Danmarks Tekniske Universitet
|
|
- Lasse Brøgger
- 1 år siden
- Visninger:
Transkript
1 Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det er ikke tilladt at medbringe lommeregner. Varighed: 4 timer. Vægtning: Opgave - 27 %, Opgave 2-2 %, Opgave 3-2 %, Opgave 4-5 %, Opgave 5-25 %. Vægtning er kun approksimativ. Karakteren gives ud fra en helhedsvurdering. Alle opgaver besvares ved at udfylde de indrettede felter nedenfor. Som opgavebesvarelse afleveres blot denne og de efterfølgende sider i udfyldt stand. Hvis der opstår pladsmangel kan man eventuelt benytte ekstra papir som så vedlægges opgavebesvarelsen. Asymptotiske grænser skal angives så tætte som muligt. Medmindre andet er angivet er basen på alle logaritmer 2 og log k n betegner (log n) k.
2 Eksamen 0205, Forår 205 side 2 af 5 Kompleksitet. (6 %) Angiv for hver af nedenstående udsagn om de er korrekte: 0, 00n + log n = (n) 2 n + n 4 = O(n 4 ) 3 log3 n + n = (n) 5 p n + log 2 n = O( p n) (2n + 6n + 09n 2 )n 3 = (n 6 ) Ja Nej.2 (6 %) Arranger følgende funktioner i voksende rækkefølge efter asymptotisk vækst. Dvs. hvis funktionen g(n) følger umiddelbart efter funktionen f (n) i din liste skal der gælde at f (n)=o(g(n)). n 0.4 /2 log n 2 4 log n 2 log4 n 0, n log n.3 (5 %) Angiv køretiden for nedenstående algoritme. Skriv dit svar i O-notation som funktion af n. Algoritme Alg(n) : for i = to n do 2: j = 3: while j apple n do 4: j = j + 2 5: end while 6: end for 2
3 Eksamen 0205, Forår 205 side 3 af 5.4 (5 %) Angiv køretiden for nedenstående algoritme. Skriv dit svar i O-notation som funktion af n. Algoritme 2 Alg2(n) : for i = to n do 2: i = i + 3: end for 4: j = 5: while j apple n do 6: j = j + 7: end while.5 (5 %) Angiv køretiden for nedenstående algoritme. Skriv dit svar i O-notation som funktion af n. Algoritme 3 Alg3(n) : for i = to n do 2: j = i 3: while j apple n do 4: j = j 3 5: end while 6: end for 3
4 Eksamen 0205, Forår 205 side 4 af 5 2 Datastrukturer Betragt følgende skov af træer, der repræsenterer en familie af mængder i en datastruktur til foren og find (4 %) Angiv resultaterne af følgende FIND( ) operationer. FIND(5) : FIND(6) : FIND(7) : FIND(2) : 2.2 (4 %) Tegn hvordan ovenstående skov af træer ser ud efter operationen UNION(4, 9) når der anvendes vægtet forening. Antag at UNION(i, j) altid sætter roden af træet angivet ved i til at være barn af roden af træet angivet ved j når træerne har samme størrelse. 4
5 Eksamen 0205, Forår 205 side 5 af (4 %) Vis resultat af stikompression efter en FIND(3) operation på nedenstående træ
6 Eksamen 0205, Forår 205 side 6 af 5 Betragt følgende binære søgetræ (3 %) Angiv rækkefølgen af knuderne i et preorder, postorder og inorder gennemløb af ovenstående binære søgetræ. PREORDER : POSTORDER : INORDER : 2.5 (2 %) Angiv hvordan det ovenstående ovenstående binære søgetræ ser ud efter indsættelse af en knude med nøgle 9. 6
7 Eksamen 0205, Forår 205 side 7 af (4 %) Vi vil gerne understøtte operationen MEMBER(x) på hver af de nedenstående fire datastrukturer. MEMBER(x) returnerer ja hvis værdien x er i datastrukturen og nej ellers. F. eks. hvis datastrukturen indeholder elementerne {32, 6, 8, 7, 2} returnerer MEMBER(6) ja og MEMBER(4) nej. Angiv for hver af datastrukturerne hvor lang tid det vil tage at udføre MEMBER(x) operationen i O-notation som funktion af n, hvor n er antallet af elementer i datastrukturen. Tabel sorteret i stigende rækkefølge: Max-hob: Min-hob: Usorteret tabel: Binært søgetræ: 7
8 Eksamen 0205, Forår 205 side 8 af 5 3 Grafer Betragt følgende graf G (4 %) Angiv et DFS træ for G med start i knude 6 og angiv starttid og sluttid for alle knuder. Antag at incidenslisterne er sorteret (4 %) Angiv et BFS træ for G med start i knude 6 og angiv BFS-lag for hver knude. Antag at incidenslisterne er sorteret
9 Eksamen 0205, Forår 205 side 9 af (4 %) Betragt nedenstående graf H. Angiv et mindste udspændende træ T for H samt den samlede vægt af T Samlet værdi: 9
