Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit

Størrelse: px
Starte visningen fra side:

Download "Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit"

Transkript

1 Faculty of Life Sciece Program Statitik ifere E ekelt tikprøve og lieær regreio Stat. modeller, etimatio og kofideitervaller Clau Ektrøm Fordelig af geemit Statitik ifere for e ekelt tikprøve tatitik model etimatio og præciio af etimater t-fordelige kofideitervaller Statitik ifere for lieær regreio Slide 2 Statitik Dataaalye 1 (Uge ) Statitik ifere Geemittet Krabbedata: Itereet i de geemitlige vægt i populatioe µ Har e tikprøve på 162 krabber: y 1,...,y 162. Stikprøvetørreler, ȳ = og = Specielt, ˆµ = ȳ = Me: Hvor meget ka tole på dette etimat? Hvor præcit er det? Hvad ville der ke hvi vi idamlede 162 adre krabber? Hvi vi bruger ormalfordelige, ka vi faktik vare meget præcit på die pørgmål! Vil lave kofideiterval for µ. Dette kræver e tatitik model. Fordelig af geemit Hitogrammer over geemit af tk. N(0, 1)-fordelte variable. Deity = y Deity = y Middelværdi? Spredig? fordelig? Slide 3 Statitik Dataaalye 1 (Uge ) Statitik ifere Slide 4 Statitik Dataaalye 1 (Uge ) Statitik ifere

2 Fordelig af geemit De cetrale græeværdiætig Huk fra idt at um af to ormalfordelte variable og kalerig af ormalfordelte variable ige er ormalfordelt. Udvidele til um af uafhægige N(µ,σ 2 )-variable: y 1 + y y N(µ,σ 2 ) ȳ = 1 (y 1 + y y ) N(µ,σ 2 /) Altå: ˆµ = ȳ er ormalfordelt med middelværdi µ og predig σ/. Det fortæller o om variatioe af ȳ! Et af hovedreultatere idefor tatitik og årage til at ormalfordelige er å pokker vigtig. De cetrale græeværdiætig Lad Y 1,...,Y være uafhægige variable med amme fordelig med middelværdi µ og predig σ. Så er Specielt Ȳ = 1 Y i N(µ,σ 2 /) (Ȳ ) µ P σ/ z Φ(z) Slide 5 Statitik Dataaalye 1 (Uge ) Statitik ifere Slide 6 Statitik Dataaalye 1 (Uge ) Statitik ifere Statitik model Etimatio Hitogram og N-tæthed QQ-plot Deity Sample Quatile Weight Theoretical Quatile Statitik model: y 1,...,y 162 er uafhægige og y i N(µ,σ 2 ) Normalfordelt Alle y i har amme middelværdi og amme predig Uafhægighed deler ikke iformatio Statitik model: Parametre i modelle y 1,...,y 162 N(µ,σ 2 ) uafhægige middelværdie µ geemittet i populatioe predige σ predige i populatioe Etimatio: populatioparametree etimere ved tikprøvetørrelere. ˆµ = ȳ det er faktik LS etimatet ˆσ = Slide 7 Statitik Dataaalye 1 (Uge ) Statitik ifere Slide 8 Statitik Dataaalye 1 (Uge ) Statitik ifere

