14 Algoritmeanalyse. Noter. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. Køretid for forskellige kontrolstrukturer.

Størrelse: px
Starte visningen fra side:

Download "14 Algoritmeanalyse. Noter. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. Køretid for forskellige kontrolstrukturer."

Transkript

1 14 Algoritmeanalyse. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. O og Ω. Køretid for forskellige kontrolstrukturer. Eksempler på algoritmeanalyse. Eksponentiel og polynomiel tidskompleksitet. 199

2 Hvad er en algoritme? En algoritme er en elig mængde af instruktioner, som løser et bestemt problem. En algoritme skal videre opfylde følge kriterier: Input-parametre: Algoritmen er baseret på nul eller flere eksternt angivne input-parametre. Resultat. Algoritmen producerer mindst et resultat, som også kan betegnes som output. Klarhed: Hver instruktion skal være klar og utvetydig. Endelighed: Algoritmen vil terminere efter et eligt antal trin. Enkelthed: Hver instruktion skal være så enkel, at instruktionen kan udføres af en person, som vil følge algoritmen. I resten af dette kapitel vil vi bruge ordet program synonymt med ordet algoritme. Den eneste egentlige forskel er, at nogle programmer ikke opfylder elighedskriteriet; programmer som er uelige er eksempelvis operativsystemdrivere. Sådanne programmer er ikke relevante at diskutere inden for rammerne af dette kursus (og dette er altså årsagen til, at vi kan tillade os at veksle mellem de to betegnelser). Ovenståe definition er hentet (og oversat) fra Horowitz og Shani s bog Fundamentals of Data Structures. I denne bog kaldes klarhed for definiteness, elighed for finiteness, og enkelthed for effectiveness. 200

3 Hvad er algoritmeanalyse? Algoritmeanalyse handler om at måle, beregne og estimere en algoritmes ressourceforbrug. Hvilke ressourcer? algoritmens køretid. algoritmens lagerforbrug. Hvordan? Empiriske målinger af et algoritmens (programmets) faktiske køretid. Teoretisk beregning af algortments køretid. Estimat af størrelseorden af algoritmen køretid. Hvorfor? For at kunne kontrollere og sikre, at programmets samlede køretid (og svartider i en dialog) ikke overstiger en fastsat grænse, og for at sikre at programmet kan køre i det tilgængelige lager. 201

4 Problemstørrelse og køretid. Problemets størrelse: Et kvantitativt mål for omfanget af de data, algoritmen bearbejder. Udtrykkes ved en eller flere parametre. Algoritmens køretid: Det antal beregningstrin, der udføres af algoritmen, udtrykt som funktion af problemets størrelse. Relativ til en valgt beregningsmodel. Middelkøretid eller "worst case" køretid? - Det er ikke altid entydigt hvad "middel" (gennemsnit, "average") betyder. - Middelkøretider er ofte vanskelige at beregne. - "Worst case" køretid udtrykker nyttig øvre grænse. En simpel og grov model: Alle primitive kommandoer og operationer tager én tidsenhed. Uelig meget arbejdslager. Antagelsen om uelig meget arbejdslager skyldes, at vi ønsker at eliminere forhold såsom "swoping" (paging) til og fra pladelager fra vores model. Hvad er primitive kommandoer og primitive operationer? Der er ingen faste definitioner af dette. Det er et valg som fastlægges af vores beregningsmodel. Til de primitive kommandoer hører dog klart assignments og visse kald af "primitive procedurer", som vi ikke kan eller ønsker at opdele yderligere i vores analyse. Artitmetiske operationer, sammenligningsoperationer, og boolske operationer tilhører de primitive operationer. 202

