University of Copenhagen. Et mysterium om tal - og japanske lektionsstudier Winsløw, Carl. Published in: MONA: Matematik og Naturfagsdidaktik

Størrelse: px
Starte visningen fra side:

Download "University of Copenhagen. Et mysterium om tal - og japanske lektionsstudier Winsløw, Carl. Published in: MONA: Matematik og Naturfagsdidaktik"

Transkript

1 university of copenhagen University of Copenhagen Et mysterium om tal - og japanske lektionsstudier Winsløw, Carl Published in: MONA: Matematik og Naturfagsdidaktik Publication date: 2009 Document Version Tidlig version også kaldet pre-print Citation for published version (APA): Winsløw, C. (2009). Et mysterium om tal - og japanske lektionsstudier. MONA: Matematik og Naturfagsdidaktik, 1, Download date: 02. Jan. 2017

2 Et mysterium om tal og japanske lektionsstudier Carl Winsløw, Inst. for Naturfagenes Didaktik, Københavns Universitet 1. Appetitvækker: Et mysterium om tal I de norske fjelde finder raske bjergbestigere en dag et forladt rumskib fra en fremmed planet. På rumskibets sider er indgraveret to mystiske budskaber, som ingen rigtig kan forstå. De ser ud som på figur 1. Figur 1: Symbolstrenge fra det ydre rum. Selvom det ser mystisk ud, virker det som der er en slags system i de to symbolrækker; fx indeholder den første række symbolet i hver anden række. Kunne det have noget at gøre med tal? Faktisk er det jo en næsten instinktiv reaktion hos os at nummerere ting, og det virker jo som om at der er tale om en række sammensatte tegn i hver række. Nummerer man den første række (som på figur 2), så er der måske flere ting der springer i øjnene, i det mindste hvis øjnene er lidt matematiktrænede. Figur 2: Første symbolrække nummereret. Fx kunne man lægge mærke til, at søjlerne med kun ét symbol er nummereret 1, 2, 3, 5, 7, 11, 13; altså netop de tal, som ikke har ægte divisorer. Med andre ord, de er primtal, bortset fra tallet 1, men det er mere en praktisk konvention at det normalt ikke regnes som primtal. Man kunne også lægge mærke til, at de øvrige søjler alle er sammensat af symbolerne fra disse specielle søjler; fx er søjle 4 sammensat af to gange (symbolet som står alene i søjle 2). Og som allerede nævnt genfinder vi symbolet i hver anden søjle, svarende til de lige tal (på norsk: partallene). De lige tal er jo netop de tal, som 2 går op i; når der så i 4. søjle står der (på højkant), og i 8. søjle, så kunne det jo læses som hhv. 2 2 og Hypotesen bekræftes af de øvrige søjler, fx finder vi i søjle 14 symbolerne for 2 og 7, som altså kan læses 2 7. Forstået som matematisk meddelelse, udsiger symbolrækken dermed, at tallene i det mindste fra 1 til 16 enten ingen ægte divisorer har, eller også kan skrives som produkt af de foregående tal (uden ægte divisorer). De ekstraterrestriske forfattere af meddelelsen er med stor sandsynlighed matematikere! og de har formuleret deres version af flg. sætning, der udsiger noget helt grundlæggende om tallenes anatomi:

3 Aritmetikkens Fundamentalsætning. Ethvert naturligt tal kan på entydig måde skrives som et produkt af primtal. (Entydigheden gælder faktorerne i produktet, ikke deres orden). Dette nydelige talteoretiske resultat er meget vigtigt, og bruges i mange sammenhænge. Fx i forbindelse med kodning, der normalt bygger på, at det for store tal kan være særdeles vanskeligt at finde primtalsfaktorerne, selvom man altså ved, at de findes og er entydigt bestemt. På samme måde kan man analysere den anden række af symboler, og nå frem til et andet resultat om primtal, der dog er lidt anderledes, eftersom intet bevis kendes (Goldbachs formodning). Det overlades til læseren at formulere resultatet (svarende til anden symbolrække) og undersøge den historiske baggrund for den jordiske udgave! 2. En japansk superlektion Man kan måske spørge, hvad interesse nogen kan have i at stille så mærkelig en opgave som den, vi har diskuteret ovenfor. Hvorfor gemme et matematisk resultat i mystiske symboler under påskud af, at de er afsat af rumvæsener? Hvorfor ikke gå lige til sætning og bevis (hvis beviset altså findes)? Disse spørgsmål er på en grundlæggende måde didaktiske, for de drejer sig om hvordan et stykke matematik præsenteres, og det må selvfølgelig afhænge af hvem det præsenteres for. At matematik selv på en fundamental måde er et didaktisk fag, kan man se allerede i tidlige læreværker som Euklids elementer (der faktisk indeholder en teori om primtal): en god matematisk præsentation er en, der er udformet med stor sans for detaljen og klarheden, med henblik på at interessere og overbevise en bestemt målgruppe. Nu er der selvfølgelig fremstillinger af talteori, der som foreslået går direkte til sætningen og dens bevis Euklid, eller moderne lærebøger i talteori, kunne være eksempler på en sådan tilgang. Men de henvender sig jo også til en særlig målgruppe: andre matematikere, eller matematikstuderende. Svaret på spørgsmålet om en passende tilgang kunne tage sig anderledes ud, hvis målgruppen fx var børn i 4. klasse, der for første gang skal præsenteres for ideen om primtal og sammensatte tal. Ideen til ovst. opgave i det mindste den del, der vedrører den første symbolrække ( aritmetikkens fundamentalsætning, som vi lidt pompøst fortolkede den) kommer fra en matematik-lektion konstrueret af et lærerteam under ledelse af den japanske matematiklærer Kozo Tsubota. Og lektionen er netop beregnet for børn i 4. klasse. I Tsubotas lektion præsenteres opgaven dog lidt anderledes: i første omgang er symbolerne ikke givet som en lang række, men de er tegnet hver for sig på store gule kort, der er fastgjort med magneter til en tavle, hvor de er anbragt tilfældigt mellem hinanden. Desuden er kun de første 10 symboler taget med; og derudover er der to gule kort, som der ikke er tegnet noget på (se figur 3). Udfordringen for eleverne er nu givet dette virvar af symboler at finde ud af, hvad der skal stå på de to tomme kort. Det kan de selvfølgelig i første omgang kun gætte på; eleverne foreslår ivrigt forskellige symbolkombinationer, der ligner de 10 givne, men er forskellige fra dem (disse tegnes på tavlen). Det er en aktivitet, som eleverne i begyndelsen går ivrigt op i men det bliver hurtigt utilfredsstillende, at der blandt de forskellige forslag ikke rigtig kan opnås enighed om noget der er rigtigt eller blot mere rigtigt. Læreren foreslår nu, at for at afgøre, hvad der skal stå på de to blanke kort, må man have et system i de første 10 symbolkombinationer, og beder dem om at overveje dette. Nogle foreslår fx at ordne dem efter hvor mange enkeltsymboler der er på kortet; men det er stadig ikke rigtig nok til at finde systemet. Læreren siger så: Nu vil jeg vise jer min ordning af symbolerne, så kan I se om I kan finde systemet. Derefter ordner han symbolerne som