10 Eksamen 0205, Forår 205 side 0 af 5 4 Træer Denne opgave omhandler rodfæstede binære træer. Enhver knude x har felterne x.parent, x.left og x.right, der betegner hhv. forældre, det venstre barn og det højre barn for x. For roden r, er r.parent = null. Derudover har enhver knude x en vægt betegnet ved et felt x.weight. 4. ( %) Lad x være en knude i træet. Stisummen for x er summen af vægtene af alle knuder på stien fra x til roden af træet (inklusive x og r). Træsummen for x er summen af vægtene af alle efterkommere af x (inklusive x selv). Betragt nedenstående træ med vægte skrevet i hver knude. Angiv stisum og træsum for knuden v v Stisum for v : Træsum for v : 4.2 (6 %) Giv en rekursiv algoritme TRÆSUM(X), der givet en knude x returnerer træsummen for x. Skriv din algoritme i pseudokode og analyser køretiden af din algoritme som funktion af n, hvor n er antallet af knuder i træet. 0
11 Eksamen 0205, Forår 205 side af (8 %) Giv en algoritme STISUM(X), der givet en knude x returnerer stisummen for x. Skriv din algoritme i pseudokode og analyser køretiden af din algoritme som funktion af d, hvor d er dybden af træet.
12 Eksamen 0205, Forår 205 side 2 af 5 5 Plantegning Et plantegning består af en mængde af R rum r 0,.., r R og D døre d 0,.., d D, der hver forbinder præcis to rum. Hvert rum er en geometrisk figur og en dør mellem to rum er angivet ved tre små fede streger mellem rummene. F. eks. består nedenstående plantegning P af rum og 2 døre. 5. (2 %) Beskriv hvordan man kan modellere en plantegning som en graf. 5.2 (2 %) Tegn grafen svarende til plantegningen P i eksemplet ovenfor. 2
13 Eksamen 0205, Forår 205 side 3 af (5 %) Vi er nu interesserede i at undersøge om det er muligt at evakuere rummene i tilfælde af en brand. Entréen er et særligt rum på plantegningen. En branddør er en dør, der automatisk lukker i tilfælde af brand. Et rum kan evakueres til entréen hvis der er en forbindelse fra rummet til entreen, der ikke benytter branddøre. Giv en algoritme, der givet en plantegning, en entré e og en mængde B af k branddøre, afgør om alle rum kan evakueres til e. Analyser køretiden af din algoritme som funktion af R, D, og k. 3
14 Eksamen 0205, Forår 205 side 4 af (8 %) Til enhver dør d knytter vi nu et sikkerhedsniveau, sikkerhed(d), som er et positivt heltal. For at benytte en dør d kræves der at man har sikkerhedsniveau mindst sikkerhed(d). Giv en algoritme, der givet en plantegning og to rum r og r 2 finder det minimale sikkerhedsniveau der kræves for at kunne komme fra r til r 2. Analyser køretiden af din algoritme som funktion af R og D. 4
15 Eksamen 0205, Forår 205 side 5 af 5 Vi er nu interessede i at udstille kunst i form af enten en skulptur eller et maleri i alle rum på en behagelig facon. En rute i plantegning er en sekvens af rum r 0,...,r z således at rum r i og r i er forbundet af en dør, og r 0 = r z. Et rum må gerne besøges mange gange på ruten. En rute er smuk hvis der i hvert rum på ruten skiftevis er udstillet en skulptur eller et maleri. 5.5 (2 %) Kig på eksemplet med plantegningen P fra før. Er muligt at udstille en skulptur eller et maleri i hvert rum således at alle ruter der starter og slutter i rummet længst til venstre er smukke? Ja Nej 5.6 (6 %) Giv en algoritme, der givet en plantegning og en entré e, afgør om alle ruter der starter og slutter i e er smukke. Vi antager at der er en rute fra e til alle rum. Analyser køretiden af din algoritme som funktion af R og D. 5
Danmarks Tekniske Universitet
Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det
Danmarks Tekniske Universitet
Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:
Danmarks Tekniske Universitet
side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave
Danmarks Tekniske Universitet
side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:
Danmarks Tekniske Universitet
side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning
Danmarks Tekniske Universitet
side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning
Danmarks Tekniske Universitet
side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:
Danmarks Tekniske Universitet
ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer
Danmarks Tekniske Universitet
side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe
Danmarks Tekniske Universitet