5 O og Ω. Vi ønsker på en simpel måde at kunne estimere øvre og nedre grænse af en funktion. Vi ønsker indbyrdes at kunne sammenligne funktioners vækst. Øvre grænse. T(n) = O(f(n)) hvis og kun hvis Der findes to konstanter c og m så T(n) <= c f(n) for n >= m. f(n) er den øvre grænse af T(n). T(n) = O(f(n)): "T(n) er af orden f(n)" eller "T(n) er store O af f(n)". Nedre grænse. T(n) = Ω (g(n)) hvis og kun hvis Der findes to konstanter c og m så T(n) >= c g(n) for n >= m. Definitionerne på denne slide kan læses uafhængig af den sammenhæng, vi befinder os i, nemlig algoritmeanalyse og programmers estimerede køretid. Når vi taler om funktioner, som vi ønsker at estimere og sammenligne, tænker vi dog primært på programmers køretid. Som omtalt på en tidligere slide, udtrykker vi netop programmers køretid som en funktion af en eller flere parametre, der tilsammen måler problemets størrelse. Store O notationen er langt den mest anvte, idet den udtrykker et "loft" over en funktion (køretiden). Undertiden er det dog også interessant at udtrykke en nedre grænse for (et "gulv" under) en funktion. Når vi udtrykker den øvre grænse af en funktion med O-notation ønsker vi næsten altid så lav en grænse som muligt. Eksempel: Lad f(n) = n * n + 2 n. Da gælder både at f(n) = O(n*n) og f(n) = O(n*n*n), men den første af disse er klart den bedste. Hvis et programs køretid (relativ til en eller anden beregningsmodel) er k(n), hvor n udtrykker problemstørrelsen, og hvis k(n) = O(f(n)), da siger vi ofte at programmets (asymptotiske) tidskompleksitet er f(n). 203

6 Køretid for forskellige konstrolstrukturer. Kontrolstruktur command-1 ; command-2 Køretid k1 + k2 Køretid(command ) = k Køretid(command-1 ) = k1 Køretid(command-2 ) = k2 for i := 1 to n do command. while boolean-expr do command from initialization-commands until boolean-exp loop command if boolean-expr then command-1 else command-2 n * (k + 1) N * (k + e) + e Hvor : N betegner antallet af iterationer og e betegner køretiden for det boolske udtryk. i + N * (k + e) + e Hvor : i betegner køretiden for initialiseringer N betegner antallet af iterationer og e betegner køretiden for det boolske udtryk. e + max(k1, k2) Hvor : e betegner køretiden for det boolske udtryk. For-løkke: et-tallet i køretiden stammer fra (re-)initialisering af løkke-variablen. I while-løkken, og i Eiffels loop konstruktion, kan man ikke udtale sig om antallet af iterationer på sammen måde som i for-løkken. Derfor betegnes antallet af faktisk udførte iterationer med variablen N. I både while og loop strukturen testes den boolske betingelse én gang mere løkken udføres. Dette afspejles med et ekstra e-bidrag i formlerne for køretiderne. 204

7 Eksempel på algoritmeanalyse (1) Matrix addition. class MATRIX feature add(m: MATRIX): MATRIX is require number_of_rows = m.number_of_rows; number_of_columns = m.number_of_columns; local row, column, sum: integer do result.create(number_of_rows, number_of_columns); from row := 1 until row > number_of_rows loop from column := 1 until column > number_of_columns loop sum := item(row,column) + m.item(row,column); result.put(sum,row,column); column := column + 1 ; row := row add --class MATRIX Analyse af matrix-addition (add): Lad a = m.number_of_rows b = m.number_of_columns Problemets størrelse: (a,b). Køretiden af add = O(a*b) 205

