Lektion 13 Homogene lineære differentialligningssystemer

Størrelse: px
Starte visningen fra side:

Download "Lektion 13 Homogene lineære differentialligningssystemer"

Transkript

1 Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1

2 To-kammer modeller. Blodet bliver tilført et medikament ved intravenøs injektion. I en model tænker vi at tre ting sker samtidig: Noget af stoffet udskilles med urinen (ekskretion). Noget af stoffet fordeler sig i vævet (distribution). Noget af stoffet vandrer fra vævet tilbage til blodbanen (redistribution). Lad x(t) (mg) og y(t) (mg) være mængden af medikamentet i blod og væv. Denne figur v 3 x(t) v 1 v 2 y(t) 2

3 viser stoffets vandring hvis v 1, v 2, v 3 (mg/h) er hastigheden af distribution, redistribution og ekskretion. For hver af de to kasser gælder ændring = det som løber ind det som løber ud Dette princip leder til ligningerne x (t) = v 2 v 1 v 3 (1) y (t) = v 1 v 2 (2) I denne model antager vi at der findes positive konstanter k 1, k 2 og k 3 så v 1 = k 1 x, v 2 = k 2 y og v 3 = k 3 x. (Hastighederne antages altså at være proportionale med medikamentmængden i den kasse medikamentet udskilles fra.) Ligningerne (1) (2) giver nu et system af to differentialligninger x (t) = (k 1 + k 3 )x + k 2 y (3) y (t) = k 1 x k 2 y (4) Dette er et homogent lineært differentialligningssystem. Ved en løsning forstår vi et par af funktioner (x(t), y(t)) som opfylder begge ligninger. 3

4 Løsning af differentialligningssystemer A. Homogene tilfælde Vi løser et lineært homogent differentialligningssystem ved at omskrive det til en homogen 2.ordens differentialligning. Det næste eksempel viser hvordan. Eksempel 1 Løs differentialligningssystemet dx = x + 2y (5) dt = 2x 2y (6) dt Find den løsning der opfylder begyndelsesbetingelserne x(0) = 14 og y(0) = 2. Løsning: Vi får en 2. ordens ligning sådan her: x = (x + 2y) fra (5) = x + 2y = x + 4x 4y fra (6) = x + 4x 2 2y = x + 4x 2(x x) fra (5) = x + 6x 4

5 Nu løser vi 2. ordens differentialligningen og får x + x 6x = 0 x = Ae 2t + Be 3t da r 2 + r 6 = (r 2)(r + 3) har de to rødder r = 2 og r = 3. Nu har vi x og dermed også y = 1 2 (x x) fra (5) = 1 2 ( 2Ae 2t 3Be 3t Ae 2t Be 3t ) = 1 2 Ae2t 2Be 3t Dette er den generelle løsning. Den specielle løsning, vi søger, er bestemt ved A + B = A 2B = 2 som giver A = 12 og B = 2, så x(t) = 12e 2t + 2e 3t y(t) = 6e 2t 4e 3t y x 5

6 Eksempel 2 Find den løsning til differentialligningssystemet x = 3x + 2y (7) y = 4x + y (8) som opfylder de to begyndelsesbetingelser x(0) = 0 og y(0) = 1. Løsning: Vi finder at x = 3x + 2y fra (7) = 3x 8x + 2y fra (8) = 3x 8x + (x + 3x) fra (7) = 2x 5x eller x + 2x + 5x = 0. Da D = b 2 4ac = = 16 k = b 2a = 2 2 = 1 D ω = 2a = 4 2 = 2 er løsningen til denne 2.ordens ligning x = e t( A sin(2t) + B cos(2t) ) 6

