Lektion 13 Homogene lineære differentialligningssystemer

Størrelse: px
Starte visningen fra side:

Download "Lektion 13 Homogene lineære differentialligningssystemer"

Transkript

1 Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1

2 To-kammer modeller. Blodet bliver tilført et medikament ved intravenøs injektion. I en model tænker vi at tre ting sker samtidig: Noget af stoffet udskilles med urinen (ekskretion). Noget af stoffet fordeler sig i vævet (distribution). Noget af stoffet vandrer fra vævet tilbage til blodbanen (redistribution). Lad x(t) (mg) og y(t) (mg) være mængden af medikamentet i blod og væv. Denne figur v 3 x(t) v 1 v 2 y(t) 2

3 viser stoffets vandring hvis v 1, v 2, v 3 (mg/h) er hastigheden af distribution, redistribution og ekskretion. For hver af de to kasser gælder ændring = det som løber ind det som løber ud Dette princip leder til ligningerne x (t) = v 2 v 1 v 3 (1) y (t) = v 1 v 2 (2) I denne model antager vi at der findes positive konstanter k 1, k 2 og k 3 så v 1 = k 1 x, v 2 = k 2 y og v 3 = k 3 x. (Hastighederne antages altså at være proportionale med medikamentmængden i den kasse medikamentet udskilles fra.) Ligningerne (1) (2) giver nu et system af to differentialligninger x (t) = (k 1 + k 3 )x + k 2 y (3) y (t) = k 1 x k 2 y (4) Dette er et homogent lineært differentialligningssystem. Ved en løsning forstår vi et par af funktioner (x(t), y(t)) som opfylder begge ligninger. 3

4 Løsning af differentialligningssystemer A. Homogene tilfælde Vi løser et lineært homogent differentialligningssystem ved at omskrive det til en homogen 2.ordens differentialligning. Det næste eksempel viser hvordan. Eksempel 1 Løs differentialligningssystemet dx = x + 2y (5) dt = 2x 2y (6) dt Find den løsning der opfylder begyndelsesbetingelserne x(0) = 14 og y(0) = 2. Løsning: Vi får en 2. ordens ligning sådan her: x = (x + 2y) fra (5) = x + 2y = x + 4x 4y fra (6) = x + 4x 2 2y = x + 4x 2(x x) fra (5) = x + 6x 4

5 Nu løser vi 2. ordens differentialligningen og får x + x 6x = 0 x = Ae 2t + Be 3t da r 2 + r 6 = (r 2)(r + 3) har de to rødder r = 2 og r = 3. Nu har vi x og dermed også y = 1 2 (x x) fra (5) = 1 2 ( 2Ae 2t 3Be 3t Ae 2t Be 3t ) = 1 2 Ae2t 2Be 3t Dette er den generelle løsning. Den specielle løsning, vi søger, er bestemt ved A + B = A 2B = 2 som giver A = 12 og B = 2, så x(t) = 12e 2t + 2e 3t y(t) = 6e 2t 4e 3t y x 5

6 Eksempel 2 Find den løsning til differentialligningssystemet x = 3x + 2y (7) y = 4x + y (8) som opfylder de to begyndelsesbetingelser x(0) = 0 og y(0) = 1. Løsning: Vi finder at x = 3x + 2y fra (7) = 3x 8x + 2y fra (8) = 3x 8x + (x + 3x) fra (7) = 2x 5x eller x + 2x + 5x = 0. Da D = b 2 4ac = = 16 k = b 2a = 2 2 = 1 D ω = 2a = 4 2 = 2 er løsningen til denne 2.ordens ligning x = e t( A sin(2t) + B cos(2t) ) 6

7 og dermed x = e t( ( A 2B) sin(2t) + (2A B) cos(2t) ) y = 1 ( ) x + 3x 2 = e t( (A B) sin(2t) + (A + B) cos(2t) ) Vi har nu den fuldstændige løsning til de to ligninger (7) (8). Begyndelsesbetingelserne 0 = x(0) = B 1 = y(0) = A + B giver A = 1 og B = 0, så x = e t sin(2t) y = e t( sin(2t) + cos(2t) ) er den søgte løsning y 0.4 Flyd med strømmen! x 0.2 7