side af 2 sider anmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 02326. Varighed: 4 timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.
Danmarks Tekniske Universitet
Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.
Danmarks Tekniske Universitet
side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.
Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012
Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk
Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)
Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)
Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo
Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):
Danmarks Tekniske Universitet
Eksamen 005, F09 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 009. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.
Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet. Mandag den 22. marts 2004, kl
Skriftlig Eksamen Algoritmer og Datastrukturer 1 Datalogisk Institut Aarhus Universitet Mandag den. marts 00, kl..00 11.00 Navn Gerth Stølting Brodal Årskort 1 Dette eksamenssæt består af en kombination
Danmarks Tekniske Universitet
ksamen 036, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 036. Varighed: timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.
Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo
Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.
Danmarks Tekniske Universitet
ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe
DATALOGISK INSTITUT, AARHUS UNIVERSITET
DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer 1 (003-ordning) Antal sider i opgavesættet (incl. forsiden): 10 (ti)
Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille
Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor
Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er
Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er en unik simpel vej mellem ethvert par af punkter i
Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)
Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)
Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4
Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende
DATALOGISK INSTITUT, AARHUS UNIVERSITET
DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 1. april 200, kl..00-11.00
Prioritetskøer og hobe. Philip Bille
Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af
Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille
Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer
Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n
Eksamen. kvarter 00 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) Ja Nej n er O(n )? n er O(n )? n er O(n + 0 n)? n + n er O(n )? n log n er Ω(n )? Opgave (%) Opskriv følgende funktioner
INSTITUT FOR DATALOGI, AARHUS UNIVERSITET
INSTITUT FOR DTOI, RUS UNIVERSITET Science and Technology ESEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. juni 0, kl. 9.00-.00
Skriftlig Eksamen DM507 Algoritmer og Datastrukturer
Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se
Skriftlig Eksamen Algoritmer og Datastrukturer (dads)
Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =
INSTITUT FOR DATALOGI, AARHUS UNIVERSITET
INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): 11 (elleve) Eksamensdag: Torsdag den 1. juni 01,
DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi
DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tretten) Eksamensdag: Tirsdag den 8. april 2008,
DATALOGISK INSTITUT, AARHUS UNIVERSITET
DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 25. juni 200, kl. 9.00-.00
DATALOGISK INSTITUT, AARHUS UNIVERSITET
DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 24. juni 2011, kl.
DATALOGISK INSTITUT, AARHUS UNIVERSITET
DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag:
Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.
Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for
Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.
Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening
DATALOGISK INSTITUT, AARHUS UNIVERSITET
DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 5 (fem) Eksamensdag: Fredag den 10. august 007, kl.