3 Præciio af ˆµ Etimatet ˆµ iger ikke oget om præciioe. Me vi ved jo at d(ȳ) = σ/ ȳ ligger i µ ± 1.96 σ/ med 95% adylighed. å ȳ rammer rigtigt i geemit og bliver mere og mere præcit jo tørre bliver. Åh-åh: keder ikke σ ku etimatet! Stadard error af ȳ etimeret predig: SE(ȳ) = / ȳ ligger i µ±??? / med 95% adylighed. Fraktile kal ædre for at tage højde i uikkerhede i etimatet for σ. Deity t-fordelige df = 1,4 og N(0,1) Stadardierig (ȳ µ) z = N(0,1), σ Fordelige ædre hvi σ ertatte med : (ȳ µ) T = t T t-fordelige med 1 frihedgrader. Bredere haler ed N(0, 1) Liger N(0,1) mere og mere år df voker Slide 9 Statitik Dataaalye 1 (Uge ) Statitik ifere Slide 10 Statitik Dataaalye 1 (Uge ) Statitik ifere Skål Kofideiterval for µ Øl Goet = Studet Hvi t 0.975, 1 er 97.5%-fraktile i t 1 -fordelige: ( ) (ȳ µ) P t 1,0.975 < < t 1,0.975 = Hvi vi flytter rudt og iolerer µ: ( P ȳ t 1,0.975 < µ < ȳ + t 1,0.975 ) = 0.95 Altå: itervallet ȳ ± t 1,0.975 eller ˆµ ± t 1,0.975 SE(ˆµ) ideholder populatiomiddelværdie µ med h. 95%. Itervallet kalde et 95% kofideiterval for µ. Slide 11 Statitik Dataaalye 1 (Uge ) Statitik ifere Slide 12 Statitik Dataaalye 1 (Uge ) Statitik ifere

4 Kofideitervaller: krabbedata Kofideitervaller: fortolkig Huk: = 162, ȳ = og = Fraktiler: > qt(0.975,161) [1] > qt(0.95,161) [1] Bereg: Stadard error, SE( ˆµ)? 95% kofideiterval? 90% kofideiterval? 95%-kofideiterval for µ ȳ ± t 1,0.975 = ˆµ ± t 1,0.975 SE(ˆµ) Fortolkig: itervallet ideholder med 95% adylighed populatiogeemittet µ. Hvorda berege et 90%-kofideiterval? Bliver det bredere eller mallere? Hvad ker der hvi tikprøvetørrele voker? Bliver det tilvarede kofideiterval bredere eller mallere? Slide 13 Statitik Dataaalye 1 (Uge ) Statitik ifere Slide 14 Statitik Dataaalye 1 (Uge ) Statitik ifere Kofideitervaller: fortolkig Hvi vi getog ekperimetet mage gage, å ville 95% af CI ere ideholde populatiogeemittet. Kofideitervaller for 50 dataæt fra N(0, 1). 95%, =10 75%, =10 95%, =40 Reumé: e tikprøve Statitik model: y 1,...,y 162 er uafhægige og y i N(µ,σ 2 ) Parametre, µ og σ: geemit og predig i populatioe Etimater: ˆµ = ȳ og ˆσ = Fordelig af etimat: ˆµ ormalfordelt med middelværdi µ og predig σ/ Stadard error, dv. etimeret predig for etimat: SE(ˆµ) = / 95%-kofideiterval: ȳ ± t 1,0.975 = ˆµ ± t 1,0.975 SE(ˆµ) Vi ka køre præci de amme pukter igeem for lieær regreio og eidet variaaalye (og mage adre modeller). µ µ µ Slide 15 Statitik Dataaalye 1 (Uge ) Statitik ifere Slide 16 Statitik Dataaalye 1 (Uge ) Statitik ifere

5 Hvorfor kal vi lære om ormalfordelige (u)? Har et tre typer af data/ekperimeter med kotiuerte data: Orgaic material Eidet ANOVA Co Alp Er Fe Ive Spi Digetibility % Lieær regreio E tikprøve: Blood preure Stearic acid % Vi kal bruge ormalfordelige for alle tre forøgtyper/datatyper! Statitik model og parametre Statitik model: afvigelere fra de rette liie er ormalfordelt y i = α + β x i + e i, Atagelere er: Alle y i er ormalfordelte Middelværdie af y i er α + β x i Alle y i har amme predig Uafhægighed Parametre (populatiotørreler) Skærig α og hældig β Spredig σ om de rette liie e 1,...,e N(0,σ 2 ) uafhægige Slide 17 Statitik Dataaalye 1 (Uge ) Statitik ifere Slide 18 Statitik Dataaalye 1 (Uge ) Statitik ifere Etimatio og fordelig af etimater Stadard error og kofideitervaller Etimatere ˆβ og ˆα å I allerede i uge 1... Etimat for predig: 1 = 2 (y i ˆα ˆβ x i ) 2 1 = 2 ˆβ og ˆα er ormalfordelte: ˆβ N (β, σ 2 ) ( 1, ˆα N (α,σ 2 SS + x 2 )), = x Ige: Etimatere rammer rigtigt i geemit, med e præciio der voker år voker. r 2 i (x i x) 2. Fordeliger: ˆβ N (β, σ 2 ) ( 1, ˆα N (α,σ 2 + x 2 )) Stadard error etimerede prediger SE( ˆβ) = 95% kofideitervaller: SSx, ˆβ ± t 0.975, 2 SE( ˆβ), SE(ˆα) = 1 + x 2 ˆα ± t 0.975, 2 SE(ˆα) Bemærk: t-fordelige med 2 frihedgrader fordi der er 2 middelværdiparametre. Samme om æver i formel for, df e! Slide 19 Statitik Dataaalye 1 (Uge ) Statitik ifere Slide 20 Statitik Dataaalye 1 (Uge ) Statitik ifere