8 Omskrivning fra ligningssystem til 2. ordens ligning Hard-core matematikere gør det én gang for alle. Hvis så er eller x = ax + by (9) y = cx + (10) x = (x ) = (ax + by) fra (9) = ax + by = ax + bcx + b fra (10) = ax + bcx + d(x ax) fra (9) = (a + d)x (ad bc)x x (a + d)x + (ad bc)x = 0 (11) Hvix x og y løser systemet (9) (10), så vil x løse 2. orden ligningen (11). 8

9 Eksempel 3 (Januar 2000 Opg 3) Find den løsning til x = 1 4 y y = 1 3 x y som opfylder x(0) = 30, y(0) = 19. Løsning: Differentialligningssystemet giver en 2.ordens differentialligning hvis karakteristisk polynomium har rødderne 1 6 og 1 2. Derfor er x = Ae t/6 + Be t/2 y = 4x = 2 3 Ae t/6 + 2Be t/2 Begyndelsesbetingelserne giver ligningerne 30 = A + B 19 = 2 3 B 2B med løsningen A = 237 8, B = 3 8. Altså er x = e t/ et/2 y = 79 4 e t/ et/2 9

10 B. Inhomogene ligningssystemer Systemet x = 3x 2y 3 y = 3x 4y + 9 er et inhomogent lineært differentialligningssystem med konstante koefficienter. Ligevægtstilstanden, bestemt ved 0 = 3x 2y 3 0 = 3x 4y + 9 giver én konstant løsning til systemet, nemlig x = 5, y = 6. Den fuldstændige løsning får vi ved til ligevægtstilstanden at addere alle løsninger til det tilsvarende homogene system Det giver x = 3x 2y y = 3x 4y x = 2Ae 2t + Be 3t + 5 y = Ae 2t + 3Be 3t

11 Eksempel 4 Jordbunden består af to forskellige jordlag. Vi antager at regn falder på jordoverfladen med konstant hastighed p (mm/h), siver ned i det første jordlag, derfra ned i det andet, og derfra videre ned i undergrunden. Vi opstiller en matematisk model. Lad x(t) (mm) og y(t) (mm) være vandhøjden i det øverste og det nederste lag. Vi bruger en 2-kammer model til at beskrive situation p x(t) k 1x y(t) k 2y Her står p (mm/h) for den konstante regnintensitet. Vi antager, at den hastighed hvormed vandet flyder væk fra et jordlag er proportional med vandhøjden (i mm) i det jordlag. Det giver ligningerne x = p k 1 x y = k 1 x k 2 y som er et inhomogent system. 11

12 Ligevægtstilstandens konstante løsninger fås af 0 = p k 1 x 0 = k 1 x k 2 y som giver x = p k, y = p 1 k. Det tilsvarende 2 homogene system x = k 1 x y = k 1 x k 2 y har løsningen (Overvej!) x = Ae k 1t y = k 1 k 2 k 1 Ae k 1t + Be k 2 t Den fuldstændige løsning er derfor x = p k 1 + Ae k 1t y = p k 2 + k 1 k 2 k 1 Ae k 1t + Be k 2t 12

13 Lad os nu også antage at jordlagene er tørre til tiden t = 0, altså at vi har begyndelsesbetingelserne x(0) = 0 og y(0) = 0. Det giver eller 0 = p k 1 + A 0 = p k 2 + k 1 k 2 k 1 A + B A = p k 1 B = p k 2 + k 1 k 2 k 1 p k 1 = Vi konkluderer altså at x = p ( 1 e k 1 t ) k 1 y = p p k 2 k 2 k 1 = p e k p 1t k 2 k 1 p k 2 (k 2 k 1 ) ( e k 1 t k 1 e k 2t k 2 ) ( 1 k 1 k 2 e (k 1 k 2 )t k 2 k 1 giver udviklingen af vandhøjden i de to jordlag. ) 13