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således
Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.
Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening
Sammenhængskomponenter i grafer
Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv
Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion
Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af
DATALOGISK INSTITUT, AARHUS UNIVERSITET
DTLOS NSTTUT, RUS UNVERSTET Det Naturvidenskabelige akultet ESMEN rundkurser i Datalogi ntal sider i opgavesættet (incl. forsiden): 7 (syv) Eksamensdag: Torsdag den 14. juni 007, kl. 9.00-1.00 Eksamenslokale:
Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.
Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for
Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )?
Eksamen juni Algoritmer og Datastrukturer (-ordning) Side af sider Opgave (%) I det følgende angiver log n -tals-logaritmen af n. n+n er O(n)? n 6 er O(n )? nlogn er O(n /logn)? n er O(n )? n er O(n )?
22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned.
22 Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. Indsættelse i hobe. Sletning af minimalt element i hobe. Repræsentation. 327
INSTITUT FOR DATALOGI, AARHUS UNIVERSITET
INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSMEN ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Mandag den. august 07, kl. 9.00-.00 Tilladte medbragte hjælpemidler:
Datastrukturer (recap)
Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang
Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion
Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af
Mindste udspændende træ
Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation
Sortering. Eksempel: De n tal i sorteret orden
Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden
Datastrukturer (recap)
Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang
Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:
Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus
Sortering. Eksempel: De n tal i sorteret orden
Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden
Sortering af information er en fundamental og central opgave.
Sortering Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2010 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 24. april, 2010 (let justeret 10. maj og 21. maj 2010) Dette projekt udleveres i tre
1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer
1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer på disse. Typer af lister: Array Enkelt linket liste Dobbelt linket Cirkulære lister Typer af køer: FILO FIFO
Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid
Philip Bille Mål. At bestemme og forudsige resourceforbrug og korrekthed af algoritmer Eks. Virker min algoritme til at beregne korteste veje i grafer? Hvor hurtigt kører min algoritme til at søge efter
Algoritmisk geometri
Algoritmisk geometri 1 Intervalsøgning 2 Motivation for intervaltræer Lad der være givet en database over ansatte i en virksomhed Ansat Alder Løn Ansættelsesdato post i databasen Antag, at vi ønsker at
Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk
Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9
Minimum udspændende Træer (MST)
Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træer
Divide-and-Conquer algoritmer
Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer
Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Algoritmer på træer og trægennemløb.
Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Algoritmer på træer og trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse
Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 5. 5n 2 5 logn. 2 logn
Eksamen august 0 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) n +n er O(n )? Ja Nej n er O(n )? n+n er O(n. )? n+n er O(8n)? n logn er O(n )? Opgave (%) Opskriv følgende funktioner
Grafer og graf-gennemløb
Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).
Grafer og graf-gennemløb
Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således
Grafer og graf-gennemløb
Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).
Analyse af algoritmer
Analyse af algoritmer Analyse af algoritmer Køretid Pladsforbrug Asymptotisk notation O, Θ og Ω-notation. Eksperimentiel analyse af algoritmer Philip Bille Analyse af algoritmer Analyse af algoritmer Køretid
Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.
Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk
INSTITUT FOR DATALOGI, AARHUS UNIVERSITET
NSTTUT OR TO, RUS UNVRSTT Science and Technology SN lgoritmer og atastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): 11 (elleve) ksamensdag: redag den 1. august 015, kl. 9.00-.00 Tilladte
Grafer og graf-gennemløb
Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).
Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer
Philip Bille Orienteret graf. Mængde af knuder forbundet parvis med orienterede kanter. deg + (7) =, deg - (7) = Lemma. v V deg - (v) = v V deg + (v) = m. Bevis. Hver kant har netop en startknude og slutknude.
Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.
Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.