6 Steariyredata Dage hovedpukter > model1 = lm(ford~yre) > ummary(model1) Coefficiet: Etimate Std. Error t value Pr(> t ) (Itercept) e-10 *** yre e-05 *** Reidual tadard error: 2.97 o 7 degree of freedom Cetrale græeværdiætig hvorfor er de cetral? Statitik model og parametre Etimater, fordelig af etimater, tadard error Kofideitervaller: etimat ± t-fraktil SE(etimat) og fortolkig Aalye: Statitik model? Fortolkig af parametre? Etimater? Kofideitervaller? Slide 21 Statitik Dataaalye 1 (Uge ) Statitik ifere Slide 22 Statitik Dataaalye 1 (Uge ) Statitik ifere Ordlite Egelk average/mea cofidece iterval degree of freedom (df) leat quare method ample tadard deviatio (d) tadard error (SE) Dak geemit kofideiterval frihedgrader midte kvadrater metode tikprøve predig etimeret predig for etimat Slide 23 Statitik Dataaalye 1 (Uge ) Statitik ifere

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger Faculty of Life Scieces Program Esidet variasaalyse Normalfordelige Claus Ekstrøm E-mail: ekstrom@life.ku.dk Esidet variasaalyse (oe-way ANOVA) Hvilke type data? Hvad er problemstillige? Variatio mellem

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer Hypoteetet Hypoteetet og kritike værdier Type og Type fejl Styrke af e tet Sammeligig af to populatioer Kofideiterval for σ tore tikprøver. Hvi X følger e χ -fordelig med frihedgrader, dv. X~χ (), gælder

Læs mere

Statistik Lektion 8. Test for ens varians

Statistik Lektion 8. Test for ens varians Statitik Lektio 8 Tet for e varia ra tidligere Hvi populatioe er ormalfordelt med varia, å gælder ( ) S ~ χ hvor er tikprøve tørrele og S er tikprøvevariae. χ -fordelig med - frihedgrader χ Tet af Variae

Læs mere

Program. Populationer og stikprøver. Praktiske oplysninger. Eksempel vaccine mod miltbrand hos får. Praktiske oplysninger

Program. Populationer og stikprøver. Praktiske oplysninger. Eksempel vaccine mod miltbrand hos får. Praktiske oplysninger Faculty of Life Scieces Program Populatioer og stikprøver Claus Ekstrøm E-mail: ekstrom@life.ku.dk Praktiske oplysiger Populatioer og stikprøver Data Datatyper Visualiserig Cetrum og spredig af e fordelig

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Stikprøvefordelinger og konfidensintervaller

Stikprøvefordelinger og konfidensintervaller Stikprøvefordeliger og kofidesitervaller Stikprøvefordelige for middelværdi De Cetrale Græseværdi Sætig Egeskaber Ved Estimatore Kofidesitervaller t-fordelige Estimator og estimat E stikprøve statistik

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen Program Statitik og Sandynlighedregning 2 Normalfordelingen venner og bekendte Helle Sørenen Uge 9, ondag Reultaterne fra denne uge kal bruge om arbejdhete i projekt 1. I formiddag: χ 2 -fordelingen, t-fordelingen,