14 Lotka Volterra modeller Betragt (det ikke-lineære) differentialligningssystem dx = x(p ay) (12) dt = y( q + bx) (13) dt med positive konstanter a, b, p, q. Dette system bruges i økologi til at modellere vekselvirkningen mellem en population, x(t), af bytter (sneharer) og en population, y(t), af rovr (polarræve). Hvis konstanten a var lig med 0, ville (12) reducere til ligningen dx/dt = px for eksponentiel vækst, og bestanden af bytter ville vokse over alle grænser for t. Tilsvarende, hvis konstanten b var lig med 0, ville (13) reducere til ligningen /dt = qy for eksponentiel henfald, og bestanden af rovr ville uddø for t. Det negative led ay i (12) nedsætter per capita vækstraten for bytterene med et bidrag der er proportionalt med antallet af rovr. Det positive led bx i (13) øger per capita vækstraten for rovrene med et bidrag der er proportionalt med antallet af bytter. Vito Volterra udviklede modellen ca 1920 for at analysere de cykliske variationer i spisefisk/haj-bestandene i Adriaterhavet. 14

15 Eksempel 5 Differentialligningssystemet dx = 0, 08x 0, 0003xy dt = 0.07y + 0, 0002xy dt x(0) = 800, y(0) = 75 modellerer samspillet mellem en bestand kaniner, oprindeligt på 800, og en bestand ulve, oprindeligt på Graferne for x(t) og y(t) Antal Tid LotkaVolterraCyklus 600 Kurven (x(t), y(t)) y x Løsningskurverne er ikke stabile - biologisk set ikke så godt! 15

16 To konkurrerende arter Differentialligningssystemet dx 1 dt = α 1x 1 (K 1 x 1 α 12 x 2 ) (14) dx 2 dt = α 2x 2 (K 2 x 2 α 21 x 1 ) (15) med positive konstanter α 1, α 2, α 12, α 21, bruges i økologi til at modellere vekselvirkningen mellem en to populationer af to re- eller plantearter, der konkurrerer om de samme ressourcer. Funktionerne x 1 (t) og x 2 (t) står for antallet af individer af art 1 og 2 til tiden t. K 1 og K 2 er miljøets bærekapacitet for de to arter. Hvis konstanterne α 12 og α 21 begge var lig med 0 ville ligningerne reducere til de logistiske ligninger og antallet af begge arter ville vokse logistisk uden indflydelse på hinanden. Når konstanten α 12 ikke er 0 udtrykker det at x 2 individer af art 2 har lige så stor negativ indvirking på art 1 som α 12 x 2 individer dens egen slags. Helt tilsvarende har x 1 individer af art 1 lige så stor negativ indvirkning på art 2 som α 21 x 1 individer af den egen art. 16

17 Opgaver til Lektion Løs differentialligningssystemet dx dt = 2x y dt = x 2. Løs differentialligningssystemet dx dt = x + y dt = x y + t 3. To rearter, hvis antal betegnes med x og y, konkurrerer om de samme ressourcer. Deres interaktion modelleres ved dx = x y e t dt dt = 2x y Find x(t) og y(t) når x(0) = 50 og y(0) = 65. Vil en af arterne udkonkurrere den anden? 4. (Januar 2001) a) Find den generelle løsning til differentialligningssystemet dx dt = 3x y = 4x 2y dt Medtag mellemregninger. b) Find den partikulære løsning, (x(t), y(t)), der opfylder, x(0) = 3 og y(0) = (April 1999) Lad x(t) og y(t) betegne antallet af to slags r, henholdsvis X og Y, der konkurrerer om samme føde. Antag endvidere at renes antal udvikler sig efter ifølge differentialligningssystemet dx dt = 3x y dt = 2x + 2y + 12k 17

