Modellering betyder at lave en matematisk model, der beskriver en praktisk situation. I det følgende arbejdes med lineære funktioner.

Størrelse: px
Starte visningen fra side:

Download "Modellering betyder at lave en matematisk model, der beskriver en praktisk situation. I det følgende arbejdes med lineære funktioner."

Transkript

1 Modellering Modellering betyder at lave en matematisk model, der beskriver en praktisk situation. I det følgende arbejdes med lineære funktioner. Der er forskellige trin, når der modelleres. De er beskrevet nedenfor. 1. Praktisk beskrivelse af en problemstilling 2. Skitse 3. Sildeben 4. Indretning af koordinatsystem (Udfyld hele papiret) 5. Tegning af grafer 6. Finde forskrifter for funktionerne 7. Beregne skæringspunkter (break even) 8. Konkludere Værktøjskasse Spørgsmål: a) Hvornår er tilbudene lige dyre? b) Hvornår er tilbud 1 billigst? c) Hvornår er tilbud 2 billigst? d) Hvornår er der P kr i forskel på de to tilbud e) O.s.v. y = ax + b, Ligningen for den rette linie ( y2 y1) a a er hældningskoefficienten. Pris pr. stk, Pris pr. km, Pris pr. minut, H ( x x ) 2 1 y a( x x y Bruges når man kender et punkt og hældningen a ) To ligninger med to ubekendte. Bruges til at beregne break even. Intervaller Bruges ved afgrænsning af stykkevis lineære funktioner Begrænsninger Når vi laver en matematisk model skal vi huske at den altid har sine begrænsninger. Man kan lave en model med to variable og så kan man bygge nogle ændringer ind. Så får vi stykkevis lineære funktioner eller gaffelfunktioner.

2 Eksempel 1. En forretning har følgende to tilbud, når der lejes en bil. Prisen er bl.a. afhængig af hvor mange km, der køres. Tilbud 1: Tilbud 2: 3 kr/ km 2 kr for de første 1 km. Derefter 5 kr pr. km. Gennemgå de syv trin 2. Skitse 3. Sildeben x Tilbud 1 y Tilbud 2 y Indretning af koordinatsystem (Udfyld hele papiret) Papiret lægges på denne måde: På x-aksen svarer 5 cm til 1 km. På y-aksen svarer 1 cm til 1 kr

3 pris 5. Tegning af grafer Sammenligning af tilbud y y km 6. Finde forskrifter for funktionerne Tilbud 1: y 3x, x Tilbud 2: 2, y 5x b, x 1 x 1 Beregning af b: y a( x x ) y a 5 og ( x, y ) 1,2) D.v.s. y 5( x 1 ) 2 y 5x 5 2 Heraf fås: y 5x 3 Tilbud 2: 2, y 5x 3, x 1 x 1

4 7. Beregne skæringspunkter (break even) Beregning af første skæringspunkt: 2 3x x 667 Beregning af andet skæringspunkt 5x 3 3x 2x 3 x Konkludere Tilbuddene er lige dyre når: x 667 x 15 Tilbud 1 er billigst når: x 667 x 15 Tilbud 2 er billigst når: 667 x 15

5 Eksempel 2. To mobilselskaber har følgende tilbud på betaling af mobiltelefoni. FONIA: GEMSIGT: 1 kr i fast abonnement og 1,5 kr pr. minut 5 kr i fast abonnement + 2,5 kr/ minut for de første 5 minutter. Ringer du længere tid skal du kun betale yderligere 5 øre pr. minut. Lav de syv trin med eksempel 2 2. Skitse 3. Sildeben Minutter x FONIA y 1 137, , ,5 325 GEMSIGT y 5 137, , ,5 275

6 pris i kr 4. Indretning af koordinatsystem 1 cm på x-aksen svarer til 1 minutter 1 cm på y-aksen svarer til 2 kr Papiret vendes sådan 5. Tegning af grafer FONIA OG GEMSIGT antal minutter y y

7 6. Finde forskrifter for funktionerne FONIA: y 1,5 x 1, x GEMSIGT: 3,5 x 5 y,5x b, x 5 x 5 Beregning af b: y a( x x ) y a,5 og ( x, y) (5,225) D.v.s. y,5( x 5 ) 225 y 5x Heraf fås: y,5x 2 GEMSIGT: 3,5x 5 y,5x 2, x 5 x 5 7. Beregne skæringspunkter (break even) Beregning af første skæringspunkt: 1,5 x 1 3,5x 5 5 2x x 25 Beregning af andet skæringspunkt 1,5 x 1,5x 2 x 1 9. Konkludere Tilbuddene er lige dyre når: x 25 x 1 FONIA er billigst når: 25 x 1 GEMSIGT er billigst når: x 25 x 1