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Konfidens intervaller

Konfidens intervaller Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt Kofides iterval for adel Kofides iterval for varias Bestemmelse af

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

1. Undersøg om den nye astma-medicin har en signifikant virkning.

1. Undersøg om den nye astma-medicin har en signifikant virkning. Opgave 4.7 For a vurdere virkige af e y amamedici, er 10 paieer lugekapacie bleve mål før og behadlige med de ye medici og ige 3 uger ide i behadligperiode. Die reulaer e i edeåede abel: Lugekapacie Lugekapacie

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable Idholdsfortegelse Geerelt:...3 Stokastisk variabel:...3 Tæthedsfuktio/sadsylighedsfuktio for stokastisk variabel:...3 Fordeligsfuktio/sumfuktio for stokastisk variabel:...3 Middelværdi:...4 Geemsit:...4

Læs mere

Dansk. Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 2 Konfidensintervallet for µ Eksempel. 3 Den statistiske sprogbrug og formelle ramme

Dansk. Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 2 Konfidensintervallet for µ Eksempel. 3 Den statistiske sprogbrug og formelle ramme Itroduktio til Statistik enote 3: Kofidesitervaller for é gruppe/stikprøve Egelsk Forelæsig 4: Kofidesiterval for middelværdi (og spredig) Peder Bacher DTU Compute, Dyamiske Systemer Bygig 303B, Rum 009

Læs mere

Morten Frydenberg version dato:

Morten Frydenberg version dato: Morte Frdeberg versio dato: 4--4 Itroduktio til kurset Statistik Forelæsig Morte Frdeberg, Sektio for Biostatistik af Biostatistik dele af. semester kurset. Statistiske modeller Biomialfordelige Normalfordelige

Læs mere

Opsamling. Lidt om det hele..!

Opsamling. Lidt om det hele..! Opsamlig Lidt om det hele..! Kursus oversigt Hvad har vi været igeem: Deskriptiv statistik Sadsyligheder Stokastiske variable diskrete og kotiuerte Fordeliger Estimatio Test Iferes Sammeligig af middelværdier

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Formelsamling til statistik-del af metodekursus, 4. semester, lægevidenskab Version 3 (26/9-2011)

Formelsamling til statistik-del af metodekursus, 4. semester, lægevidenskab Version 3 (26/9-2011) Formelsamlig til statistik-el af metoekursus, 4. semester, lægevieskab Versio 3 (6/9-011) Kære læser Dee formelsamlig er lavet me ugagspukt i Meical Statistics, seco eitio af Betty R. Kirkwoo og A. C.

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

Diskrete og kontinuerte stokastiske variable

Diskrete og kontinuerte stokastiske variable Diskrete og kotiuerte stokastiske variable Beroulli Biomial fordelig Negativ biomial fordelig Hypergeometrisk fordelig Poisso fordelig Kotiuerte stokastiske variable Uiform fordelig Ekspoetial fordelig

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 13 udgave 013 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i Da er r i = e i ˆσ ei t(n 3) (tæt på N(0,1) hvis n ikke alt for lille). Program 1. lineær regression: opgave 3 og 13 (sukker-temperatur). 2. studentiserede residualer, multipel regression. Tommelfinger-regel:

Læs mere

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse Hjemmeopgave Makroøkonomi,. årprøve, foråret 2005 Vejledende bevarele Opgave. Korrekt. Arbejdtyrken er en beholdning- (tock) variabel, idet man på et givet tidpunkt (fx. jan) kan tælle, hvor mange der

Læs mere

Vanskelige vilkår for generationsskifte med nye regler - Afskaffelse af formueskattekursen samt svækkelse af sikkerheden trods bindende svar

Vanskelige vilkår for generationsskifte med nye regler - Afskaffelse af formueskattekursen samt svækkelse af sikkerheden trods bindende svar - 1 Vankelige vilkår for generationkifte med nye regler - Afkaffele af formuekattekuren amt vækkele af ikkerheden trod bindende var Af advokat (L) Bodil Chritianen og advokat (H), cand. merc. (R) Tommy