18 hvor sidste led i sidste ligning angiver at der udsættes et konstant antal 12k af reart Y pr. tidenhed. a. Find den fuldstændige løsning til dette system af differentialligninger. b. Antag at der til tiden t = 0 er 500 af arten X og 400 af arten Y, og antag desuden at der ikke udsættes nogen r af art Y (k = 0 i ligningerne ovenfor). Vis at en af arterne uddør, og bestem den værdi af t hvor det sker. c. Antag, som i spørgsmål b, at der til t = 0 er 500 af arten X og 400 af arten Y, man lad nu k være forskellig fra 0. Undersøg om det er muligt at redde begge arter fra at uddø ved at udsætte r af arten Y med konstant hastighed, dvs. ved at vælge k passende. 6. (Januar 1997) Et r er blevet angrebet af en skadelig parasit. Til tiden t = 0 er der 25 parasitter, og rets vægt er (i passende enheder) 10. Idet antal parasitter til tiden t betegnes y(t), og rets vægt til tiden t betegnes x(t), gælder dx dt = 1 2 y + 10 = 8x 80 dt Find et udtryk for rets vægt til et vilkårligt tidspunkt t. 7. (Ligning for løsningskurven til Lotka-Volterra modellen) Lad (x(t), y(t)) være løsningskurven for Lotka-Volterra modellen (12, 13), se Eksempel 5. Antag at kurven er graf for en funktion y = y(x). Så er y(t) = y(x(t)) og dt = dx dx dt eller dx = /dt dx/dt Det giver den separable differentialligning dx = px axy qy + bxy = q + bx x y p ay Vis at den generelle løsning er givet implicit på formen x q y p = Ce bx e ay hvor C er en konstant (som kan bestemmes hvis man kender ét punkt, som kurven løber igennem).

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Workshop i differentialligninger

Workshop i differentialligninger Workshop i differentialligninger Indholdsfortegnelse Eksempler på eksamensopgaver side 1 Opgave 1 7: side 1 Projekter: side 3 8. Isokliner side 3 9. Logistisk vækst med jagt/fiskeri side 4 10. Romeo og

Læs mere

MODUL 8. Differensligninger. Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN. Modulet er baseret på noter af Peter BEELEN.

MODUL 8. Differensligninger. Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN. Modulet er baseret på noter af Peter BEELEN. MODUL 8 Differensligninger Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN Modulet er baseret på noter af Peter BEELEN. 26. august 2014 2 Indhold 1 Introduktion 5 1.1 Rekursioner og differensligninger.........................

Læs mere

Differentialligninger Et undervisningsforløb med Derive og modelbygning Højt niveau i matematik i gymnasiet

Differentialligninger Et undervisningsforløb med Derive og modelbygning Højt niveau i matematik i gymnasiet Differentialligninger Et undervisningsforløb med Derive og modelbygning Højt niveau i matematik i gymnasiet Niels Hjersing Per Hammershøj Jensen Børge Jørgensen Indholdsfortegnelse 1 1. Forord... 3 2.

Læs mere

Differentialligninger af første orden

Differentialligninger af første orden Differentialligninger af første orden Preben Alsholm Februar 2006 Basale begreber. Eksistens og entydighed. En differentialligning af første orden er en ligning, der sammenknytter differentialkvotienten

Læs mere

Formelsamling til MatIntro kurset på Københavns Universitet

Formelsamling til MatIntro kurset på Københavns Universitet Formelsamling til MatIntro kurset på Københavns Universitet af Michael Flemming Hansen Version 1.0 1. februar 2012 Indhold 1 Funktioner af en variabel 4 1.1 Komplekse tal........................... 4 1.1.1

Læs mere

Numerisk/grafisk løsning af differentialigninger med TI-Nspire CAS version 1.7

Numerisk/grafisk løsning af differentialigninger med TI-Nspire CAS version 1.7 Numerisk/grafisk løsning af differentialigninger med TI-Nspire CAS version 1.7 Baseret på noter af Knud Nissen og Bjørn Felsager Kapitel 1: Grafisk løsning af differentialligninger side 1 Kapitel 2: Første

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Laplace transformationen

Laplace transformationen MODUL 6 Laplace transformationen Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN 24. juni 214 2 Indhold 1 Laplace transformationen 5 1.1 En lineær transformation.............................. 7 1.2

Læs mere

Bedømmelseskriterier for skriftlig matematik stx A-niveau

Bedømmelseskriterier for skriftlig matematik stx A-niveau Bedømmelseskriterier for skriftlig matematik stx A-niveau Sådan bedømmes opgaverne ved skriftlig studentereksamen i matematik En vejledning for elever Skriftlighedsgruppe 01.04.09 Dette dokument henvender