7 og dermed x = e t( ( A 2B) sin(2t) + (2A B) cos(2t) ) y = 1 ( ) x + 3x 2 = e t( (A B) sin(2t) + (A + B) cos(2t) ) Vi har nu den fuldstændige løsning til de to ligninger (7) (8). Begyndelsesbetingelserne 0 = x(0) = B 1 = y(0) = A + B giver A = 1 og B = 0, så x = e t sin(2t) y = e t( sin(2t) + cos(2t) ) er den søgte løsning y 0.4 Flyd med strømmen! x 0.2 7

8 Omskrivning fra ligningssystem til 2. ordens ligning Hard-core matematikere gør det én gang for alle. Hvis så er eller x = ax + by (9) y = cx + (10) x = (x ) = (ax + by) fra (9) = ax + by = ax + bcx + b fra (10) = ax + bcx + d(x ax) fra (9) = (a + d)x (ad bc)x x (a + d)x + (ad bc)x = 0 (11) Hvix x og y løser systemet (9) (10), så vil x løse 2. orden ligningen (11). 8

9 Eksempel 3 (Januar 2000 Opg 3) Find den løsning til x = 1 4 y y = 1 3 x y som opfylder x(0) = 30, y(0) = 19. Løsning: Differentialligningssystemet giver en 2.ordens differentialligning hvis karakteristisk polynomium har rødderne 1 6 og 1 2. Derfor er x = Ae t/6 + Be t/2 y = 4x = 2 3 Ae t/6 + 2Be t/2 Begyndelsesbetingelserne giver ligningerne 30 = A + B 19 = 2 3 B 2B med løsningen A = 237 8, B = 3 8. Altså er x = e t/ et/2 y = 79 4 e t/ et/2 9

10 B. Inhomogene ligningssystemer Systemet x = 3x 2y 3 y = 3x 4y + 9 er et inhomogent lineært differentialligningssystem med konstante koefficienter. Ligevægtstilstanden, bestemt ved 0 = 3x 2y 3 0 = 3x 4y + 9 giver én konstant løsning til systemet, nemlig x = 5, y = 6. Den fuldstændige løsning får vi ved til ligevægtstilstanden at addere alle løsninger til det tilsvarende homogene system Det giver x = 3x 2y y = 3x 4y x = 2Ae 2t + Be 3t + 5 y = Ae 2t + 3Be 3t

11 Eksempel 4 Jordbunden består af to forskellige jordlag. Vi antager at regn falder på jordoverfladen med konstant hastighed p (mm/h), siver ned i det første jordlag, derfra ned i det andet, og derfra videre ned i undergrunden. Vi opstiller en matematisk model. Lad x(t) (mm) og y(t) (mm) være vandhøjden i det øverste og det nederste lag. Vi bruger en 2-kammer model til at beskrive situation p x(t) k 1x y(t) k 2y Her står p (mm/h) for den konstante regnintensitet. Vi antager, at den hastighed hvormed vandet flyder væk fra et jordlag er proportional med vandhøjden (i mm) i det jordlag. Det giver ligningerne x = p k 1 x y = k 1 x k 2 y som er et inhomogent system. 11

12 Ligevægtstilstandens konstante løsninger fås af 0 = p k 1 x 0 = k 1 x k 2 y som giver x = p k, y = p 1 k. Det tilsvarende 2 homogene system x = k 1 x y = k 1 x k 2 y har løsningen (Overvej!) x = Ae k 1t y = k 1 k 2 k 1 Ae k 1t + Be k 2 t Den fuldstændige løsning er derfor x = p k 1 + Ae k 1t y = p k 2 + k 1 k 2 k 1 Ae k 1t + Be k 2t 12

13 Lad os nu også antage at jordlagene er tørre til tiden t = 0, altså at vi har begyndelsesbetingelserne x(0) = 0 og y(0) = 0. Det giver eller 0 = p k 1 + A 0 = p k 2 + k 1 k 2 k 1 A + B A = p k 1 B = p k 2 + k 1 k 2 k 1 p k 1 = Vi konkluderer altså at x = p ( 1 e k 1 t ) k 1 y = p p k 2 k 2 k 1 = p e k p 1t k 2 k 1 p k 2 (k 2 k 1 ) ( e k 1 t k 1 e k 2t k 2 ) ( 1 k 1 k 2 e (k 1 k 2 )t k 2 k 1 giver udviklingen af vandhøjden i de to jordlag. ) 13