8 Eksempel på algoritmeanalyse (2). Beregning af Fibonacci tal. fib(n: integer): integer is do if n = 0 then result := 0 elsif n = 1 then result := 1 else result := fib(n-2) + fib(n-1) Analyse: Problemets størrelse: n Lad køretiden af kaldet fib(n) være K(n). K(0) = K(1) = O(1). K(n) = K(n-2) + K(n-1) + 3, for n >= 2. Det ses umiddelbart, at K(n) > fib(n). Det kan vises, at fib(n) >= (3/2) Derfor er køretiden af fib eksponentiel. n I kapitlet "Specifikation med logiske udtryk" har vi set en iterativ udgave til beregning af Fibonacci tal. Den så ud som følger: myfib(n: integer): integer is local a: integer; b: integer; count: integer; br: integer do from a := 1; b := 0; count := n; until count = 0 loop br := b; b:= a; a := a + br; count := count - 1 ; result := b -- myfib Det ses umiddelbart, at kørentiden af myfib er O(n). Der er altså enorm stor forskel mellem tidskompleksiteten af myfib, og den rekursive fib, som formuleret ovenfor. Senere i dette kapitel vil vi se på, hvor slem eksponentiel køretid egentlig er. Eiffel funktionerne til beregning af Fibonacci tal fra denne slide er indeholdt i filen /user/normark/public/p1/gcd_og_fib.e. 206

9 Eksempel på algoritmeanalyse (3). Euclid's algoritme. Rekursiv formulering gcd(a, b: integer): integer is require a >= b, b >= 0 do if b = 0 then result := a else result := gcd(b, a mod b) ensure a mod result = 0 and b mod result = 0; -- result er stoerste divisor i a og b ; Analyse: Iterativ formulering gcd(a, b: integer): integer is require a >= b; b >= 0 local rem, x, y: integer; do from x := a; y := b until y = 0 loop rem := x mod y; x := y; y := rem; ; result := x ensure a mod result = 0 and b mod result = 0; -- result er stoerste divisor i a og b ; Problemets størrelse: a. Lad N betegne antallet af iterationer i gcd. Køretiden af gcd = O(N). Det kan vises at N <=2 log a. Køretiden af gcd er således O(log a). Funktionen gcd beregner den største divisor af to tal. Lad os først indse, hvorfor gcd i de to ovenståe formuleringer rent faktisk beregner den største divisor af de to parametre. Det er ikke vanskeligt at vise, at (a b and b > 0) => gcd(a,b) = gcd(b, a mod b). Bemærk at b > a mod b; derved kan vi umiddelbart anve formlen igen: gcd(b, a mod b) = gcd(a mod b, b mod (a mod b)). Vi kan altså danne følge række af tal a, b, a mod b, b mod (a mod b),..., r, 0. Hvis rækken således er... x, y, er det næste led lig med x mod y. Da gcd(r, 0) = r har vi, at det næstsidste led i rækken (r ovenfor) er lig med gcd(a,b). Den rekursive formulering af Euclid's algoritme er "pænere" den iterative formulering. Men i mange sprog vil den rekursive formulering afstedkomme et stort lagerforbrug, idet hvert rekursivt kald repræsenteres på kaldstakken. Ved nærmere eftertanke kan man dog let indse, at dette store lagerforbrug ikke er nødvigt i dette tilfælde. Årsagen er, at gcd er halerekursiv: Det rekursive resultat benyttes ikke i en yderligere beregning inden funktionen returnerer. Så hvis vores programmeringssprog håndterer halerekursion optimalt, er den rekursive formulering lige så effektiv som den iterative. Eiffel funktionerne til beregning af største fælles divisor fra denne slide er indeholdt i filen /user/normark/public/p1/gcd_og_fib.e. Opgave: Imod den iterative løsning vist ovenfor kan man inve, at den ikke er original og basal nok. Man kan formulere en version af Euclids algoritme som anver gentagen subtraktion af b fra a i stedet for a mod b (eller x mod y, som det forekommer i programmet). Skriv denne version af Euclids algoritme, og prøvekør den. 207

10 Eksponentiel tidskompleksitet. Algoritmer med eksponentiel tidskompleksitet kan i praksis antages at have uelig køretid for store input-størrelser. n n 32 3* 4* n 2 3 * dage 1330 år * år 13 3 * år Den højre kolonne viser køretiden, hvis vi antager at hvert primitiv har en udførelsestid på 1 nanosekund. Til sammenligning kan vi betragte en tilsvare tabel for n * n *n, hvor vi dog i stedet for tilsidst at betragte n = 0 går op på n = 00. Tabellen er vist på næste slide. 208

11 Polynomiel tidskompleksitet. n n n 1.25 * 1.56 * 1.25 * -3 1 sekund Sædvanligvis betragtes algoritmer med tidskompleksitet n*n*n ikke som særligt attraktive. Men sammenlignet med eksponentiel tidskompleksitet ser vi, at der er en gigantisk forskel. 209

26 Programbeviser I. Noter. PS1 -- Programbeviser I. Bevis kontra 'check af assertions' i Eiffel. Betingelser og bevisregler.