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

Supplement til Matematik 1GB. Jan Philip Solovej

Supplement til Matematik 1GB. Jan Philip Solovej Supplement til Matematik 1GB Jan Philip Solovej ii c 2001 Jan Philip Solovej, Institut for Matematiske Fag, Københavns Universitet. Alle har tilladelse til at reproducere hele eller dele af dette materiale

Læs mere

TI-92 / TI-92 Plus. Skærmen består af fire dele: En menulinje, et historikområde, en indtastningslinje og nederst en statuslinje:

TI-92 / TI-92 Plus. Skærmen består af fire dele: En menulinje, et historikområde, en indtastningslinje og nederst en statuslinje: TI-92 / TI-92 Plus TI-92 har et væld af indbyggede funktioner og i dette lille hæfte kan vi kun stifte bekendskab med nogle ganske få udvalgte, der har til formål at vise den regnekraft og fleksibilitet,

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07. Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.54 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve 1: 2

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

Vedlagt følger en beskrivelse af proceduren ved skriftlig censur samt en vejledning i bedømmelse af besvarelserne.

Vedlagt følger en beskrivelse af proceduren ved skriftlig censur samt en vejledning i bedømmelse af besvarelserne. o Til censor Fagkonsulent Matematik, htx Vedr.: Skriftlig censur i matematik på htx Velkommen som skriftlig censor i matematik på htx. Marit Hvalsøe Schou Oehlenschlægersvej 55 5230 Odense M Tlf: 2565

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx113-mat/a-19122011 Mandag den 19. december 2011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er

Læs mere

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b stk. Peter Harremoës Matematik A med hjælpemidler 16. december 2013 Opagve 6 Variables a isoleres: M = S 1 + a = a + b b a b a = b 1 ( ) 1 b 1 a = b 1 a = b 1 1 b 1 a = b Hvis b = 1, så gælder ligningen

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2stx111-MAT/B-24052011 Tirsdag den 24. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Differentialligninger med TI Nspire CAS version 3.1

Differentialligninger med TI Nspire CAS version 3.1 Differentialligninger med TI Nspire CAS version 3.1 Der er tilføjet en ny graftype til Graf værkstedet kaldet Diff lign. Denne nye graftype er en implementering af differentialligningerne som vi kender

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

SØREN L. BUHL KOMPLEKSE TAL M. M. Matematik 1 Den teknisk naturvidenskabelige Basisuddannelse

SØREN L. BUHL KOMPLEKSE TAL M. M. Matematik 1 Den teknisk naturvidenskabelige Basisuddannelse SØREN L. BUHL KOMPLEKSE TAL M. M. Matematik Den teknisk naturvidenskabelige Basisuddannelse Afdeling for Matematik og Datalogi Institut for Elektroniske Systemer Aalborg Universitetscenter MCMXCII Indhold

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

FACITLISTE TIL MATEMA10K C for HHX

FACITLISTE TIL MATEMA10K C for HHX FACITLISTE TIL MATEMA10K C for HHX Denne liste angiver facit til bogens opgaver. Opgaver hvor svaret er redegørende, fortolkende eller vurderende er udeladt. I statistikopgaver hvor der er flere muligheder

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Vores logaritmiske sanser

Vores logaritmiske sanser 1 Biomat I: Biologiske eksempler Vores logaritmiske sanser Magnus Wahlberg og Meike Linnenschmidt, Fjord&Bælt og SDU Mandag 6 december kl 14-16, U26 Hvad er logaritmer? Hvis y = a x så er x = log a y Nogle

Læs mere

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring Matematik - et grundlæggende kursus Dennis Cordsen Pipenbring 22. april 2006 2 Indhold I Matematik C 9 1 Grundlæggende algebra 11 1.1 Sprog................................ 11 1.2 Tal.................................

Læs mere

Numerisk løsning af differentialligninger

Numerisk løsning af differentialligninger KU-LIFE; Matemati og modeller 009 Numeris løsning af differentialligninger Thomas Vils Pedersen 1 Numerise metoder Ved numeris analyse forstås tilnærmet, talmæssig løsning af problemer, som ie, eller un

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Epidemier og epidemimodeller Studieretningsprojekt i matematik A og biologi A (+ evt. historie A).