14 Lotka Volterra modeller Betragt (det ikke-lineære) differentialligningssystem dx = x(p ay) (12) dt = y( q + bx) (13) dt med positive konstanter a, b, p, q. Dette system bruges i økologi til at modellere vekselvirkningen mellem en population, x(t), af bytter (sneharer) og en population, y(t), af rovr (polarræve). Hvis konstanten a var lig med 0, ville (12) reducere til ligningen dx/dt = px for eksponentiel vækst, og bestanden af bytter ville vokse over alle grænser for t. Tilsvarende, hvis konstanten b var lig med 0, ville (13) reducere til ligningen /dt = qy for eksponentiel henfald, og bestanden af rovr ville uddø for t. Det negative led ay i (12) nedsætter per capita vækstraten for bytterene med et bidrag der er proportionalt med antallet af rovr. Det positive led bx i (13) øger per capita vækstraten for rovrene med et bidrag der er proportionalt med antallet af bytter. Vito Volterra udviklede modellen ca 1920 for at analysere de cykliske variationer i spisefisk/haj-bestandene i Adriaterhavet. 14

15 Eksempel 5 Differentialligningssystemet dx = 0, 08x 0, 0003xy dt = 0.07y + 0, 0002xy dt x(0) = 800, y(0) = 75 modellerer samspillet mellem en bestand kaniner, oprindeligt på 800, og en bestand ulve, oprindeligt på Graferne for x(t) og y(t) Antal Tid LotkaVolterraCyklus 600 Kurven (x(t), y(t)) y x Løsningskurverne er ikke stabile - biologisk set ikke så godt! 15

16 To konkurrerende arter Differentialligningssystemet dx 1 dt = α 1x 1 (K 1 x 1 α 12 x 2 ) (14) dx 2 dt = α 2x 2 (K 2 x 2 α 21 x 1 ) (15) med positive konstanter α 1, α 2, α 12, α 21, bruges i økologi til at modellere vekselvirkningen mellem en to populationer af to re- eller plantearter, der konkurrerer om de samme ressourcer. Funktionerne x 1 (t) og x 2 (t) står for antallet af individer af art 1 og 2 til tiden t. K 1 og K 2 er miljøets bærekapacitet for de to arter. Hvis konstanterne α 12 og α 21 begge var lig med 0 ville ligningerne reducere til de logistiske ligninger og antallet af begge arter ville vokse logistisk uden indflydelse på hinanden. Når konstanten α 12 ikke er 0 udtrykker det at x 2 individer af art 2 har lige så stor negativ indvirking på art 1 som α 12 x 2 individer dens egen slags. Helt tilsvarende har x 1 individer af art 1 lige så stor negativ indvirkning på art 2 som α 21 x 1 individer af den egen art. 16

17 Opgaver til Lektion Løs differentialligningssystemet dx dt = 2x y dt = x 2. Løs differentialligningssystemet dx dt = x + y dt = x y + t 3. To rearter, hvis antal betegnes med x og y, konkurrerer om de samme ressourcer. Deres interaktion modelleres ved dx = x y e t dt dt = 2x y Find x(t) og y(t) når x(0) = 50 og y(0) = 65. Vil en af arterne udkonkurrere den anden? 4. (Januar 2001) a) Find den generelle løsning til differentialligningssystemet dx dt = 3x y = 4x 2y dt Medtag mellemregninger. b) Find den partikulære løsning, (x(t), y(t)), der opfylder, x(0) = 3 og y(0) = (April 1999) Lad x(t) og y(t) betegne antallet af to slags r, henholdsvis X og Y, der konkurrerer om samme føde. Antag endvidere at renes antal udvikler sig efter ifølge differentialligningssystemet dx dt = 3x y dt = 2x + 2y + 12k 17