26 Programbeviser I. Noter. PS1 -- Programbeviser I. Bevis kontra 'check af assertions' i Eiffel. Betingelser og bevisregler. 26 Programbeviser I. Bevis kontra 'check af assertions' i Eiffel. Betingelser og bevisregler. Hvad er programverifikation? Bevisregel for 'tom kommando'. Bevisregel for assignment. Bevisregler for selektive

Læs mere

Algoritmedesign med internetanvendelser ved Keld Helsgaun

Algoritmedesign med internetanvendelser ved Keld Helsgaun Algoritmedesign med internetanvendelser ved Keld Helsgaun 1 Analyse af algoritmer Input Algoritme Output En algoritme er en trinvis metode til løsning af et problem i endelig tid 2 Algoritmebegrebet D.

Læs mere

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign 28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par

Læs mere

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned.

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. 22 Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. Indsættelse i hobe. Sletning af minimalt element i hobe. Repræsentation. 327

Læs mere

Selvstudium 1, Diskret matematik

Selvstudium 1, Diskret matematik Selvstudium 1, Diskret matematik Matematik på første studieår for de tekniske og naturvidenskabelige uddannelser Aalborg Universitet I dette selfstudium interesserer vi os alene for tidskompleksitet. Kompleksitet

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Analyse af algoritmer

Analyse af algoritmer Analyse af algoritmer Analyse af algoritmer Køretid Pladsforbrug Asymptotisk notation O, Θ og Ω-notation. Eksperimentiel analyse af algoritmer Philip Bille Analyse af algoritmer Analyse af algoritmer Køretid

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

8 Specifikation med Logiske Udtryk.

8 Specifikation med Logiske Udtryk. 8 Specifikation med Logiske Udtryk. Specifikation kontra program. Specifikation af funktioner. Specifikation af funktions-orienterede ADT-er. Integreret specifikation og program i Eiffel. Korrekthed af

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

Introduktion. Philip Bille

Introduktion. Philip Bille Introduktion Philip Bille Plan Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer og datastrukturer Hvad er det? Algoritmisk problem: præcist defineret relation mellem

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 26. maj 2009. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 0205. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

Rekursion C#-version

Rekursion C#-version Note til Programmeringsteknologi Akademiuddannn i Informationsteknologi Rekursion C#-version Finn Nordbjerg 1 Rekursion Rekursionsbegrebet bygger på, at man beskriver noget ved "sig selv". Fx. kan tallet

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal Philip Bille Algoritmer og datastrukturer Algoritmisk problem. Præcist defineret relation mellem input og output. Algoritme. Metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige

Læs mere

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen (bemærk at log n betegner totals logaritmen): n 2 (log n) 2 2.

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen (bemærk at log n betegner totals logaritmen): n 2 (log n) 2 2. Eksamen august Algoritmer og Datastrukturer (-ordning) Side af sider Opgave (%) n + n er O(n )? n / er O(n / )? n er O(n log n)? n er O((log n) )? n er Ω(n )? Ja Nej Opgave (%) Opskriv følgende funktioner

Læs mere

18 Multivejstræer og B-træer.

18 Multivejstræer og B-træer. 18 Multivejstræer og B-træer. Multivejs søgetræer. Søgning i multivejssøgetræer. Pragmatisk lagring af data i multivejstræer. B-træer. Indsættelse i B-træer. Eksempel på indsættelse i B-træ. Facts om B-træer.