4 vist i forrige afsnit, som en række bestående af de 10 symbolkombinationer, nummereret fra 1 til 10. Og så udspiller afsløringen af systemet sig nogenlunde som i introduktionen (se figur 4). Herunder opstår den grundlæggende ide om primtal, nemlig de tal, som må skrives med et nyt symbol, fordi ingen af de foregående tal er divisorer. Og diskussionen af, hvordan de to blanke kort 11 og 12 kan skrives, er nu en god lejlighed til hhv. at fæstne denne ide (fordi der skal laves et nyt symbol til 11) og til at bruge princippet om faktorisering (12 = 2 2 3). Figur 3: Første "møde" med symbolkombinationerne (fra CRICED, 2006) Figur 4: Hovedfasen: der arbejdes med rækken af symbolkombinationer (ibid.) Et foreløbigt svar på, hvad interessen i den mærkelige opgave med symbolkombinationerne er, kunne altså være at børn i 4. klasse når den pakkes passende ind rent empirisk finder en interesse i den, og derved får en mulighed for at nærme sig begreberne primtal og faktorisering, der her udgør nøglen til at løse mysteriet. Det er vanskeligt at argumentere teoretisk for, at en sådan opgave i en given indpakning virker for en given målgruppe (om end det undertiden er muligt at give relevante teoretiske argumenter, se fx Winsløw, 2007). Det er i høj grad et empirisk spørgsmål om en given målgruppe kan have udbytte af en opgave. Den relevante dokumentation vedr. opgaven med de mystiske symboler (inkl. den netop beskrevne indpakning ) findes i en kommercielt tilgængelig videooptagelse af lektionen (CRICED, 2006). Videoen viser en japansk 4. klasse som arbejder med opgaven, og gennem de nævnte skridt løser den. Erfarne lærere vil også kunne forestille sig, at denne erfaring hos eleverne senere kan bruges i forbindelse med andre aktiviteter og opgaver vedr. primtal og faktorisering. 3. Didaktisk miljø og didaktisk situation Vi har ovenfor beskrevet en opgave i to forskellige indpakninger (meddelelse på rumskib og mystiske symboler på gule kort, der efter et stykke tids udforskning af læreren anbringes i rækkefølge). Eksemplet kan bruges til at illustrere to afgørende typer af valg, som skal foretages i forbindelse med en hvilken som helst undervisning i matematik: - der skal være en aktivitet (her, en opgave) for eleverne som har et matematisk indhold - aktiviteten skal organiseres på en måde der gør den tilgængelig for eleverne og giver dem mulighed for at få det ønskede udbytte af den (læring i en eller anden forstand). Vi bruger et par begreber fra teorien om didaktiske situationer (Brousseau, 1997, cf. også Winsløw, 2006, kap. 7) til at gøre diskussionen af disse to afgørende valg mere præcis: didaktisk situation og didaktisk miljø. Aktiviteten består i dette tilfælde af at finde ud af meningen med den tidligere omtalte række af symboler, og det matematiske indhold drejer sig om primtal og deres rolle som byggestene for de

5 naturlige tal. Det gælder om at eleverne udøver denne aktivitet, hvilket selvfølgelig ikke sker af sig selv. Der skal skabes en didaktisk situation som gør det muligt for dem ( didaktisk henviser her til arrangørens intention om at belære den, der anbringes i situationen). Helt konkret skal de præsenteres for symbolerne og problemstillingen, måske vha. fysiske objekter (de gule kort) mv.; og det gælder om at indrette alle disse forhold omkring elevernes arbejde sådan, at det er udfordrende uden at være (eller virke) umuligt. Forholdene omkring elevernes arbejde i den konkrete situation kaldes det didaktiske miljø. Det er de omgivelser der skal give den matematiske aktivitet næring og livsbetingelser samtidig med at der en vis modstand, der skal overvindes. Det er et kunstigt miljø, i den forstand at det er udtænkt og arrangeret af læreren mhp. at eleverne lærer noget matematik. Det er også ofte en pointe, at det, der skal læres, er gemt i det didaktiske miljø og at situationen er lagt til rette, så det bliver udfordrende og lærerigt at finde den gemte viden. I eksemplet udgør de mystiske symbolkombinationer kernen i det didaktiske miljø: det er i dem, at den tilsigtede viden er gemt, i den forstand at tolkningen af dem forudsætter et ræsonnement om primtal og faktorisering. Men symbolerne gør det ikke alene; også lærerens instruktioner udgør en væsentlig ramme om problemstillingen og dermed om elevernes aktivitet. Når disse instruktioner er givet, må læreren i det mindste i kortere perioder overlade eleverne til sig selv og spillet i det didaktiske miljø. Des mere velindrettet det didaktiske miljø er i forhold til elevernes forudsætninger og den tilsigtede viden, des mere kan eleverne lære af dette spil netop når læreren trækker sig tilbage. Symbolkombinationerne ser ganske rigtigt mystiske ud ved første øjekast, men i det mindste når de er arrangeret i rækkefølge, er det muligt at tænke sig frem til at de svarer til faktoriseringer af tal, og at faktorerne udgøres af netop de tal, der ikke selv kan faktoriseres. Faktisk er det måske en særskilt pointe at symbolerne ikke er dem, der almindeligvis bruges for tallene: et positionstalssystem som det, vi normalt anvender, er jo baseret på tallenes additive struktur (12=10+2), mens de foreslåede symbolkombinationer netop angiver tallene ud fra deres multiplikative struktur (12 = 2 2 3). Alternativet at præsentere regnestykkerne 1=1, 2=2, 3=3, 2 2=4, 5=5, 2 3=6 etc., ville givet ikke have samme effekt, om end der stadig kunne tænkes at foreligge et teoretisk fortolkningsarbejde. For børn i 4. klasse er de mystiske symboler utvivlsomt i sig selv en mulig kilde til fascination (med eller uden rumskib); og det er jo også dem, der fungerer som skjulested for det stykke matematik, som det er hensigten med miljøet at lade eleverne finde. I en undervisningssituation er det endvidere karakteristisk at elevernes arbejde skal sættes i gang, reguleres undervejs (om nødvendigt) og afsluttes normalt med læreren som ansvarlig i første og sidste led. Mere generelt skal lektionen organiseres omkring spillet i det didaktiske miljø, og der er her mange valgmuligheder. Skal problemstillingen præsenteres på en gang (som i appetitvækkeren til denne artikel) eller i flere tempi (som i Tsubotas lektion)? Under hvilke omstændigheder kan eller skal læreren gribe ind i elevernes arbejde i miljøet? Skal arbejdet med det didaktiske miljø være fælles for hele klassen, foregå i grupper eller evt. i kortere perioder individuelt? Hvorledes skal der afsluttes? Skal de faglige hensigter og pointer formuleres som konklusion, eller skal der lægges op til en fortsættelse senere? Man kan sige, at selvom vi har beskrevet det didaktiske miljø, som eleverne skal arbejde med, så mangler vi stadig en plan for iscenesættelsen drejebogen for den konkrete lektion. Og alle de beslutninger, dette indebærer, vil også kunne have stor betydning for om arbejdet i miljøet lykkes. Den japanske lektion, vi nævnte, er opbygget med to hoveddele: - en kortere introduktionsfase hvor læreren introducerer problemstillingen (hvad skal der stå på de to blanke kort) og eleverne kommer med umiddelbare bud på lignende symbolkombinationer ; dette didaktiske miljø har ikke tilstrækkelig modstand til at kunne differentiere mellem forskellige løsninger, og det tjener da også mere til at gøre eleverne fortrolig med problemstillingen og miljøets materielle elementer.

6 - en længere udforskningsfase i et mere velstruktureret didaktisk miljø, hvor eleverne får konkrete spørgsmål og i korte perioder overvejer dem individuelt, og hvor der som opsamling på hver af disse perioder af læreren udpeges elever, som forklarer deres bud på svarene. Man lægger i øvrigt mærke til, at - i opsamlingsfaserne er læreren i meget høj grad ordstyrer, men validerer ikke elevernes svar som rigtige eller forkerte, kun udtrykker han i nogle tilfælde at de er interessante ; - lektionen slutter med at symbolkombinationerne for 11 og 12 findes; forkerte bud på det sidste (svarende fx til ) elimineres af andre elever, ikke af læreren; - læreren forsøger ikke at samle op på lektionen fx i form af mere generelle ideer såsom definitionen af primtal eller princippet om faktorisering i primtal; lektionen slutter slet og ret med at det oprindelige problem er løst af eleverne. 4. Drejebogen som kulturelt script At en lektion forløber med visse faser, der mere eller mindre synligt tjener til at muliggøre elevernes arbejde i et didaktisk miljø, er noget man især bliver opmærksom på ved observation af lektioner i en helt anden kontekst en ens egen. Et overraskende resultat at de såkaldte TIMSSvideostudier (se Stigler&Hiebert, 1999) er nemlig at der i en given skolekultur findes meget regelmæssige scripts for matematiktimerne. Det betyder, at lektionsstrukturen varierer overraskende lidt indenfor en given skolekontekst, mens der derimod kan være meget store forskelle fra et kulturelt system (som det japanske) til et andet (som det norske): The scripts for teaching in each country appear to rest on a relatively small and tacit set of core beliefs about the nature of the subject, about how students learn, and about the role that a teacher should play in the classroom. These beliefs, often implicit, serve to maintain the stability of cultural systems over time. (Stigler & Hiebert, 1999, 87-88) Opdagelsen og beskrivelsen af disse scripts for matematiklektioner er blandt hovedresultaterne i TIMSS-videostudierne. Ideen er her at sammenligne videooptagelser fra forskellige lande af et stort antal tilfældigt udvalgte matematiklektioner på et givet klassetrin både mht. lektionernes overordnede struktur og mere specifikke detaljer i deres forløb. Allerede de første TIMSSvideostudier fra 1995 viste meget slående forskelle mellem indhold og struktur i matematiklektionerne i Japan og i de to andre lande (USA og Tyskland). Et af de mere overordnede resultater er at matematiklektioner i Japan typisk har nogenlunde flg. struktur ( drejebog ): - Læreren introducerer et åbent problem (på japansk, hatsumon) - Eleverne arbejder med problemet, læreren observerer deres arbejde (kikan-shido læreren lytter ) - Eleverne præsenterer deres ideer eller løsninger, idet læreren giver dem ordet i en rækkefølge der er bestemt af hans observationer under kikan-shido [en fase der kaldes takuto efter tysk Taktstock, dirigentstav] - Disse diskuteres på klassen og af læreren (neriage, en slags rationel forhandling) - Læreren afrunder (matome) I Tsubotas lektion finder vi klart disse faser, idet den første del (udforskning af de uordnede symbolkort) fungerer som introduktion til problemstillingen, og en vis fortroliggørelse med dens objekter. Og vi har allerede bemærket, at afrundingen (matome) ikke nødvendigvis betyder at der konkluderes andet eller mere end at vi har arbejdet med et problem og fundet et eller flere svar.