8 Eksempel 3. Lise bor i Næstved og Lars bor i Roskilde. De må ikke komme sammen for deres forældre fordi Lars kommer fra Roskilde og Lise kommer fra Næstved. Det synes de er ufedt, så de beslutter at mødes under dække af en cykeltur. Lise cykler fra Næstved mod Roskilde og Lars cykler fra Roskilde mod Næstved. Der er 8 km mellem Roskilde og Næstved. Man kan også sige, at Roskilde ligger 8 km fra Næstved. Deres cykeltur foregår under dække af at Lars skal besøge en onkel i Næstved og Lise skal besøge en tante i Roskilde. Lars cykler det første stykke med en hastighed på 21 km/t og Lise cykler det første stykke med en hastighed på 27 km/t. Efter et stykke tid møder de hinanden og bruger 45 min på at kigge hinanden dybt i øjnene, sige romantisk ord og kysse en lillebitte smule. Derefter fortsætter de mod hver sin by og pga. af at de lige har oplevet et glimt af kærligheden stiger deres hastighed med 15% Svar med udgangspunkt i nogle af de syv trin på følgende spørgsmål: a) Hvor langt er de fra Næstved, da de mødes? b) Hvor langt er de fra Roskilde, da de mødes? c) Hvor lang tid går der før de mødes? d) Hvad er Lises hastighed efter mødet? e) Hvad er Lars` hastighed efter mødet? f) Hvor lang tid går der i alt før Lars møder onklen? g) Hvor lang tid går der i alt før Lise møder tanten? h) Hvor langt er de fra hinanden efter 2,5 timer? Her er det smart at bryde lidt op i systemet.

9 Vi starter med skitsen: Derefter er det smart at regne hastighederne om til km/min Ligningen for Lars`første stykke bliver: 21 y x 8 Ligningen for Lises første stykke bliver: y 27 x

10 Svaret på spørgsmål a,b og c kan findes ved at beregne skæringspunktet mellem de to linier: y x 8 y x x 8 x y x 21 8* x x y x 21x 48 27x y 48x y x x 1 27 y *1 x 1 27 y *1 x 1 27 y *1 x 1 y x a) De mødes 45 km fra Næstved b) De mødes 35 km fra Roskilde c) De mødes efter 1 min = 1 time og 4 min. d) Lars`hastighed efter mødet: 21*1,15 km/t = 24,15 km/t e) Lises hastighed efter mødet: 27*1,15 km/t = 31,5 km/t Nu skal vi finde de to ligninger for det sidste stykke: a 31,5 ( x, y ) (145,45) Lise: Da er 31,5 y ( x 145) 45 31,5 y x 3,375

11 a 24,15 ( x, y ) (145,45) Lars: Da er 24,5 y ( x 145) 45 24,15 y x 96,1125 f) Hvor lang tid går der før Lars møder onklen 24,15 x 96, ,15 96,1125 x 24,15 96,1125 x 96,1125* x 24,15 x 239 Der går 239 min = 3 timer og 59 min før Lars møder onklen i Næstved

12 g) Hvor lang tid går der før Lise møder tanten 31,5 8 x 3,375 31,5 8 3,375 x 31,5 11,375 x 11,375* x 31,5 x 213 Der går 213 min = 3 timer og 33 min før Lise møder tanten i Roskilde h) Hvor langt er de fra hinanden efter 2,5 timer 31,5 24,15 * 2,5* 3,375 2,5* 96, ,5* 2,5 3,375 24,15* 2,5 96, ,85 Heraf fås at de er 11,85 km fra hinanden