INSTITUT FOR DATALOGI, AARHUS UNIVERSITET
INSTITUT FOR ATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Algoritmer og atastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. august 0,
DM02 Kogt ned. Kokken. Januar 2006
DM02 Kogt ned Kokken Januar 2006 1 INDHOLD Indhold 1 Asymptotisk notation 2 2 Algoritme analyse 2 3 Sorterings algoritmer 2 4 Basale datastrukturer 3 5 Grafer 5 6 Letteste udspændende træer 7 7 Disjunkte
INSTITUT FOR DATALOGI, AARHUS UNIVERSITET
STTUT R T, RUS UVRSTT Science and Technology S lgoritmer og atastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) ksamensdag: Tirsdag den. august 0, kl. 9.00-.00 Tilladte medbragte
Divide-and-Conquer algoritmer
Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer
Skriftlig eksamen i Datalogi
Roskilde Universitetscenter Skriftlig eksamen i Datalogi Modul 1 Vinter 1998/99 Opgavesættet består af 5 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 16% Opgave 2 12% Opgave 3 10% Opgave
Skriftlig Eksamen Algoritmer og sandsynlighed (DM538)
Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Institut for Matematik & Datalogi Syddansk Universitet Fredag den 9 Januar 2015, kl. 10 14 Alle sædvanlige hjælpemidler(lærebøger, notater etc.) samt
Reeksamen i Diskret Matematik
Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet Torsdag den 9. august, 202. Kl. 9-3. Nærværende eksamenssæt består af 9 nummererede sider med ialt 2 opgaver.
Eksempel på muligt eksamenssæt i Diskret Matematik
Eksempel på muligt eksamenssæt i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet???dag den?.????, 20??. Kl. 9-13. Nærværende eksamenssæt består af 13 nummererede sider med
Sortering i lineær tid
Sortering i lineær tid Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel. Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel.
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2015 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 3. marts, 2015 Dette projekt udleveres i to dele. Hver del har sin deadline, således
Dynamisk programmering. Flere eksempler
Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld
Grundlæggende køretidsanalyse af algoritmer
Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers
Geometrisk skæring. Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter
Planfejning 1 Skæring 2 Geometrisk skæring Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter Løsningsmetoder: Rå kraft Planfejning (eng. plane sweep)
Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt.
Merging og hashing Mål Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Dette emne er et uddrag af kurset DM507 Algoritmer og datastrukturer
Dynamisk programmering
Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer
Symmetrisk Traveling Salesman Problemet
Symmetrisk Traveling Salesman Problemet Videregående Algoritmik, Blok 2 2008/2009, Projektopgave 2 Bjørn Petersen 9. december 2008 Dette er den anden af to projektopgaver på kurset Videregående Algoritmik,
Dynamisk programmering
Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde
Om binære søgetræer i Java
Om binære søgetræer i Java Mads Rosendahl 7. november 2002 Resumé En fix måde at gemme data på er i en træstruktur. Måden er nyttig hvis man får noget data ind og man gerne vil have at det gemt i en sorteret
Reeksamen i Diskret Matematik
Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 21. august 2015 Nærværende eksamenssæt består af 10 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:
16 Træer. Noter. Definition af et træ. Definitioner i tilknytning til træer. Repræsentation af træer. Binære træer. Den abstrakte datatype.
16 Træer. Definition af et træ. Definitioner i tilknytning til træer. Repræsentation af træer. Binære træer. Den abstrakte datatype. Gennemløb af binære træer. Træer i Eiffel. 229 Definition af et træ.
Dynamisk programmering. Flere eksempler
Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z},
DM507 - Algoritmer og datastrukturer
- Algoritmer og datastrukturer Køretid g(n) Udtryk Beskrivelse lim n f(n) o(f) Vokser langsommere end f = 0 O(f) Vokser højst så hurtigt som f < Θ(f) Vokser som f = c(c > 0) Ω(f) Vokser mindst så hurtigt
Videregående Algoritmik. Version med vejledende løsninger indsat!
Videregående Algoritmik DIKU, timers skriftlig eksamen, 1. april 009 Nils Andersen og Pawel Winter Alle hjælpemidler må benyttes, dog ikke lommeregner, computer eller mobiltelefon. Opgavesættet består
Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning
Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]