7 De drejebøger, som TIMSS-videostudierne har fundet i flere vestlige landes matematikundervisning, kan siges at være variationer over flg. struktur: - Læreren minder om hvad klassen arbejdede med sidst - Læreren introducerer en ny opgavetype og en teknik, der vises nogle eksempler - Eleverne arbejder selv med flere eksempler, hvor de skal bruge den viste teknik; læreren går rundt og hjælper de, der har brug for det. Der er til dels som en konsekvens af denne struktur betydelig mindre fokus på at eleverne selv udvikler metoder eller teknikker, og det fremgår også på andre måder af TIMSS-videostudierne, at en langt større andel af matematiktimerne i fx USA går med at eleverne træner brugen af standardteknikker. Man skulle jo så egentlig tro, at elever med en sådan baggrund skulle klare sig relativt godt i internationale tests, der netop ofte har en tendens til at basere sig på korte skriftlige opgaver der kan løses ved at mobilisere en standardteknik. Men faktisk klarer japanske elever sig bedre i sådanne tests end eleverne i stort set samtlige vestlige lande (og det i såvel TIMSS-undersøgelserne som PISA-undersøgelserne). Interessen for japansk matematikundervisning har da også været voksende i de vestlige lande, ganske særlig i de seneste 10 år. Det er ikke mindst fordi vestlige observatører fx indenfor rammerne af TIMSS-video studierne har opdaget, at tidligere tiders fordomme om en disciplinbaseret japansk terpekultur ikke svarer til, hvad man ser i virkelighedens japanske matematiktime. Tværtimod: japansk matematikundervisning er, i det mindste i barneskolen, præget af en betydelig kreativitet både hos lærere (i planlægningen af timerne) og hos eleverne (i deres arbejde matematiktimerne). De to ting hænger sammen, fordi matematiklærernes kreativitet især retter sig mod at maksimere elevernes matematiske kreativitet i timerne. For at forstå japansk matematikundervisning med disse ret bemærkelsesværdige udtryk og resultater er det altså i høj grad relevant at se på de japanske matematiklæreres arbejdsformer og metoder. Og her støder man så hurtigt på et højst overraskende fænomen, som også ligger bag Tsubotas lektion: de såkaldte lektionsstudier (på engelsk, lesson studies, og på japansk: 授業研究 (jugyou kenkyuu). Det sidste afsnit i denne artikel er viet til en kort diskussion af dette fænomen, som også sætter de tidligere afsnit i et nyt lys. 5. Lektionsstudier når undervisning bliver kollektiv Et lektionsstudium handler kort sagt om at planlægge en lektion med et bestemt fagligt mål (som det gælder om at præcisere, men som normalt også refererer til om lektionens funktion i et større undervisningsforløb). Lektionsstudier udføres af teams af faglærere, typisk over et par måneder. Helt centralt i lektionsstudiet står lektionsplanen, som er en minutiøs beskrivelse af arbejdets resultater herunder naturligvis drejebogen for lektionen. Det er også vigtigt, at lektionsstudier i princippet er offentlige, og resultaterne (lektionsplanen) i princippet kan bruges af andre lærere; samtidig er lektionsstudier baseret på, at lærerne observerer hinandens undervisning (under brug af den fælles lektion). Endelig er der tale om en meget udbredt praksisform i Japan; stort set alle grundskoler har regelmæssige lektionsstudier (Stigler & Hiebert, ). Det måske umiddelbart mest overraskende er nok, at man i et lektionsstudium arbejder i flere måneder på at udforme en enkelt lektion. Det er da en forberedelsesfaktor der vil noget! Men der er flere forklaringer på, at det ikke er så dumt endda: - For det første kommer man virkelig i dybden med det faglige indhold ikke bare i den foreliggende lektion, men også i relation til andre dele af læreplanens matematikindhold både forudsætninger for lektionen og de ting, den indvundne viden senere skal bruges til. At

8 fokusere på en enkelt lektion er således også med til at styrke lærernes bevidsthed og viden om den faglige sammenhæng mellem lektioner. - Fordybelsen i det faglige indhold sker fra elevernes synspunkt i den forstand, at det drejer sig om at optimere det didaktiske miljø, som elevernes møder indholdet i, og rammerne omkring dette miljø (situationens struktur/forløb). - Den lektion, som er under udvikling, afprøves flere ofte mange gange i forskellige versioner, hvor et af lektionsstudiegruppens medlemmer underviser, og de andre observerer. På den måde bliver genstanden for observationen ikke den enkelte lærer, men den fælles lektion (herunder både situationens struktur og miljøets detaljer), som det gælder om at udvikle. - På en skole, hvor der regelmæssigt afholdes lektionsstudier, vil man over tid få opbygget et bibliotek af lektionsplaner, og lektionsplaner publiceres i øvrigt både regionalt og (for særlig fremragende skolers vedkommende) nationalt. Dermed vil lektionsstudier typisk tage udgangspunkt i tidligere lektionsplaner enten egne eller andres. Det medvirker til at skærpe sansen for detaljen i undervisningen, hvis kompleksitet ofte forsvinder i den mere almene pædagogiske lærerværelsessnak. En anden meget vigtig pointe i lektionsstudiearbejde er at det foregår i matematiklærerteams, og derved indgår i lærerteamets kontinuerlige professionelle udvikling. Fokus er på udviklingen af teamets undervisning ikke på udvikling af den enkelte lærer. Der er i den japanske undervisningskultur en fundamental tro på, at man kan udvikle undervisningens kvalitet gennem et forskningslignende arbejde med de enkelte lektioner (se fx Lewis, 2002). Undervisning bliver således ikke i første række lærerens private og individuelle ansvar. Den bagvedliggende forberedelse er kollektiv, og har flere forskningslignende træk (Miakawa & Winsløw, u. udg.). Endelig spiller den systematiske, didaktisk fokuserede observation af undervisning en fundamental rolle i lektionsstudier. Ikke blot andre lærere fra skolen, men også lærere fra andre skoler og endog forældre eller interesserede fra udlandet kan observere undervisningen i en japansk skole uden særlige formaliteter og uden at læreren føler sig forulempet af det. Erfaringen af, at man kan lære af at observere andre lærere og af deres observationer stammer tilbage fra Meiji-tiden i slutningen af den 19. århundrede (se fx Isoda et al., kap. 2). Også dette medvirker til at gøre undervisning til noget kollektivt, snarere end en privatsag. Man kan læse mere om lektionsstudier i de referencer, der er nævnt nedenfor; den engelsksprogede litteratur om lesson study er i dag ganske omfattende, især fordi lektionsstudier er blevet temmelig udbredt i specielt USA indenfor de seneste 7-8 år, naturligvis i mere eller mindre tillempede former. Også i svensk sammenhæng er der gjort forsøg med lesson study (se fx Akerlund, 2005). Vi vil nu vende tilbage til eksemplet med talmysteriet for at se, hvad det har at gøre med lektionsstudier. Vi nævnte, at lektionen i den version, som blev beskrevet som en superlektion er udviklet af en lærer ved navn Kozo Tsubota (som optræder på figur 3 og 4). Manden er berømt blandt matematiklærere i Japan for han er leder af et matematiklærerteam, der har udarbejdet adskillige nationalt publicerede lektionsplaner. Han har personligt fremvist disse undervisningsdesigns ved talrige regionale og nationale lærerkongresser. I Japan er det således almindeligt, at særlig fremragende lærerteams publicerer og demonstrerer deres lektioner offentligt og naturligvis frem for alt overfor andre lærere og deres ledere kan faktisk høste betydelig professionel anerkendelse. Videoen af lektionen, som blev omtalt i afsnit 2 (jf. figur 3 og 4), er optaget ved en lærerkongres i Tsukuba med flere hundrede deltagere. Det er således ikke rigtig undervisning men det at