13 Eksempel 2. To mobilselskaber har følgende tilbud på betaling af mobiltelefoni.en forretning har følgende to tilbud, når der lejes en bil. Prisen er bl.a. afhængig af hvor mange km, der køres. FONIA: 1 kr i fast abonnement og 1,5 kr pr. minut GEMSIGT: 5 kr i fast abonnement + 2,5 kr/ minut for de første 5 minutter. Ringer du længere tid skal du kun betale yderligere 5 øre pr. minut. Eksempel 3. Lise bor i Næstved og Lars bor i Roskilde. De må ikke komme sammen for deres forældre fordi Lars kommer fra Roskilde og Lise kommer fra Næstved. Det synes de er ufedt, så de beslutter at mødes under dække af en cykeltur. Lise cykler fra Næstved mod Roskilde og Lars cykler fra Roskilde mod Næstved. Der er 8 km mellem Roskilde og Næstved. Man kan også sige, at Roskilde ligger 8 km fra Næstved. Deres cykeltur foregår under dække af at Lars skal besøge en onkel i Næstved og Lise skal besøge en tante i Roskilde. Lars cykler det første stykke med en hastighed på 21 km/t og Lise cykler det første stykke med en hastighed på 27 km/t. Efter et stykke tid møder de hinanden og bruger 45 min på at kigge hinanden dybt i øjnene, sige romantisk ord og kysse en lillebitte smule. Derefter fortsætter de mod hver sin by og pga. af at de lige har oplevet et glimt af kærligheden stiger deres hastighed med 15% Svar med udgangspunkt i nogle af de syv trin på følgende spørgsmål: a) Hvor langt er de fra Næstved, da de mødes? b) Hvor langt er de fra Roskilde, da de mødes? c) Hvor lang tid går der før de mødes? d) Hvad er Lises hastighed efter mødet? e) Hvad er Lars` hastighed efter mødet? f) Hvor lang tid går der i alt før Lars møder onklen? g) Hvor lang tid går der i alt før Lise møder tanten? h) Hvor langt er de fra hinanden efter 2,5 timer? GODT RÅD: Lad hastigheden være i km/min.

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

FUNKTIONER. Eks. hvis man sætter 3 ind på x s plads bliver værdien 2*3 + 5 = 11. Sætter man 4 ind på x s plads vil værdien blive 2*4 + 5 = 13

FUNKTIONER. Eks. hvis man sætter 3 ind på x s plads bliver værdien 2*3 + 5 = 11. Sætter man 4 ind på x s plads vil værdien blive 2*4 + 5 = 13 En funktion beskriver, hvordan en afhængig variabel afhænger af en uafhængig variabel. Læringsmål Forstå koordinatsystemet Vide hvad 1. og 2. aksen er Vide at x er 1. akse og y er 2. akse Forståelsen for

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner koordinatsystemer Brug af grafer koordinatsystemer Lineære funktioner Andre funktioner ligninger med ubekendte Lavet af Niels Jørgen Andreasen, VUC Århus. Redigeret af Hans Pihl, KVUC

Læs mere

Funktioner. Funktioner Side 150

Funktioner. Funktioner Side 150 Funktioner Brug af grafer koordinatsystemer... 151 Lineære funktioner ligefrem proportionalitet... 157 Andre funktioner... 163 Kært barn har mange navne... 165 Funktioner Side 15 Brug af grafer koordinatsystemer

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Sammenhæng mellem variable

Sammenhæng mellem variable Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2013 Institution IBC Fredericia Middelfart afd. Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 10/11 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik B Hasse Rasmussen

Læs mere

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Træningsopgaver 1 Indhold Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Ligninger Opgave L0) Opgave L1) Opgave L2) a) 2x 5 5x 7 b) 3x 7 3x 11 c) 3 (2x 3) 2( x 1) d) En funktion

Læs mere

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder.

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder. Parabler En funktion med grundformlen y = ax 2 + bx + c kaldes en andengradsfunktion. Det grafiske billede af en andengradsfunktion er altid en parabel. 1. Hvis a = 0, er det ikke en andengradsfunktion.

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 12/13 Institution International Business College Fredericia-Middelfart Uddannelse Fag og niveau

Læs mere

Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011 maj 2013 Institution Uddannelse Fag og niveau Lærer(e) Hold ZBC Ringsted Hhx Matematik C Stig

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012/2013

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4 Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat

Læs mere

sammenhänge for C-niveau i stx 2013 Karsten Juul

sammenhänge for C-niveau i stx 2013 Karsten Juul LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem

Læs mere

Løsningsforslag MatB Jan 2011

Løsningsforslag MatB Jan 2011 Løsningsforslag MatB Jan 2011 Opgave 1 (5 %) Funktionen f er givet ved forskriften f (x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). Løsning: a) f (x) = ln(x 2) + x 2 Da den naturlige

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Ann Risvang

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 14/15 IBC-Fredericia

Læs mere

Når eleverne skal opdage betydningen af koefficienterne i udtrykket:

Når eleverne skal opdage betydningen af koefficienterne i udtrykket: Den rette linje og parablen GeoGebra er tænkt som et dynamisk geometriprogram, som både kan anvendes til euklidisk og analytisk geometri Eksempel Tegn linjen med ligningen: Indtast ligningen i Input-feltet.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2016 Institution Videndjurs - Handelsgymnasium Grenaa Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Michael Jokil 11-05-2012

Michael Jokil 11-05-2012 HTX, RTG Det skrå kast Informationsteknologi B Michael Jokil 11-05-2012 Indholdsfortegnelse Indledning... 3 Teori... 3 Kravspecifikationer... 4 Design... 4 Funktionalitet... 4 Brugerflade... 4 Implementering...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 2014 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat8 Noter: Kompetencemål efter 9. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015/16 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Anden del af kapitlet fokuserer på rentebegrebet. I læseplanen fra Fælles Mål 2009 står der direkte, at eleverne skal arbejde med

Anden del af kapitlet fokuserer på rentebegrebet. I læseplanen fra Fælles Mål 2009 står der direkte, at eleverne skal arbejde med Af læseplanen for 7.-9. klassetrin fremgår det, at beskrivelse af lineære og ikke-lineære sammenhænge indgår i arbejdet med funktionsbegrebet. Det er ligeledes fremhævet, at arbejdet med funktionsbegrebet

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 1 Introduktion... side 3 2 Grundlæggende færdigheder... side 4 2a Finde konstanterne a og b i en formel... side

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013 Maj-juni, 13. Denne plan dækker efteråret 2012 og foråret 2013. Institution Uddannelse Fag og niveau

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 08/09 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Sanne Schyum

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj Juni 2011 Roskilde

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2016/17 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

GUX. Matematik. B-Niveau. August 2015. Kl. 9.00-13.00. Prøveform b GUX152 - MAB

GUX. Matematik. B-Niveau. August 2015. Kl. 9.00-13.00. Prøveform b GUX152 - MAB GUX Matematik B-Niveau August 2015 Kl. 9.00-13.00 Prøveform b GUX152 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Undersøgelse af funktioner i GeoGebra

Undersøgelse af funktioner i GeoGebra Undersøgelse af funktioner i GeoGebra GeoGebra er tænkt som et dynamisk geometriprogram, men det kan også anvendes til undersøgelser og opdagelser omkring funktioner. Eksempel Tegn linjen med ligningen:

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014 Brobygningsopgaver Den foreliggende opgavesamling består af opgaver fra folkeskolens afgangsprøver samt opgaver på gymnasieniveau baseret på de samme afgangsprøveopgaver. Det er hensigten med opgavesamlingen,

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

lineær regression er en metode man bruger for at finde den mindste afstand mellem bestemte punkter ved at bruge denne formel: a= n i=1 i=1

lineær regression er en metode man bruger for at finde den mindste afstand mellem bestemte punkter ved at bruge denne formel: a= n i=1 i=1 Linær regression lineær regression er en metode man bruger for at finde den mindste afstand mellem bestemte punkter ved at bruge denne formel: a= (Xi Yi) n * Xi 2 n * x 2 x * y Figur 1. Nu vil vi løse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2016

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2016 Brobygningsopgaver Den foreliggende opgavesamling består af opgaver fra folkeskolens afgangsprøver samt opgaver på gymnasieniveau baseret på de samme afgangsprøveopgaver. Det er hensigten med opgavesamlingen,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2010. Denne beskrivelse dækker efteråret 2011 og foråret 2012. Institution Roskilde Handelsskole

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Mål Kompetencer Matematiske arbejdsmåder. Problembehandling. Ræsonnement

Mål Kompetencer Matematiske arbejdsmåder. Problembehandling. Ræsonnement Forslag til årsplan for 9. klasse, matematik Udarbejdet af Susanne Nielson og Pernille Peiter revideret august 2011 af pædagogisk konsulent Rikke Teglskov 33-38 Rumgeometri Kende og anvende forskellige

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Differentialregning. Et oplæg Karsten Juul L P

Differentialregning. Et oplæg Karsten Juul L P Differentialregning Et oplæg L P A 2009 Karsten Juul Til eleven Dette hæfte kan I bruge inden I starter på differentialregningen i lærebogen Det meste af hæftet er små spørgsmål med korte svar Spørgsmålene