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

Facilitering ITU 15. maj 2012

Facilitering ITU 15. maj 2012 Faciliterig ITU 15. maj 2012 Facilitatio is like movig with the elemets ad sailig the sea Vejvisere Velkomst de gode idflyvig Hvad er faciliterig? Kedeteg ved rolle som facilitator Facilitatores drejebog

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epdemolog og bostatstk. Uge, trsdag. Erk Parer, Isttut for Bostatstk. Geerelt om statstk Dataaalyse - Deskrptv statstk - Statstsk feres Sammelgg af to grupper med kotuerte data - Geemst og spredg - Parametre

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

bestemmelse af karakteristiske værdier for materialeparametre og modstandsevner

bestemmelse af karakteristiske værdier for materialeparametre og modstandsevner Statiti arateritie værdier BESTEMMELSE AF KARAKTERISTISKE VÆRDIER beteele af arateritie værdier for aterialearaetre og odtadever etode i ae A i DS 409 (DS 409: Sierhedbeteeler for Kotrtioer, 999) baeret

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD)

TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) Uderøgele af forældre brugerilfredhed med dagilbud i kommue Sep. 2013 SPØRGESKEMA TIL FORÆLDRE TIL BØRN I DAGTILBUD (DAGINSTITUTION, DAGPLEJE OG SÆRLIGE DAGTILBUD) De er valgfri for kommue, om de pørgmål,

Læs mere

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Itroducerede Statistik Forelæsig 12: Iferes for adele Klaus K. Aderse og Per Bruu Brockhoff DTU Compute, Statistik og Dataaalyse Damarks Tekiske Uiversitet 2800 Lygby Damark e-mail:

Læs mere

Opgave 1: Regressionsanalyse

Opgave 1: Regressionsanalyse Opgave : Regressiosaalyse La u, x,..., u, x være par af reelle al. Vi skal u besemme e ree liie, er passer bes me isse alpar i e forsa a summe x s α βu s miimeres. Ma fier alså e liie, x ˆα + ˆβu, for

Læs mere

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt enote 5: Simpel lineær regressions analse Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression To variable: og Beregn mindstekvadraters estimat af ret linje Inferens med

Læs mere

BESTEMMELSE AF KARAKTERISTISKE VÆRDIER FOR MATERIALEPARAMETRE

BESTEMMELSE AF KARAKTERISTISKE VÆRDIER FOR MATERIALEPARAMETRE Betemmele af arateritie værdier for materialearametre 003 BESTEMMELSE AF KARAKTERISTISKE VÆRDIER FOR MATERIALEPARAMETRE Joh Dalgaard Søree Itituttet for Bygigtei Aalborg Uiveritet Idhold:. Idledig....

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Kursus 02402/02323 Introducerende Statistik

Kursus 02402/02323 Introducerende Statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Leica Lino. Præcise, selvnivellerende punkt- og linje-lasere

Leica Lino. Præcise, selvnivellerende punkt- og linje-lasere Leica Lio Præcise, selvivellerede pukt- og lije-lasere Opsæt, tæd, klar! Med Leica Lio er alt i lod og perfekt lige Leica Lios projekterer lijer eller pukter med milimeterøjagtighed, så du har hædere fri

Læs mere

Forelæsning 11: Tovejs variansanalyse, ANOVA

Forelæsning 11: Tovejs variansanalyse, ANOVA Introduktion til Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Kogebog: 5. Beregn F d

Kogebog: 5. Beregn F d tattk 8. gag KONFIDENINERVALLER Kofdetervaller: kaptel Valg og tet af fordelgfukto tattk 8. gag. KONFIDEN INERVALLER Et kofde terval udtrykker tervallet hvor de rgtge værd af parametere K, med γ % adylghed

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Introduktion til Statistik

Introduktion til Statistik Itroduktio til Statistik 4. udgave Susae Ditlevse og Helle Sørese Susae Ditlevse, susae@math.ku.dk Helle Sørese, helle@math.ku.dk Istitut for Matematiske Fag Købehavs Uiversitet Uiversitetsparke 5 2100