9 lektionen fungerer med en lokal klasse, en for eleverne ukendt lærer og flere hundrede tilskuere, gør måske ikke demonstrationen mindre overbevisende. På den anden side kan det ikke nægtes, at lektionsstudier og især denne offentlige fremvisning udfordrer vore sædvanlige forestillinger om hvad undervisning er: et naturligt fænomen i klasseværelset og skolekonteksten, som udenfor dette ingen regelmæssighed eller blot eksistens kan have? eller et offentligt tilgængeligt designarbejde, som kan fremvises, studeres og udvikles systematisk på tværs af skoler? Det er selvfølgelig to ekstreme synspunkter, men jeg tør godt sige at jeg tror det sidste synspunkt har fremtiden for sig både når det gælder den praktiske udvikling af undervisning, og når det gælder forskning i matematikkens didaktik. Lektionsstudier er en blandt flere praktiske måder at professionalisere undervisningsarbejdet på, og de gør det ikke mindst ved at give et fælles og offentligt rum til dette arbejde og den tilhørende professionelle viden. Referencer. Akerlund, S. (2005) Utveckla undervisning tillsammans. Nämnaren 3, Brousseau, G. (1997). Theory of didactical situations in mathematics. Kluwer: Dordrecht. CRICED (2006) Exploring Japanese mathematics lessons prime and composite numbers. Video. Centre for Research on Internation Cooperation in Educational Development, U. of Tsukuba. Fernandez, C. (2005). Lesson Study: A means for elementary teachers to develop the knowledge of mathematics needed for reform-minded teaching? Mathematical Thinking and Learning 7 (4), Fernandez, C. & Yoshida, M. (2004). Lesson Study: A Japanese Approach to Improving Mathematics Teaching and Learning. Mahwah: Lawrence Erlbaum. Isoda, M., Stephens, M., Ohara, Y., Miyakawa, T. (2007) Japanese Lesson Study in Mathematics. Its impact, diversity and potential for educational improvement. Singapore: World Scientific. JSME, Japan Society for Mathematics Education (2000) Mathematics teaching in Japan. Tokyo : JSME. Lewis, C. (1995) Educating Hearts and Minds: Reflections on Japanese Preschool and Elementary Education. Cambridge: Cambridge University Press. Lewis, C (2002). Lesson Study: A Handbook for Teacher-Led Improvement of Instruction. Philadelphia: Research for Better Schools, Lewis, C. (2002) Does Lesson Study Have a Future in the United States? Nagoya Journal of education and Human Development 2002 (1), Miyakawa, T. & Winsløw, C. (under udg.) Un dispositif japonais pour le travail en équipe d enseignants : étude collective d une leçon. Education et Didactique. Padilla, M. & Riley, J. (2003) Guiding the new teacher: induction of first year teachers in Japan. In Britton, E. et al. (éds) Comprehensive teacher induction. Systems for early career learning. Kluwer: Dordrecht. Stigler, J.W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world s teachers for improving education in the classroom. New York: Summit Books. Winsløw, C. (2006). Didaktiske elementer : en indføring i matematikkens og naturfagenes didaktik. Frederiksberg: Biofolia.

10 Winsløw, C. (2007). Didactics of mathematics: an epistemological approach to mathematics education. The Curriculum Journal 18 no. 4 (2007),

Et mysterium om tal og japanske lektionsstudier

Et mysterium om tal og japanske lektionsstudier 31 Et mysterium om tal og japanske lektionsstudier Carl Winsløw, Inst. for Naturfagenes Didaktik (IND), Københavns Universitet Abstract Artiklen sigter på at give et lille indblik i japansk matematik-undervisningskultur

Læs mere

Forlaget Navimat #02. Lektionsstudier i matematikundervisningen. En præsentation af ayv superlektioner. Erik Bilsted. www.navimat.

Forlaget Navimat #02. Lektionsstudier i matematikundervisningen. En præsentation af ayv superlektioner. Erik Bilsted. www.navimat. Forlaget Navimat 02 #02 Lektionsstudier i matematikundervisningen En præsentation af ayv superlektioner Erik Bilsted www.navimat.dk Lektionsstudier i matematikundervisningen En præsentation af syv superlektioner

Læs mere

Lesson study i Danmark?

Lesson study i Danmark? 79 Lesson study i Danmark? VIA University College Læreruddannelsen i Århus Kommentar til artiklen Et mysterium om tal i MONA, 2009(1). Hvordan præsenteres et stykke matematik (bedst) for skoleelever? Det

Læs mere

Kreativ digital matematik II efteruddannelse, klare mål og faglig udvikling i kreativt samspil

Kreativ digital matematik II efteruddannelse, klare mål og faglig udvikling i kreativt samspil Kreativ digital matematik II efteruddannelse, klare mål og faglig udvikling i kreativt samspil Udgangspunkt: Kreativ digital matematik I skoleåret 2012 0g 2013 har en større gruppe indskolingslærere i

Læs mere

Undervisningsfaglighed hvad en underviser bør vide

Undervisningsfaglighed hvad en underviser bør vide 70 MONA 2006 4 Undervisningsfaglighed hvad en underviser bør vide Annemarie Møller Andersen, Institut for curriculumforskning, Danmarks Pædagogiske Universitet Kommentar til artiklen Analyse og design

Læs mere

Projektforslag fra Arne Mogensen: Fagteamets udvikling af samarbejdet

Projektforslag fra Arne Mogensen: Fagteamets udvikling af samarbejdet Projektforslag fra Arne Mogensen: Fagteamets udvikling af samarbejdet Projektansvarlig Foreløbig titel Øvrige deltagere Kort synopsis Forskningsspørgsmål Arne Mogensen Fagteamets udvikling af samarbejdet

Læs mere

At udvikle og evaluere praktisk arbejde i naturfag

At udvikle og evaluere praktisk arbejde i naturfag Kapitel 5 At udvikle og evaluere praktisk arbejde i naturfag Robin Millar Praktisk arbejde er en væsentlig del af undervisningen i naturfag. I naturfag forsøger vi at udvikle elevernes kendskab til naturen

Læs mere

Guide til elevnøgler

Guide til elevnøgler 21SKILLS.DK Guide til elevnøgler Forslag til konkret arbejde Arbejd sammen! Den bedste måde at få de 21. århundredes kompetencer ind under huden er gennem erfaring og diskussion. Lærerens arbejde med de

Læs mere

Noter om primtal. Erik Olsen

Noter om primtal. Erik Olsen Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et

Læs mere

Kom godt i gang. Guide til at arbejde med det 21. århundredes kompetencer

Kom godt i gang. Guide til at arbejde med det 21. århundredes kompetencer 21SKILLS.DK CFU, DK Kom godt i gang Guide til at arbejde med det 21. århundredes kompetencer Arbejde med det 21. århundredes kompetencer Arbejd sammen! Den bedste måde at få det 21. århundredes kompetencer

Læs mere

STYRKELSE AF BØRNS TIDLIGE PROBLEMLØSNINGSKOMPETENCER I FREMTIDENS DAGTILBUD

STYRKELSE AF BØRNS TIDLIGE PROBLEMLØSNINGSKOMPETENCER I FREMTIDENS DAGTILBUD STYRKELSE AF BØRNS TIDLIGE PROBLEMLØSNINGSKOMPETENCER I FREMTIDENS DAGTILBUD PROGRAM 1. Om udviklingsprogrammet Fremtidens Dagtilbud 2. Hvorfor fokus på tidlige matematiske kompetencer og hvordan? 3. Følgeforskningen

Læs mere

Læremiddelanalyser eksempler på læremidler fra fem fag

Læremiddelanalyser eksempler på læremidler fra fem fag Fra antologien Læremiddelanalyser eksempler på læremidler fra fem fag Den indledende artikel fra antologien Mål, evaluering og læremidler v/bodil Nielsen, lektor, ph.d., professionsinstituttet for didaktik

Læs mere

Spilbaseret innovation

Spilbaseret innovation Master i Ikt og Læring (MIL) valgmodul forår 2014: Ikt, didaktisk design og naturfag Underviser: Lektor Rikke Magnussen, Aalborg Universitet Kursusperiode: 3. februar 13. juni 2014 (m. seminardage d. 3/2,

Læs mere

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Hans Hüttel 27. oktober 2004 Mathematics, you see, is not a spectator sport. To understand mathematics means to be able to do mathematics.

Læs mere

Valgmodul 2013/2014: Ikt, didaktisk design og matematik. Undervisere: Lektor Morten Misfeldt. Kursusperiode: 7. september 2013 21.