Epidemier og epidemimodeller Studieretningsprojekt i matematik A og biologi A (+ evt. historie A). 7.4.07 Kristian Priisholm, Flóvin Tór Nygaard Næs & Lasse Arnsdorf Pedersen. Epidemier og epidemimodeller Studieretningsprojekt i matematik A og biologi A (+ evt. historie A). Indledning Projektet omhandler

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Trine Eliasen

Læs mere

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever.

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever. År Sommer 2015 Institution Horsens HF & VUC Uddannelse HF2-årigt Fag og Matematik C niveau Lærer Søren á Rógvu Hold 1b Oversigt over forløb Forløb 1 Forløb 2 Forløb 3 Forløb 4 Forløb 5 Forløb 6 Forløb

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Computerstøttet beregning

Computerstøttet beregning CSB 2009 p. 1/16 Computerstøttet beregning Lektion 1. Introduktion Martin Qvist qvist@math.aau.dk Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår, Aalborg Universitet, 3. februar 2009 people.math.aau.dk/

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 2014 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

3.3 overspringes. Kapitel 3

3.3 overspringes. Kapitel 3 M4ELT1 Lektion 2 3.3 overspringes Kapitel 3 3.1 Elektromotorisk kraft. Klemspænding Fysisk betydning af E og r i Tegn sted/potential-graf Vælg nulpunkt for potentialet Belastningsforsøg R varieres I måles

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 9, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael ørdam 1 Egentlige og uegentlige dobbeltintegraler: efinition (Egentlige

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014 Brobygningsopgaver Den foreliggende opgavesamling består af opgaver fra folkeskolens afgangsprøver samt opgaver på gymnasieniveau baseret på de samme afgangsprøveopgaver. Det er hensigten med opgavesamlingen,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitutionernes fest 53 Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitution en masse Vi vil i denne artikel vise, hvorledes man kan løse den generelle tredjegradsligning

Læs mere

Studieretningsprojekter i machine learning

Studieretningsprojekter i machine learning i machine learning 1 Introduktion Machine learning (ml) er et område indenfor kunstig intelligens, der beskæftiger sig med at konstruere programmer, der kan kan lære fra data. Tanken er at give en computer

Læs mere

Numeriske metoder. Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn. Side 1 af 15

Numeriske metoder. Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn. Side 1 af 15 Numeriske metoder Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn Side 1 af 15 Indholdsfortegnelse Matematik forklaring... 3 Lineær regression... 3 Numerisk differentiation...

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

Vejledende løsninger, Mat A, maj 2015 Peter Bregendal

Vejledende løsninger, Mat A, maj 2015 Peter Bregendal Delprøven uden hjælpemidler Opgave 1 a) Se graf: Opgave 2 a) f (x)= 25000x + 475000 År hvor værdien er 150000: 25000x + 475000 = 150000 25000x = 325000 x = 13 I år 2025 vil værdien være faldet til 150000

Læs mere

Ændring af rammeområde 2.B.6 Østbyvej

Ændring af rammeområde 2.B.6 Østbyvej Ændring af rammeområde 2.B.6 Østbyvej Tillæg 12 til Roskilde Kommuneplan 2013 2.B.6 2.BT.4 0 500 m 500 Forord HVAD ER ET TILLÆG TIL KOMMUNEPLANEN? Den fysiske planlægning reguleres bl.a. gennem kommuneplanlægning.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 15 Institution VUC Thy-Mors Uddannelse Fag og niveau Lærer(e) Hold stx Matematik niveau A Knud Søgaard

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

PARTIELT MOLÆRT VOLUMEN

PARTIELT MOLÆRT VOLUMEN KemiF1 laboratorieøvelser 2008 ØvelseF1-2 PARTIELT MOLÆRT VOLUMEN Indledning I en binær blanding vil blandingens masse være summen af komponenternes masse; men blandingens volumen vil ikke være summen

Læs mere

Evaluering Matematik A på htx

Evaluering Matematik A på htx Evaluering af Matematik A på htx Sommeren 2011 1 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabel... 6 Årets prøve i tal... 6 Vurdering af opgavesættet... 8 Forberedelsesmaterialet...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal.