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

Repetition. Forårets højdepunkter

Repetition. Forårets højdepunkter Repetto Forårets højdepukter Forårets højdepukter Smpel Leær Regresso Smpel leær regresso: Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures (X ad Sales (Y Et scatterplot

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Faculty of Health Sciences. Regressionsanalyse. Simpel lineær regression, Lene Theil Skovgaard. Biostatistisk Afdeling

Faculty of Health Sciences. Regressionsanalyse. Simpel lineær regression, Lene Theil Skovgaard. Biostatistisk Afdeling Faculty of Health Sciences Regressionsanalyse Simpel lineær regression, 28-2-2013 Lene Theil Skovgaard Biostatistisk Afdeling 1 / 67 Simpel lineær regression Regression og korrelation Simpel lineær regression

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast Det krå kat Data Forøg 1: = 38 V 0 = 4, 94 K vidde = 2, 058 H = 0, 406 t = 0, 53 Forøg 2 (60 ): = 60 V 0 = 4, 48 K vidde = 1, 724 H = 0, 788 t = 0, 77 Fyik del Udførel af forøg Kat på 38 : Forøgoptilling:

Læs mere

Perspektiver i Matematik-Økonomi: Linær regression

Perspektiver i Matematik-Økonomi: Linær regression Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: jlj@imf.au.dk Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem

Læs mere

B # n # # # #

B # n # # # # 1 3Somm i Tyrol Teor 1 Teor aritoe q 0 3 0 3 Л 0 som - m - sol ved "De hvi - de hest" ag al - e - ro - s-es som - m - sol ved "De hvi - de hest" ag al - e - ro - s-es ass som - m - sol ved "De hvi - de

Læs mere

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser Uge 37 I Teoretsk Statstk, 9.sept. 003. Fordelger kyttet tl N-ford. Gvet: uafhægge observatoer af samme N(µ,σ )-fordelte stokastske varabel. Formelt: X,X,,X uafhægge, alle N(µ,σ )-fordelt. Mddelværd µ

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor godschauffør området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Program. 1. Flersidet variansanalyse 1/11

Program. 1. Flersidet variansanalyse 1/11 Program 1. Flersidet variansanalyse 1/11 To-sidet variansanalyse Eksempel: (opgave 14.2 side 587) vitamin indhold i frossen juice målt for ialt 9 kombinationer af mærke (Rich food, Sealed-sweet, Minute

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL Kapitel 0 KALIBRERING AF STRØMNINGSMODEL Torbe Obel Soeborg Hydrologisk afdelig, GEUS Nøglebegreber: Kalibrerigsprotokol, observatiosdata, kalibrerigskriterier, idetificerbarhed, etydighed, parameterestimatio,

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 17. udgave 016 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de

Læs mere

Program. Normalfordelingen. Hvad skal vi bruge normalfordelingen til? Eksempel: hjerneceller hos marsvin

Program. Normalfordelingen. Hvad skal vi bruge normalfordelingen til? Eksempel: hjerneceller hos marsvin Program Normalfordlig Hll Sørs E-mail: hll@mah.ku.dk I dag: ormalfordlig Hvad skal vi brug ormalfordlig il og hvorfor r d vigig? Hisogram og ormalfordligsæhd Brgig af sadsylighdr i ormalfordlig Er daa

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 23. maj 2012 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

BEVISER TIL KAPITEL 7

BEVISER TIL KAPITEL 7 BEVISER TIL KAPITEL 7 A. Komplemetærhædelse Det er klart, at e hædelse A og de komplemetære hædelse A udgør hele udfaldsrummet U, dvs. A A = Da fås P(U = U P(A A = P (A + P(A = da de to hædelser er dsjukte

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 14 udgave 014 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

6 Populære fordelinger

6 Populære fordelinger 6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).

Læs mere

Nanostatistik: Lineær regression

Nanostatistik: Lineær regression Nanostatistik: Lineær regression JLJ Nanostatistik: Lineær regression p. 1/41 Sammenhænge Funktionssammenhæng: y er en funktion af x. Ex: Hvis jeg kender afstanden mellem to galakser så kender jeg også

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,

Læs mere