Valgmodul 2013/2014: Ikt, didaktisk design og matematik. Undervisere: Lektor Morten Misfeldt. Kursusperiode: 7. september 2013 21. Valgmodul 2013/2014: Ikt, didaktisk design og matematik Undervisere: Lektor Morten Misfeldt Kursusperiode: 7. september 2013 21. januar 2014 ECTS-points: 5 = 5 x 27,5 = 137,5 timers studenterbelastning

Læs mere

Analyse af PISA data fra 2006.

Analyse af PISA data fra 2006. Analyse af PISA data fra 2006. Svend Kreiner Indledning PISA undersøgelsernes gennemføres for OECD og de har det primære formål er at undersøge, herunder rangordne, en voksende række af lande med hensyn

Læs mere

Italien spørgeskema til seminarielærere / sprog - dataanalyse

Italien spørgeskema til seminarielærere / sprog - dataanalyse Italien spørgeskema til seminarielærere / sprog - dataanalyse Om dig 1. 7 seminarielærere, der under viser i sprog, har besvaret spørgeskemaet 2. 6 undervisere taler engelsk, 6 fransk, 3 spansk, 2 tysk

Læs mere

Matematik og målfastsættelse

Matematik og målfastsættelse Matematik og målfastsættelse Målfastsættelse, feedforward og evaluering i matematik, oplæg og drøftelse 1 Problemløsning s e k s + s e k s t o l v 2 Punkter Målfastsættelse af undervisning i matematik

Læs mere

Den sproglige vending i filosofien

Den sproglige vending i filosofien ge til forståelsen af de begreber, med hvilke man udtrykte og talte om denne viden. Det blev kimen til en afgørende ændring af forståelsen af forholdet mellem empirisk videnskab og filosofisk refleksion,

Læs mere

University of Copenhagen. GIS og "klima, jord og vand" Madsen, Lene Møller; Holm, Christine. Publication date: 2006

University of Copenhagen. GIS og klima, jord og vand Madsen, Lene Møller; Holm, Christine. Publication date: 2006 university of copenhagen University of Copenhagen GIS og "klima, jord og vand" Madsen, Lene Møller; Holm, Christine Publication date: 2006 Document Version Publisher's PDF, also known as Version of record

Læs mere

Overordnet studieplan og kompetencekatalog for HF - ASF på Aabenraa Statsskole

Overordnet studieplan og kompetencekatalog for HF - ASF på Aabenraa Statsskole Overordnet studieplan og kompetencekatalog for HF - ASF på Aabenraa Statsskole Før skolestart Aktivitet: Der afholdes møde med kommende elever og deres forældre. Formål: At introducere programmet for 1.

Læs mere

Læringsmål, tilrettelæggelse og præsentation

Læringsmål, tilrettelæggelse og præsentation Kapitel 6 Læringsmål, tilrettelæggelse og præsentation en beskrivelse af nuancerne i praktisk arbejde Robin Millar I forrige kapitel argumenteredes der for, at enhver diskussion af effektiviteten af praktisk

Læs mere

Laboratoriearbejde i fysikundervisningen på stx

Laboratoriearbejde i fysikundervisningen på stx 83 Ph.d. afhandlinger Laboratoriearbejde i fysikundervisningen på stx Lærke Bang Jacobsen, forsvaret i efteråret 2010 ved IMFUFA, NSM, Roskilde Universitet, lbj@boag.nu Laboratoriearbejde i fysikundervisningen

Læs mere

Hvem sagde variabelkontrol?

Hvem sagde variabelkontrol? 73 Hvem sagde variabelkontrol? Peter Limkilde, Odsherreds Gymnasium Kommentar til Niels Bonderup Doh n: Naturfagsmaraton: et (interesseskabende?) forløb i natur/ teknik MONA, 2014(2) Indledning Jeg læste

Læs mere

Aktionslæring som metode

Aktionslæring som metode Tema 2: Teamsamarbejde om målstyret læring og undervisning dag 2 Udvikling af læringsmålsstyret undervisning ved brug af Aktionslæring som metode Ulla Kofoed, uk@ucc.dk Lisbeth Diernæs, lidi@ucc.dk Program

Læs mere

PROTOTYPE MATEMATIKFORLØB 8. KLASSE: LÆRINGSMÅL OG MEDBESTEMMELSE

PROTOTYPE MATEMATIKFORLØB 8. KLASSE: LÆRINGSMÅL OG MEDBESTEMMELSE PROTOTYPE MATEMATIKFORLØB 8. KLASSE: LÆRINGSMÅL OG MEDBESTEMMELSE DIDAKTISKE MÅL: AT FORBINDE LÆRNGSMÅL OG ELEVERNES MEDBESTEMMELSE Dette forløb udgør en prototype på et matematikforløb til 8. klasse,

Læs mere

UNDERVISNING I PROBLEMLØSNING

UNDERVISNING I PROBLEMLØSNING UNDERVISNING I PROBLEMLØSNING Fra Pernille Pinds hjemmeside: www.pindogbjerre.dk Kapitel 1 af min bog "Gode grublere og sikre strategier" Bogen kan købes i min online-butik, i boghandlere og kan lånes

Læs mere

Matematiklæreres planlægningspraksis og læringsmålstyret undervisning

Matematiklæreres planlægningspraksis og læringsmålstyret undervisning Matematiklæreres planlægningspraksis og læringsmålstyret undervisning Webinar, Danmarks Matematikvejleder Netværk D. 21. april 2016 Charlotte Krog Skott Lektor, UCC cksk@ucc.dk Disposition for oplæg Motivation

Læs mere

Fagteamsamarbejde og matematikvejledning Arne Mogensen, Læreruddannelsen i Aarhus

Fagteamsamarbejde og matematikvejledning Arne Mogensen, Læreruddannelsen i Aarhus Fagteamsamarbejde og matematikvejledning Arne Mogensen, Læreruddannelsen i Aarhus UVM s ekspertarbejdsgruppe i matematik: Der mangler viden om, hvordan faglærerne har organiseret sig i fagteam i matematik

Læs mere

Pædagogisk Læreplan. Teori del

Pædagogisk Læreplan. Teori del Pædagogisk Læreplan Teori del Indholdsfortegnelse Indledning...3 Vision...3 Æblehusets børnesyn, værdier og læringsforståelse...4 Æblehusets læringsrum...5 Det frie rum...5 Voksenstyrede aktiviteter...5

Læs mere

Der skal være en hensigt med teksten - om tilrettelæggelse og evaluering af elevers skriveproces

Der skal være en hensigt med teksten - om tilrettelæggelse og evaluering af elevers skriveproces Der skal være en hensigt med teksten - om tilrettelæggelse og evaluering af elevers skriveproces Af Bodil Nielsen, Lektor, ph.d., UCC Det er vigtigt at kunne skrive, så man bliver forstået også af læsere,

Læs mere

Talteori II. C-serien består af disse arbejdskort: C1 Talteori på forskellige klassetrin C2 Den pythagoræiske tripelsætning

Talteori II. C-serien består af disse arbejdskort: C1 Talteori på forskellige klassetrin C2 Den pythagoræiske tripelsætning 1 Talteori er ikke direkte nævnt i Fælles Mål 2009 som et fagområde, alle skal arbejde med. Det betyder dog ikke, at talteori nødvendigvis må vælges fra som indhold i skolen. Faktisk kan det tænkes, at

Læs mere

Brenda Taggart inspiration (Udsendes den 1. i hver måned i et år fra august 2016 til juni 2017)

Brenda Taggart inspiration (Udsendes den 1. i hver måned i et år fra august 2016 til juni 2017) Brenda Taggart inspiration (Udsendes den 1. i hver måned i et år fra august 2016 til juni 2017) Mail 1: Dagtilbud er ekstremt betydningsfulde Brenda Taggart har siden 1997 sammen med et større forskerteam

Læs mere

Aktionslæring som metode til udvikling af didaktisk professionalisme

Aktionslæring som metode til udvikling af didaktisk professionalisme Aktionslæring som metode til udvikling af didaktisk professionalisme Af Jytte Vinther Andersen, konsulent, og Helle Plauborg, ph.d.-stipendiat 20 Denne artikel handler om aktionslæring. Aktionslæring er

Læs mere

Kompetencemålstyring

Kompetencemålstyring Kompetencemålstyring Pædagogisk fællesdag i Sønderborg Jens Rasmussen Nationale mål, resultatmål og Fælles Tre nationale mål: 1. folkeskolen skal udfordre alle elever, så de bliver så dygtige, de kan 2.