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal. Eksponentielle funktioner Indhold Definition:... 1 Om a og b... 2 Tegning af graf for en eksponentiel funktion... 3 Enkeltlogaritmisk koordinatsstem... 4 Logaritmisk skala... 5 Fordoblings- og halveringskonstant...

Læs mere

Differentialligninger

Differentialligninger Differentialligninger for A-niveau i st, udgave SkÄrmbillede fra TI-Nspire 015 Karsten Juul Differentialligninger for A-niveau i st, udgave 1 Hvad er en differentialligning? 1a OplÄg til differentialligninger1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

DIFFERENTIALREGNING Hvorfor er himlen blå?

DIFFERENTIALREGNING Hvorfor er himlen blå? DIFFERENTIALREGNING Hvorfor er himlen blå? Differentialregning - Rayleigh spredning - oki.wpd INDLEDNING Hvem har ikke betragtet den flotte blå himmel på en klar dag og beundret den? Men hvorfor er himlen

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Jeg ønsker at aflægge prøve på nedenstående eksaminationsgrundlag. Jeg har foretaget ændringer i vejlederens fortrykte forslag: nej ja Dato: Underskrift HUSK at

Læs mere

Hvad er CAS? Hvad er algebra? Didaktisk analyse af CAS-brug Hvad kan lærerne gøre?

Hvad er CAS? Hvad er algebra? Didaktisk analyse af CAS-brug Hvad kan lærerne gøre? CAS og folkeskolens matematik muligheder og udfordringer Carl Winsløw winslow@ind.ku.dk http://www.ind.ku.dk/winslow Hvad er CAS? Hvad er algebra? Didaktisk analyse af CAS-brug Hvad kan lærerne gøre? 1

Læs mere

Den elektrodynamiske højttaler

Den elektrodynamiske højttaler Den elektrodynaiske højttaler Ideel højttaler: arbejder i stepelorådet (stift stepel) kun translatoriske bevægelser dynaiske bevægelser foregår lineært Højttalerebranen betragtes so et sipelt svingende

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

EKSAMENSOPGAVER I MATEMATIK

EKSAMENSOPGAVER I MATEMATIK VEJLENDENDE EKSEMPLER PÅ EKSAMENSOPGAVER I MATEMATIK STX A-NIVEAU INKLUSIV STX B-NIVEAU 1 Forord Matematik A i stx er beskrevet gennem henholdsvis læreplan, undervisningsvejledning og de to vejledende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Ann Risvang

Læs mere

Løsninger til eksamensopgaver på B-niveau 2011-2012

Løsninger til eksamensopgaver på B-niveau 2011-2012 Løsninger til eksamensopgaver på B-niveau 011-01 18. maj 011: Delprøven UDEN hjælpemidler Opgave 1: 5x 11 19x 17 1117 19x 5x 8 14x x Opgave : T K T K KT T K T K KT KT T Parentesen er udregnet ved hjælp

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Oversigt. funktioner og koordinatsystemer

Oversigt. funktioner og koordinatsystemer Et koordinatsystem er et diagramsystem, der har to akser, en vandret akse og en lodret akse - den vandrette kaldes x-aksen, og den lodrette kaldes y-aksen. (2,4) (5,6) (8,6) Et punkt skrives altid som

Læs mere

FISKE ANATOMI DTU Aqua, Danmarks Tekniske Universitet

FISKE ANATOMI DTU Aqua, Danmarks Tekniske Universitet Gæller Seniorrådgiver Alfred Jokumsen Danmarks Tekniske Universitet (DTU) Institut for Akvatiske Ressourcer (DTU Aqua) Nordsøen Forskerpark, 9850 Hirtshals 1 DTU Aqua, Danmarks Tekniske Universitet FISKE

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C PEJE (Pernille

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Vejledende eksempler på eksamensopgaver hf B-niveau uden hjælpemidler