Læs mere

Asymptotisk analyse af algoritmers køretider

Asymptotisk analyse af algoritmers køretider Asymptotisk analyse af algoritmers køretider Analyse af køretid Recall: Vi ønsker at vurdere (analysere) algoritmer på forhånd inden vi bruger lang tid på at implementere dem. De to primære spørgsmål:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 0205. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af

Læs mere

Talteori: Euklids algoritmer, modulær aritmetik

Talteori: Euklids algoritmer, modulær aritmetik Talteori: r, modulær aritmetik Videregående algoritmik Cormen et al. 31.1 31.4 Tirsdag den 6. januar 2009 1 1 2 Restklasseringene modulo n Grupper og undergrupper Modulær division Divisorer De hele tal

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

Årsagen til fejl. Erkendelse af fejl. Håndtering af fejl.

Årsagen til fejl. Erkendelse af fejl. Håndtering af fejl. 9 Fejlhåndtering Årsagen til fejl Erkelse af fejl Håndtering af fejl Fejlerkelse og -håndtering i objekt-orienterede sprog Fejlerkelse og -håndtering i Eiffel Udbredelse af fejl i Eiffel Nuanceret fejlhåndtering

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 0205. Varighed: 4 timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Martin Olsen. DM507 Projekt Del I. 19. marts 2012 FOTO: Colourbox

Martin Olsen. DM507 Projekt Del I. 19. marts 2012 FOTO: Colourbox Martin Olsen DM0 Projekt 0 Del I. marts 0 FOTO: Colourbox Indhold Indledning... Opgave... Opgave... Opgave... Opgave... Opgave... Opgave... Opgave... Kildekode til SimpleInv.java... Kildekode til MergeSort.java...

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur (struktur opbygget af et endeligt antal enkeltdele) blandt mange mulige. Eksempler:

Læs mere

Introduktion til DM507

Introduktion til DM507 Introduktion til DM507 Rolf Fagerberg Forår 2017 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA Forskningsområde: algoritmer og datastrukturer 2 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Introduktion til kurset Rolf Fagerberg Forår 2019 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, Institut for Matematik og Datalogi (IMADA) Forskningsområde: algoritmer

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Rolf Fagerberg. Forår 2012

Rolf Fagerberg. Forår 2012 Forår 2012 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM502 og DM503 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM502 og DM503 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Grundlæggende Algoritmer og Datastrukturer. Analyseværktøjer [CLRS, 1-3.1]

Grundlæggende Algoritmer og Datastrukturer. Analyseværktøjer [CLRS, 1-3.1] Grundlæggende Algoritmer og Datastrukturer Analyseværktøjer [CLRS, 1-3.1] Eksempler på en beregningsprocess Puslespil ved ombytninger Maximum delsum Hvad er udførselstiden for en algoritme? Maskinkode

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Rolf Fagerberg. Forår 2014

Rolf Fagerberg. Forår 2014 Forår 2014 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: Format: Programmering og Diskret matematik I (forelæsninger), TE (øvelser), S (arbejde selv og i studiegrupper) Eksamenform: Skriftlig

Læs mere

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid Philip Bille Mål. At bestemme og forudsige resourceforbrug og korrekthed af algoritmer Eks. Virker min algoritme til at beregne korteste veje i grafer? Hvor hurtigt kører min algoritme til at søge efter

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 6. juni 2016, kl. 15:00 19:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Introduktion til funktioner, moduler og scopes i Python

Introduktion til funktioner, moduler og scopes i Python Denne guide er oprindeligt udgivet på Eksperten.dk Introduktion til funktioner, moduler og scopes i Python Denne artikel er fortsættelsen af "I gang med Python", som blevet publiceret her på sitet for

Læs mere

BRP Sortering og søgning. Hægtede lister

BRP Sortering og søgning. Hægtede lister BRP 18.10.2006 Sortering og søgning. Hægtede lister 1. Opgaver 2. Selection sort (udvælgelsessortering) 3. Kompleksitetsanalyse 4. Merge sort (flettesortering) 5. Binær søgning 6. Hægtede lister 7. Øvelser:

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software Engineering BA i Matematik-Økonomi BA i Anvendt Matematik BA

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software

Læs mere

Forelæsning Uge 4 Mandag

Forelæsning Uge 4 Mandag Forelæsning Uge 4 Mandag Algoritmeskabeloner findone, findall, findnoof, findsumof Primitive typer (forfremmelse og begrænsning) Identitet versus lighed (for objekter, herunder strenge) Opfølgning på Skildpadde

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tolv) Eksamensdag: Fredag den 7. august 009, kl.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider anmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 02326. Varighed: 4 timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Åben uddannelse, Efterår 1996, Oversættere og køretidsomgivelser

Åben uddannelse, Efterår 1996, Oversættere og køretidsomgivelser 3/10/96 Seminaret den 26/10 vil omhandle den sidste fase af analysen og de første skridt i kodegenereringen. Det drejer sig om at finde betydningen af programmet, nu hvor leksikalsk og syntaktisk analyse

Læs mere

Rolf Fagerberg. Forår 2013

Rolf Fagerberg. Forår 2013 Forår 2013 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM536 og DM537 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM536 og DM537 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Asymptotisk analyse af algoritmers køretider

Asymptotisk analyse af algoritmers køretider Asymptotisk analyse af algoritmers køretider Analyse af køretid (RAM-modellen vs. virkeligheden) public class Linear { public static void main(string[] args) { long time = System.currentTimeMillis(); long

Læs mere

Procedurer og funktioner - iteration og rekursion

Procedurer og funktioner - iteration og rekursion Procedurer og funktioner - iteration og rekursion Procedurer De første procedurer vi så på var knyttet til handlinger, der skulle udføres, fx at klikke på en knap for at lukke en form eller afslutte et

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 2 2 n 1/n (logn) n. n 2

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 2 2 n 1/n (logn) n. n 2 Side af sider Opgave (%) Ja Nej n er O(n n)? n er O(n+n )? ( n ) er O( n )? logn er O(n / )? n +n er O(n)? Opgave (%) Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn)

Læs mere

Datalogi C + Datastrukturer og Algoritmer

Datalogi C + Datastrukturer og Algoritmer Datalogi C + Datastrukturer og Algoritmer Velkommen til DatC erne Dagens emne: Hvad er D&A, mål for effektivitet Kursuslærer: Henning Christiansen henning@ruc.dk, http://www.ruc.dk/~henning Hjælpelærer

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Rekursion og dynamisk programmering

Rekursion og dynamisk programmering Rekursion og dynamisk programmering Datastrukturer & Algoritmer, Dat C Forelæsning 12/10-2004 Henning Christiansen Rekursion: at en procedure kalder sig selv eller et antal metoder kalder hinanden gensidigt.

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Design af Algoritmer Korrekt algoritme 1) algoritmen standser på alle input 2) Output er det rigtige på alle input Effektivitet 1) Optimer algoritmerne

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 4 n n 3n n 2 /logn 5 n n (logn) 3n n 2 /logn 4 n n 5 n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 4 n n 3n n 2 /logn 5 n n (logn) 3n n 2 /logn 4 n n 5 n Side af 0 sider Opgave (%) Ja Nej n er O(0n logn)? n er O(n )? n +n er O(n )? n logn er O(n )? n logn er O(n)? Opgave (%) Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer (af samme type). 2. Løs delproblemerne ved rekursion (dvs. kald algoritmen

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

Anvendelse af del og hersk princippet involverer altså problemopdelning og løsningskombination.

Anvendelse af del og hersk princippet involverer altså problemopdelning og løsningskombination. 32. Rekursion Rekursive funktioner er uundværlige til bearbejdning af rekursive datastrukturer. Rekursive datastrukturer forekommer ofte - f.eks. både som lister og træer. Rekursiv problemløsning via del

Læs mere

19 Hashtabeller. Noter. PS1 -- Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse.

19 Hashtabeller. Noter. PS1 -- Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse. 19 Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse. Sammenligning af hashtabeller og søgetræer. 281 Hashing-problemet (1). Vi ønsker at afbilde n objekter på en tabel

Læs mere

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er)

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er) Algoritmeanalyse Identificer essentiel(le) operation(er) Øvre grænse for algoritme Find øvre grænse for antallet af gange de(n) essentielle operation(er) udføres. Øvre grænse for problem Brug øvre grænse

Læs mere

Basale forudsætninger. Sortering ved fletning med tre bånd, i to faser.