Læs mere

Kollegial faglig sparring

Kollegial faglig sparring 7 Kollegial faglig sparring Arne Mogensen, VIA University College, Læreruddannelsen i Århus Abstract: Hvordan kan kollegial faglig sparring finde sted i forbindelse med konkret undervisning helst nemt

Læs mere

Gentofte Skole elevers alsidige udvikling

Gentofte Skole elevers alsidige udvikling Et udviklingsprojekt på Gentofte Skole ser på, hvordan man på forskellige måder kan fremme elevers alsidige udvikling, blandt andet gennem styrkelse af elevers samarbejde i projektarbejde og gennem undervisning,

Læs mere

Hjerner i et kar - Hilary Putnam. noter af Mogens Lilleør, 1996

Hjerner i et kar - Hilary Putnam. noter af Mogens Lilleør, 1996 Hjerner i et kar - Hilary Putnam noter af Mogens Lilleør, 1996 Historien om 'hjerner i et kar' tjener til: 1) at rejse det klassiske, skepticistiske problem om den ydre verden og 2) at diskutere forholdet

Læs mere

Kompetencemål: Eleven kan beskrive sammenhænge mellem personlige mål og uddannelse og job

Kompetencemål: Eleven kan beskrive sammenhænge mellem personlige mål og uddannelse og job Fra interesser til forestillinger om fremtiden Uddannelse og job, eksemplarisk forløb for 4. - 6. klasse Faktaboks Kompetenceområde: Personlige valg Kompetencemål: Eleven kan beskrive sammenhænge mellem

Læs mere

Formål & Mål. Ingeniør- og naturvidenskabelig. Metodelære. Kursusgang 1 Målsætning. Kursusindhold. Introduktion til Metodelære. Indhold Kursusgang 1

Formål & Mål. Ingeniør- og naturvidenskabelig. Metodelære. Kursusgang 1 Målsætning. Kursusindhold. Introduktion til Metodelære. Indhold Kursusgang 1 Ingeniør- og naturvidenskabelig metodelære Dette kursusmateriale er udviklet af: Jesper H. Larsen Institut for Produktion Aalborg Universitet Kursusholder: Lars Peter Jensen Formål & Mål Formål: At støtte

Læs mere

Der skal vel være en pointe?

Der skal vel være en pointe? Der skal vel være en pointe? Pointer i hverdagssproget er noget afgørende vig3gt. Fx som konklusion, morale, løsning eller overraskelse. Hvis ikke det endelige mål med en lek3on eller et forløb er at se,

Læs mere

Om børn og unges karrierelæring

Om børn og unges karrierelæring Om børn og unges karrierelæring Rita Buhl Lektor og studie- og karrierevejleder VIA University College Hvordan kan vejledning i grundskolen understøtte, at de unge får det bedst mulige afsæt for deres

Læs mere

Forste / indtryk -ligeva e rd og fa ellesskab O M

Forste / indtryk -ligeva e rd og fa ellesskab O M Forste / indtryk -ligeva e rd og fa ellesskab T D A O M K E R I Indhold Vurderingsøvelse, filmspot og diskussion. Eleverne skal ved hjælp af billeder arbejde med deres egne forventninger til og fordomme

Læs mere

introduktion tips og tricks

introduktion tips og tricks Tips & tricks 1 tips og tricks Indhold side introduktion Denne vejledning indeholder gode formidlingsråd og er målrettet 7. klassetrin. En Xciter er én som formidler naturvidenskab på en sjov og lærerig

Læs mere

Hvad virker i undervisning

Hvad virker i undervisning www.folkeskolen.dk maj 2006 1 / 5 Hvad virker i undervisning Af Per Fibæk Laursen Vi ved faktisk en hel del om, hvad der virker i undervisning. Altså om hvad det er for kvaliteter i undervisningen, der

Læs mere

Aktionslæring. Læremiddelkultur 2,0

Aktionslæring. Læremiddelkultur 2,0 Læremiddelkultur 2,0 Dialogseminar d. 23.02.2009 Odense Fase 2: sprojekt Formål: At udvikle en didaktik 2,0 der kan matche udfordringerne i en læremiddelkultur 2,0 Resultat: En ny didaktik forstået bredt

Læs mere

Bilag 4. Planlægningsmodeller til IBSE

Bilag 4. Planlægningsmodeller til IBSE Bilag 4 Planlægningsmodeller til IBSE I dette bilag præsenteres to modeller til planlægning af undersøgelsesbaserede undervisningsaktiviteter(se figur 1 og 2. Den indeholder de samme overordnede fire trin

Læs mere

Evaluering af "GeoGebra og lektionsstudier" Hedensted Kommune.

Evaluering af GeoGebra og lektionsstudier Hedensted Kommune. Evaluering af "GeoGebra og lektionsstudier" Hedensted Kommune. Projektet "GeoGebra og lektionsstudier" er planlagt og gennemført i samarbejde mellem Hedensted Kommune, Dansk GeoGebra Institut og NAVIMAT.

Læs mere

Sta Stem! ga! - hvordan far vi et bedre la eringmiljo? O M

Sta Stem! ga! - hvordan far vi et bedre la eringmiljo? O M o Sta Stem! ga! o - hvordan far vi et bedre la eringmiljo? / o T D A O M K E R I Indhold En bevægelsesøvelse hvor eleverne får mulighed for aktivt og på gulvet at udtrykke holdninger, fremsætte forslag

Læs mere

Når en 125 år gammel madpakke begynder at fortælle... En workshop i Almen Didaktik uden for klasseværelsets fire vægge

Når en 125 år gammel madpakke begynder at fortælle... En workshop i Almen Didaktik uden for klasseværelsets fire vægge Når en 125 år gammel madpakke begynder at fortælle... En workshop i Almen Didaktik uden for klasseværelsets fire vægge Af Linda Nørgaard Andersen, Skoletjenesten Arbejdermuseet Uanset hvilket linjefag

Læs mere

Kursusperiode: 21. januar 2015 11. juni 2015, med seminardage: 22/1, 12/3 og 7/5 2015

Kursusperiode: 21. januar 2015 11. juni 2015, med seminardage: 22/1, 12/3 og 7/5 2015 Valgmodul Forår 2015: It i matematikundervisning Underviser: Lektor Morten Misfeldt, Aalborg Universitet Kursusperiode: 21. januar 2015 11. juni 2015, med seminardage: 22/1, 12/3 og 7/5 2015 ECTS-points:

Læs mere

Brøker i 5. klasse Pernille Dalmose Michael Wahl Andersen

Brøker i 5. klasse Pernille Dalmose Michael Wahl Andersen Brøker i 5. klasse Pernille Dalmose Michael Wahl Andersen Workshop Oplæg,40 min: Spørgsmål og svar, 15 min: Michael Wahl Andersen Pernille Dalmose Uvd. et princip møder praksis 2 Begrundelse Hvorfor arbejde

Læs mere

Udvikling af faglærerteam

Udvikling af faglærerteam 80 KOMMENTARER Udvikling af faglærerteam Ole Goldbech, Professionshøjskolen UCC Kommentar til artiklen MaTeam-projektet om matematiklærerfagteam, matematiklærerkompetencer og didaktisk modellering i MONA,

Læs mere

Undervisning. Verdens bedste investering

Undervisning. Verdens bedste investering Undervisning Verdens bedste investering Undervisning Verdens bedste investering Lærerne har nøglen The principles show how important are design and the orchestration of learning rather than simply providing

Læs mere

Overordnet Studieplan

Overordnet Studieplan Overordnet Studieplan 1. Introduktion til hf-studieplanen for VUC Vestsjælland Nord. Hf-studie-planen for VUC Vestsjælland Nord beskriver, hvorledes vi her på stedet løbende planlægger, gennemfører og

Læs mere

STUDIEBESKRIVELSE DESIGN TO IMPROVE LIFE EDUCATION FORÅR 2013

STUDIEBESKRIVELSE DESIGN TO IMPROVE LIFE EDUCATION FORÅR 2013 STUDIEBESKRIVELSE 1 Bredgade 66, stuen DK 1260 København K designtoimprovelifeeducation.dk The project is co-financed by: The European Regional Development Fund (ERDF) through the EU project Interreg IV

Læs mere

Undervisningsoplæg med henblik på udvikling af ræsonnementskompetence i folkeskolens matematikundervisning

Undervisningsoplæg med henblik på udvikling af ræsonnementskompetence i folkeskolens matematikundervisning Undervisningsoplæg med henblik på udvikling af ræsonnementskompetence i folkeskolens matematikundervisning Fredericia 27-10-2010 Flemming Ejdrup Lars Lindhart Anette Skipper-Jørgensen Kompetence At besidde