Vejledende eksempler på eksamensopgaver hf B-niveau uden hjælpemidler Vejledende eksempler på eksamensopgaver hf B-niveau uden hjælpemidler 1001 7 a a a) Reducér udtrykket 4 a 100 5 a a) Reducér udtrykket 3 (a ) 1003 a) Løs ligningen x x 6 = 0 1004 a) Reducér ( a + b) a(

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Info Stokastiske processer og køteori 1. kursusgang Jesper Møller Institut for Matematiske Fag Aalborg Universitet http://www.math.aau.dk/ jm JM (I17) VS7-1. minimodul 1 / 40 Info Praktisk information

Læs mere

gl. Matematik A Studentereksamen

gl. Matematik A Studentereksamen gl. Matematik A Studentereksamen gl-stx132-mat/a-14082013 Onsdag den 14. august 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

SRO. Newtons afkølingslov og differentialligninger. Josephine Dalum Clausen 2.Y Marts 2011 SRO

SRO. Newtons afkølingslov og differentialligninger. Josephine Dalum Clausen 2.Y Marts 2011 SRO SRO Newtons afkølingslov og differentialligninger Josephine Dalum Clausen 2.Y Marts 2011 SRO 0 Abstract In this assignment I want to illuminate mathematic models and its use in the daily movement. By math

Læs mere

Kinematik. Lad os betragte en cyklist der kører hen ad en cykelsti. Vi kan beskrive cyklistens køretur ved hjælp af en (t,s)-tabel, som her:

Kinematik. Lad os betragte en cyklist der kører hen ad en cykelsti. Vi kan beskrive cyklistens køretur ved hjælp af en (t,s)-tabel, som her: K Kinematik Den del af fysikken, der handler om at beskrive bevægelser hedder kinematik. Vi kan se på tid, position, hastighed og acceleration, men disse ting må altid angives i forhold til noget. Fysikere

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Stokastiske processer og køteori 1. kursusgang Anders Gorst-Rasmussen Institut for Matematiske Fag Aalborg Universitet 1 PRAKTISK INFORMATION Hjemmeside: http://www.math.aau.dk/~gorst/vs7 Litteratur: 1.

Læs mere

Topologi-optimering ved brug af ikke-lineær Darcy dæmpning

Topologi-optimering ved brug af ikke-lineær Darcy dæmpning 3-ugers kursus, s011337 og s011394 Topologi-optimering ved brug af ikke-lineær Darcy dæmpning Peter Jensen og Caspar Ask Christiansen Vejleder: Fridolin Okkels MIC Institut for mikro- og nano-teknologi

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Fra spild til penge brug enzymer

Fra spild til penge brug enzymer Fra spild til penge brug enzymer Køreplan 01005 Matematik 1 - FORÅR 2010 Denne projektplan er udarbejdet af Per Karlsson og Kim Knudsen, DTU Matematik, i samarbejde med Jørgen Risum, DTU Food. 1 Introduktion

Læs mere

Projekt 4.2. Nedbrydning af rusmidler

Projekt 4.2. Nedbrydning af rusmidler Projekt 4.2. Nedbrydning af rusmidler Dette projekt lægger op til et samarbejde med biologi eller idræt, men kan også gennemføres som et projekt i matematik, hvor fokus er at studere forskellen på lineære

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Matematik Niveau B Prøveform b

Matematik Niveau B Prøveform b GUX Matematik Niveau B Prøveform b Torsdag den 15. maj 2014 Kl. 09.00-13.00 GL141 - MAB - NY 1 GUX matematik B sommer 2014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler

Læs mere

1. Kræfter. 2. Gravitationskræfter

1. Kræfter. 2. Gravitationskræfter 1 M1 Isaac Newton 1. Kræfter Vi vil starte med at se på kræfter. Vi ved fra vores hverdag, at der i mange daglige situationer optræder kræfter. Skal man fx. cykle op ad en bakke, bliver man nødt til at

Læs mere

Bevægelse i to dimensioner

Bevægelse i to dimensioner Side af 7 Bevægelse i to dimensioner Når man beskriver bevægelse i to dimensioner, som funktion af tiden, ser man bevægelsen som var den i et almindeligt koordinatsystem (med x- og y-akse). Ud fra dette

Læs mere