken

Læs mere

Regneark III Calc Open Office

Regneark III Calc Open Office Side 1 af 10 Fortsættelse af Calc II Indhold Indhold... 1 Telefonliste... 2 Sortering... 2 Budget... 3 Diagram... 5 Regning... 6 Underskrift... 7 Rundt om Jorden... 8 Matematisk problem... 9 Et sidste

Læs mere