Læs mere

Integer Factorization

Integer Factorization Integer Factorization Per Leslie Jensen DIKU 2/12-2005 kl. 10:15 Overblik 1 Faktorisering for dummies Primtal og aritmetikkens fundamentalsætning Lille øvelse 2 Hvorfor er det interessant? RSA 3 Metoder

Læs mere

KiU og professionsdidaktik

KiU og professionsdidaktik KiU og professionsdidaktik Forskningsprojektet KiU og professionsdidaktik har primært fokus på at undersøge, på hvilke måder læreres kompetenceløft i undervisningsfag (KiU) sætter sig spor i praksis i

Læs mere

Faglig læsning og skrivning - i matematik. Næsbylund d. 17.9.10

Faglig læsning og skrivning - i matematik. Næsbylund d. 17.9.10 Faglig læsning og skrivning - i matematik Næsbylund d. 17.9.10 Hvad har I læst i dag? Tal med din sidemakker om, hvad du har læst i dag Noter på papir, hvad I har læst i dag Grupper noterne Sammenlign

Læs mere

Elevdiskussion af flere mulige forklaringer på naturfaglige fænomener i formativ evaluering

Elevdiskussion af flere mulige forklaringer på naturfaglige fænomener i formativ evaluering Elevdiskussion af flere mulige forklaringer på naturfaglige fænomener i formativ evaluering - Eksempel fra 8. klasse geografi (og workshop med naturfagsteam) Workshop 15:20 16:00 Kort om concept cartoons/grubletegninger

Læs mere

Honey og Munfords læringsstile med udgangspunkt i Kolbs læringsteori

Honey og Munfords læringsstile med udgangspunkt i Kolbs læringsteori Honey og Munfords læringsstile med udgangspunkt i Kolbs læringsteori Læringscyklus Kolbs model tager udgangspunkt i, at vi lærer af de erfaringer, vi gør os. Erfaringen er altså udgangspunktet, for det

Læs mere

Rasmus Rønlev, ph.d.-stipendiat og cand.mag. i retorik Institut for Medier, Erkendelse og Formidling

Rasmus Rønlev, ph.d.-stipendiat og cand.mag. i retorik Institut for Medier, Erkendelse og Formidling Rasmus Rønlev, ph.d.-stipendiat og cand.mag. i retorik Institut for Medier, Erkendelse og Formidling Rasmus Rønlev CV i uddrag 2008: Cand.mag. i retorik fra Københavns Universitet 2008-2009: Skrivekonsulent

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Hvad er Inquiry Based Science Education (IBSE) på dansk: UndersøgelsesBaseret NaturfagsUndervisning (UBNU) og virker det?

Hvad er Inquiry Based Science Education (IBSE) på dansk: UndersøgelsesBaseret NaturfagsUndervisning (UBNU) og virker det? Hvad er Inquiry Based Science Education (IBSE) på dansk: UndersøgelsesBaseret NaturfagsUndervisning (UBNU) og virker det? Efteruddannelseskursus 15. november, 2011 Jens Dolin IND/KU UBNU hvad taler vi

Læs mere

Seminaropgave: Præsentation af idé

Seminaropgave: Præsentation af idé Seminaropgave: Præsentation af idé Erik Gahner Larsen Kausalanalyse i offentlig politik Dagsorden Opsamling på kausalmodeller Seminaropgaven: Praktisk info Præsentation Seminaropgaven: Ideer og råd Kausalmodeller

Læs mere

Lynkursus i problemformulering

Lynkursus i problemformulering Lynkursus i problemformulering TORSTEN BØGH THOMSEN, MAG. ART. HELLE HVASS, CAND.MAG. kursus lyn OM AKADEMISK SKRIVECENTER DE TRE SØJLER Undervisning - vi afholder workshops for opgave- og specialeskrivende

Læs mere

Regneark hvorfor nu det?

Regneark hvorfor nu det? Regneark hvorfor nu det? Af seminarielektor, cand. pæd. Arne Mogensen Et åbent program et værktøj... 2 Sådan ser det ud... 3 Type 1 Beregning... 3 Type 2 Præsentation... 4 Type 3 Gæt... 5 Type 4 Eksperiment...

Læs mere

UDDANNELSESBESKRIVELSE KREATIV LÆRING 2012

UDDANNELSESBESKRIVELSE KREATIV LÆRING 2012 UDDANNELSESBESKRIVELSE KREATIV LÆRING 2012 Indhold Målgruppe for uddannelsen... 2 Dit udbytte på uddannelsen... 2 Den Kreative Platform... 3 Uddannelse på diplom niveau... 3 Uddannelses omfang... 4 Seminarer...

Læs mere

Fremstillingsformer i historie

Fremstillingsformer i historie Fremstillingsformer i historie DET BESKRIVENDE NIVEAU Et referat er en kortfattet, neutral og loyal gengivelse af tekstens væsentligste indhold. Du skal vise, at du kan skelne væsentligt fra uvæsentligt

Læs mere

Matematiklærerprofessionen i et institutionelt perspektiv

Matematiklærerprofessionen i et institutionelt perspektiv Artikler 7 Matematiklærerprofessionen i et institutionelt perspektiv Carl Winsløw, Institut for Naturfagenes Didaktik, Københavns Universitet Abstract: Artiklen tager udgangspunkt i de udfordringer som

Læs mere

Uddannelsesplan. Ikast Nordre Skole Et godt sted at være et godt sted at lære. Skolen: Hagelskærvej 7430 Ikast 99604700 nordreskole@ikast-brande.

Uddannelsesplan. Ikast Nordre Skole Et godt sted at være et godt sted at lære. Skolen: Hagelskærvej 7430 Ikast 99604700 nordreskole@ikast-brande. Uddannelsesplan Ikast Nordre Skole Et godt sted at være et godt sted at lære Skolen: Hagelskærvej 7430 Ikast 99604700 nordreskole@ikast-brande.dk Praktikkoordinator: Jan Moth: 30258672 Jan.Moth@skolekom.dk

Læs mere

Lukke-øvelser til dine processer. En e-bog om at afslutte og samle op på processer

Lukke-øvelser til dine processer. En e-bog om at afslutte og samle op på processer Lukke-øvelser til dine processer En e-bog om at afslutte og samle op på processer I denne e-bog får du tre øvelser, du kan bruge, når du skal afslutte en proces. Øvelserne har til formål at opsamle idéer

Læs mere

Den mundtlige dimension og Mundtlig eksamen

Den mundtlige dimension og Mundtlig eksamen Den mundtlige dimension og Mundtlig eksamen Mål med oplægget At få (øget) kendskab til det der forventes af os i forhold til den mundtlige dimension At få inspiration til arbejdet med det mundtlige At

Læs mere

Overgangen fra grundskole til gymnasium

Overgangen fra grundskole til gymnasium Overgangen fra grundskole til gymnasium Oplæg på konference om Faglig udvikling i Praksis Odense, Roskilde, Horsens November 2015 Lars Ulriksen www.ind.ku.dk Overgange kan være udfordrende Institut for

Læs mere

En Maple time med efterfølgende elevgruppe diskussion og refleksionssamtale med lærer.

En Maple time med efterfølgende elevgruppe diskussion og refleksionssamtale med lærer. Bilag 5 En Maple time med efterfølgende elevgruppe diskussion og refleksionssamtale med lærer. Indledning Vi har som led i projektet observeret en del lektioner, med helt eller delvis fokus på Maple-brug.