Basale forudsætninger. Sortering ved fletning med tre bånd, i to faser. 25 Sortering III. Basale forudsætninger. Sortering ved fletning med tre bånd, i to faser. Sortering ved fletning, med fire bånd, i én fase (balanceret fletning). Polyfase fletning med tre bånd. Generaliseret

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering 1 / 36 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 6, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

Udvikling af DOTNET applikationer til MicroStation i C#

Udvikling af DOTNET applikationer til MicroStation i C# Udvikling af DOTNET applikationer til MicroStation i C# Praktiske tips for at komme i gang. Gunnar Jul Jensen, Cowi Hvorfor nu det? Mdl og Vba kan det hele Fordelene er : udviklingsmiljøet er eksternt

Læs mere

Det er muligt at chekce følgende opg. i CodeJudge: og

Det er muligt at chekce følgende opg. i CodeJudge: og Det er muligt at chekce følgende opg. i CodeJudge:.1.7 og.1.14 Exercise 1: Skriv en forløkke, som producerer følgende output: 1 4 9 16 5 36 Bonusopgave: Modificer dit program, så det ikke benytter multiplikation.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Approximations-algoritmer Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Negativt resultat om generel TSP Approximations-algoritme

Læs mere

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =

Læs mere

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n+logn logn (logn) 7 (3/2) n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n+logn logn (logn) 7 (3/2) n Side af sider Opgave (%) Ja Nej n er O( n )? n er O(log n)? n er O(n )? n + er O(0n)? nlogn er O(n / )? Opgave (%) Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: nlogn logn

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

5. Kontrolstrukturer - Motivation og Oversigt

5. Kontrolstrukturer - Motivation og Oversigt 5. Kontrolstrukturer - Motivation og Oversigt I dette og de følgende afsnit vil vi - vigtigst af alt - møde forgreninger og løkker. Sådanne kaldes kontrolstrukturer, fordi vi med disse kan kontrollere

Læs mere

Sommeren 2001, opgave 1

Sommeren 2001, opgave 1 Sommeren 2001, opgave 1 Vi antager at k 3, da det ellers er uklart hvordan trekanterne kan sættes sammen i en kreds. Vi ser nu at for hver trekant er der en knude i kredsen, og en spids. Derfor er n =

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.

Læs mere

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 2

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 2 DM502 Forelæsning 2 Repetition Kompilere og køre Java program javac HelloWorld.java java HeloWorld.java Debugge Java program javac -g HelloWorld.java jswat Det basale Java program public class HelloWorld

Læs mere

17 Søgning og Søgetræer.

17 Søgning og Søgetræer. 17 Søgning og Søgetræer. Lineær og inær søgning i lister. inære søgetræer. Søgning efter knude i træ. Indsættelse af knude i træ. Søgning i og sortering af inært søgetræ. Sletning af knude i inært søgetræ.

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet

Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet Side af 1 sider Skriftlig Eksamen Algoritmer og Datastrukturer 1 Datalogisk Institut Aarhus Universitet Dette eksamenssæt består af en kombination af små skriftlige opgaver og multiplechoice-opgaver. Opgaverne

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4 Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende

Læs mere

Sortering i lineær tid

Sortering i lineær tid Sortering i lineær tid Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel. Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel.

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Ja! det beviste vi uge 16+17

Ja! det beviste vi uge 16+17 Ugens emner Lukketheds- og afgørlighedsegenskaber [5.3-5.5] lukkethed under,,,, * lukkethed under homomorfi og invers homomorfi pumping -lemmaet beslutningsproblemer: membership, emptiness, finiteness

Læs mere