Læs mere

4 Funktioner. Faglige mål. Lineære sammenhænge. Forskrifter og grafer. Den rette linjes ligning

4 Funktioner. Faglige mål. Lineære sammenhænge. Forskrifter og grafer. Den rette linjes ligning 4 Funktioner Faglige mål Kapitlet Funktioner tager udgangspunkt i følgende faglige mål: Lineære sammenhænge: vide hvad der kendetegner lineære sammenhænge samt kende de forskellige repræsentationsformer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2011 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Trine Rasmussen

Læs mere

Løsning til aflevering uge 11

Løsning til aflevering uge 11 Løsning til aflevering uge 11 100011/nm Opg.1 Beregninger på Foucaults pendul. Først en skitse A B c l a b l d C l c l E h d D 0.m Vandrette udsving a m a) Længden af pendulet kan beregnes ved at isolere

Læs mere

Matematik Aflevering - Æggebæger

Matematik Aflevering - Æggebæger Matematik Aflevering - Æggebæger Lavet af Morten Kvist i samarbejde med Benjamin Afleveret d. 17/3-2006 Afleveret til Kristine Htx 3.2 Side 1 af 6 Opgave 1 Delopgave A Først har jeg de to logaritme funktioner,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007 07-0-6-U Matematik Niveau B Delprøven uden hjælpemidler Prøvens varighed: 1 time Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen

Læs mere

fs10 1 Rejsen til New York 2 Fra fahrenheit til celsius 3 Højde og vægt 4 Sukkerroer 5 Afstand til en båd 6 Regulær ottekant Matematik

fs10 1 Rejsen til New York 2 Fra fahrenheit til celsius 3 Højde og vægt 4 Sukkerroer 5 Afstand til en båd 6 Regulær ottekant Matematik fs10 10.-klasseprøven Matematik December 2012 Et svarark er vedlagt som bilag til dette opgavesæt 1 Rejsen til New York 2 Fra fahrenheit til celsius 3 Højde og vægt 4 Sukkerroer 5 Afstand til en båd 6

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Institution Uddannelse Fag og niveau Lærer Hold IBC Aabenraa HHX Matematik C Lars Erik Henriksen 1HHI 1 Funktioner og polynomier a) Lave en grafisk funktionsanalyse. 1. Definitionsmængde.

Læs mere

Hvor hurtigt kan du køre?

Hvor hurtigt kan du køre? Fart Hvor hurtigt kan du køre? I skal nu lave beregninger over jeres testresultater. I skal bruge jeres testark og ternet papir. Mine resultater Du skal beregne gennemsnittet af dine egne tider. Hvilket

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2017 Institution Silkeborg Business College - handelsgymnasiet Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Spørgsmål Nr. 1. Spørgsmål Nr. 2

Spørgsmål Nr. 1. Spørgsmål Nr. 2 Spørgsmål Nr. 1 TITEL: Statistik Definition af beskrivende statistik Opdeling af beskrivende statistik i grupperede observationer og ikke grupperede observationer Deskriptorerne typetal og middelværdi

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj Matematik Niveau A

Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj Matematik Niveau A Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj 2006 06-0-1 Matematik Niveau A Dette opgavesæt består af 7 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

1gma_tændstikopgave.docx

1gma_tændstikopgave.docx ulbh 1gma_tændstikopgave.docx En lille simpel opgave med tændstikker Læg 10 tændstikker op på en række som vist Du skal nu danne 5 krydser med de 10 tændstikker, men du skal overholde 3 regler: 1) når

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 09/10 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jarl Mølgaard

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2010 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik C Mette Engelbrecht

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj Juni 2011 Roskilde

Læs mere

grafer og funktioner trin 2 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 2 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 2 ISBN: 978-87-92488-12-1 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2017 HANSENBERG

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2012. Institution ZBC Næstved. Uddannelse Hhx. Fag og niveau Matematik C. Lærer(e) Hold Lars Westermann

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Rumfang af væske i beholder

Rumfang af væske i beholder Matematikprojekt Rumfang af væske i beholder Maila Walmod, 1.3 HTX Roskilde Afleveringsdato: Fredag d. 7. december 2007 1 Fru Hansen skal have en væskebeholder, hvor rumfanget af væsken skal kunne aflæses

Læs mere

vækst trin 2 brikkerne til regning & matematik preben bernitt

vækst trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik vækst trin 2 preben bernitt brikkerne til regning & matematik vækst, trin 2 ISBN: 978-87-92488-05-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er kun tilladt

Læs mere