Læs mere

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Nye Fælles Mål og årsplanen Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Interview Find en makker, som du ikke kender i forvejen Stil spørgsmål, så du kan fortælle os andre om vedkommende ift.:

Læs mere

klassetrin Vejledning til elev-nøglen.

klassetrin Vejledning til elev-nøglen. 6.- 10. klassetrin Vejledning til elev-nøglen. I denne vejledning vil du til nøglen Kollaboration finde følgende: Elev-nøgler forklaret i elevsprog. En uddybende forklaring og en vejledning til hvordan

Læs mere

Selam Friskole Fagplan for Natur og Teknik

Selam Friskole Fagplan for Natur og Teknik Selam Friskole Fagplan for Natur og Teknik Formål for faget natur/teknik Formålet med undervisningen i natur/teknik er, at eleverne opnår indsigt i vigtige fænomener og sammenhænge samt udvikler tanker,

Læs mere

Artfulness i læring og undervisning: et forskningsprojekt om kreativitet og æstetiske læreprocesser

Artfulness i læring og undervisning: et forskningsprojekt om kreativitet og æstetiske læreprocesser Artfulness i læring og undervisning: et forskningsprojekt om kreativitet og æstetiske læreprocesser Af Tatiana Chemi, PhD, Post Doc. Forsker, Universe Research Lab/Universe Fonden i og Danmarks Pædagogiske

Læs mere

Guide til den gode lektionsplan Udarbejdet til brug på Voksenpædagogisk Grunduddannelse

Guide til den gode lektionsplan Udarbejdet til brug på Voksenpædagogisk Grunduddannelse Guide til den gode lektionsplan Udarbejdet til brug på Voksenpædagogisk Grunduddannelse 2 Denne guide er udarbejdet af: BRMST Eva-Marie Lillelund Nielsen, BRTS Til brug på: Voksenpædagogisk Grundkursus

Læs mere

Geovidenskab. university of copenhagen DEPARTMENT OF SCIENCE EDUCATION. En undersøgelse af de første studenter

Geovidenskab. university of copenhagen DEPARTMENT OF SCIENCE EDUCATION. En undersøgelse af de første studenter university of copenhagen DEPARTMENT OF SCIENCE EDUCATION Geovidenskab En undersøgelse af de første studenter Rie Hjørnegaard Malm & Lene Møller Madsen IND s skriftserie nr. 41, 2015 Udgivet af Institut

Læs mere

Materialer Læringsmål Lærerroller, arbejdsformer og organisering. Robinsonade som genre. Kendskab til interaktion i Minecraft via Den mystiske ø

Materialer Læringsmål Lærerroller, arbejdsformer og organisering. Robinsonade som genre. Kendskab til interaktion i Minecraft via Den mystiske ø 4. Lektionsoversigt Fasebeskrivelse og varighed Materialer Læringsmål Lærerroller, arbejdsformer og organisering Faglige begreber og faglige tilgange A) OPSTART 2 lektioner Fælles introduktion til storyline

Læs mere

Forskning i Haver til Maver

Forskning i Haver til Maver Forskning i Haver til Maver 1 E VA L U E R I N G, F O R S K N I N G S B A S E R I N G O G F Ø L G E F O R S K N I N G I N S P I R AT I O N S D A G K R O G E R U P 8. O K TO B E R 2 0 1 5 K A R E N W I

Læs mere

Skolens læringsmiljø koncepter i skolen

Skolens læringsmiljø koncepter i skolen Velkommen til Liv i Skolen nr. 3/2009 Skolens læringsmiljø koncepter i skolen Betydningen af skolens læringsmiljø som ramme om undervisning og læring for den enkelte elev og klassen er anerkendt i praksis

Læs mere

1. Hvad handler det om? 2. Associationer - hvad får det jer til at tænke på? 3. Problemanalyse - hvilke temaer eller problemer kan I finde?

1. Hvad handler det om? 2. Associationer - hvad får det jer til at tænke på? 3. Problemanalyse - hvilke temaer eller problemer kan I finde? Et udvalg af de metoder vi på Utterslev Skole bruger i undervisningen: Her er nogle af de metoder vi som undervisere på Utterslev skole særligt har fokus på. Det er både indenfor det naturfaglige område

Læs mere

Den målstyrede folkeskole

Den målstyrede folkeskole Den målstyrede folkeskole Konference: Forskning i folkeskole i forandring 19. august 2014 Jens Rasmussen Kommune Skole Nationale mål, resultatmål og Fælles Undervisning Tre nationale mål: 1. folkeskolen

Læs mere

UNIVERSITY COLLEGE LILLEBÆLT

UNIVERSITY COLLEGE LILLEBÆLT UNIVERSITY COLLEGE LILLEBÆLT Den skabende skole makers mindset FabLab Innovation, Odense d. 28/4 2014 Helle Munkholm Davidsen, ph.d. Centerleder Innovation og Entreprenørskab Forskning og innovation, UCL

Læs mere

Positionssystemet, 2 3 uger (7 lektioner), 2. klasse.

Positionssystemet, 2 3 uger (7 lektioner), 2. klasse. Positionssystemet, 2 3 uger (7 lektioner), 2. klasse. FRA FORENKLEDE FÆLLES MÅL Kommunikation vedrører det at udtrykke sig med og om matematik og at sætte sig ind i og fortolke andres udtryk med og om

Læs mere

Supervisoruddannelse på DFTI

Supervisoruddannelse på DFTI af Peter Mortensen Aut. cand.psych. og familieterapeut, MPF Direktør og partner, DFTI Supervisoruddannelse på DFTI Supervision er et fagområde, som gennem mere end 100 år har vist sig nyttigt til varetagelse

Læs mere

Mundtlighed i matematikundervisningen

Mundtlighed i matematikundervisningen Mundtlighed i matematikundervisningen 1 Mundtlighed Annette Lilholt Side 2 Udsagn! Det er nemt at give karakter i færdighedsregning. Mine elever får generelt højere standpunktskarakter i færdighedsregning

Læs mere

FAGUNDERVISNING OG SPROGLIG UDVIKLING (I MATEMATIK)

FAGUNDERVISNING OG SPROGLIG UDVIKLING (I MATEMATIK) FAGUNDERVISNING OG SPROGLIG UDVIKLING (I MATEMATIK) Ministeriets Informationsmøde, Hotel Nyborg Strand, 5. marts 2015 Rasmus Greve Henriksen (rgh-skole@aalborg.dk) Det ambitiøse program! 1. Afsæt - Projekt

Læs mere

Aktionslæring. Sommeruni 2015

Aktionslæring. Sommeruni 2015 Aktionslæring Sommeruni 2015 Indhold De fem faser i et aktionslæringsforløb - (KLEO) Interview (i flere afdelinger) Kontrakt - SMTTE Positioner, domæner Observation og observationsnotater Teamets rolle

Læs mere

MAteMAtIk FoR LæReRStUDeReNDe. tal, algebra og funktioner. 1. 6. klasse

MAteMAtIk FoR LæReRStUDeReNDe. tal, algebra og funktioner. 1. 6. klasse kristine JEss HaNs CHRIsTIaN HaNsEN JOHN schou JEppE skott MAteMAtIk FoR LæReRStUDeReNDe tal, algebra og funktioner 1. 6. klasse Kristine Jess, Hans Christian Hansen, Joh n Schou og Jeppe Skott Matematik

Læs mere

Matematik i stort format Udematematik med åbne sanser

Matematik i stort format Udematematik med åbne sanser 17-09-2010 side 1 Matematik i stort format Udematematik med åbne sanser Fredag d. 17. september kl. 11.15-12.15 Næsbylund Kro, Odense Mette Hjelmborg 17-09-2010 side 2 Plan Hvad er matematik i stort format?

Læs mere

Trafikmodellering* Claus Michelsen & Jan Alexis Nielsen. Syddansk Universitet

Trafikmodellering* Claus Michelsen & Jan Alexis Nielsen. Syddansk Universitet * Trafikmodellering* Claus Michelsen & Jan Alexis Nielsen Syddansk Universitet * Inspireret af Swetz, F. & Hartzler, J. S. (eds) 1991, Yellow Traffic Lights, in Mathematical Modeling in the Secondary School

Læs mere

KvaN-konference. undervisningsdifferentiering

KvaN-konference. undervisningsdifferentiering KvaN-konference It og undervisningsdifferentiering Lektor, ph.d. Jeppe Bundsgaard Institut for Uddannelse og Pædagogik (DPU)/Aarhus Universitet Slides på www.jeppe.bundsgaard.net Er det differentiering?

Læs mere

Møde mellem kliniske vejledere og klinisk modulteam 4 + 6. Syn på læring og forskellige kontekster Lis Grove Nielsen, lektor UCL 1.

Møde mellem kliniske vejledere og klinisk modulteam 4 + 6. Syn på læring og forskellige kontekster Lis Grove Nielsen, lektor UCL 1. Møde mellem kliniske vejledere og klinisk modulteam 4 + 6. Syn på læring og forskellige kontekster Lis Grove Nielsen, lektor UCL 1. Juni 2015 1 Syn på læring At kunne se læringsmuligheder (Linda Kragelund:

Læs mere

Tysk fortsættersprog A stx, juni 2010

Tysk fortsættersprog A stx, juni 2010 Tysk fortsættersprog A stx, juni 2010 1. Identitet og formål 1.1. Identitet Tysk er et færdighedsfag, et vidensfag og et kulturfag. Disse sider af faget er ligeværdige og betinger gensidigt hinanden. Tyskfaget

Læs mere

Klassens egen grundlov O M

Klassens egen grundlov O M Klassens egen grundlov T D A O M K E R I Indhold Argumentations- og vurderingsøvelse. Eleverne arbejder med at formulere regler for samværet i klassen og udarbejder en grundlov for klassen, som beskriver

Læs mere