18 hvor sidste led i sidste ligning angiver at der udsættes et konstant antal 12k af reart Y pr. tidenhed. a. Find den fuldstændige løsning til dette system af differentialligninger. b. Antag at der til tiden t = 0 er 500 af arten X og 400 af arten Y, og antag desuden at der ikke udsættes nogen r af art Y (k = 0 i ligningerne ovenfor). Vis at en af arterne uddør, og bestem den værdi af t hvor det sker. c. Antag, som i spørgsmål b, at der til t = 0 er 500 af arten X og 400 af arten Y, man lad nu k være forskellig fra 0. Undersøg om det er muligt at redde begge arter fra at uddø ved at udsætte r af arten Y med konstant hastighed, dvs. ved at vælge k passende. 6. (Januar 1997) Et r er blevet angrebet af en skadelig parasit. Til tiden t = 0 er der 25 parasitter, og rets vægt er (i passende enheder) 10. Idet antal parasitter til tiden t betegnes y(t), og rets vægt til tiden t betegnes x(t), gælder dx dt = 1 2 y + 10 = 8x 80 dt Find et udtryk for rets vægt til et vilkårligt tidspunkt t. 7. (Ligning for løsningskurven til Lotka-Volterra modellen) Lad (x(t), y(t)) være løsningskurven for Lotka-Volterra modellen (12, 13), se Eksempel 5. Antag at kurven er graf for en funktion y = y(x). Så er y(t) = y(x(t)) og dt = dx dx dt eller dx = /dt dx/dt Det giver den separable differentialligning dx = px axy qy + bxy = q + bx x y p ay Vis at den generelle løsning er givet implicit på formen x q y p = Ce bx e ay hvor C er en konstant (som kan bestemmes hvis man kender ét punkt, som kurven løber igennem).

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Lektion 9 Vækstmodeller

Lektion 9 Vækstmodeller Lektion 9 Vækstmodeller Eksponentiel vækst 1. Eksponentielt voksende funktioner 2. Eksponentielt aftagende funktioner 3. Halverings- og fordoblingstider Vækst mod asymptotisk grænse Logistisk vækst 1.

Læs mere

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET H.A. NIELSEN INDHOLD. Lineær ligning 2 2. Lineært system 8 3. Generel ligning 6 4. Stabilitet 8 Litteratur 2 Noterne er til 4 timers forelæsninger

Læs mere

BASE. Besvarelse til individuel skriftlig test

BASE. Besvarelse til individuel skriftlig test BASE Besvarelse til individuel skriftlig test Tirsdag d. 21. marts 2006 Tinne Hoff Kjeldsen Bitten Plesner 1 Opgave 1 Vandet i en pool med et volumen på 10.000 gallon indeholder 0,01% klor. Til tiden t

Læs mere

Lektion 8 Differentialligninger

Lektion 8 Differentialligninger Lektion 8 Differentialligninger Implicit differentiation Differentialligninger Separable differentialligninger 0.5 Implicit differentiation 0.4 0.2 0.2 0.4 0.6 0.8 0 0.5 y Vi kan finde måske løse ligningen.5

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Hans J. Munkholm: En besvarelse af

Hans J. Munkholm: En besvarelse af Hans J. Munkholm: En besvarelse af Projekt for MM501, Lineære differentialligninger November-december 2009 Nummererede formler fra opgaveformuleringen Her samles alle opgavens differentialligninger og

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

o < x < 1. In x In 2 KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG EMBEDSEKSAMEN. MATEMATIK FOR BIOLOGER. Vinteren 1985/86.

o < x < 1. In x In 2 KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG EMBEDSEKSAMEN. MATEMATIK FOR BIOLOGER. Vinteren 1985/86. KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG EMBEDSEKSAMEN. MATEMATIK FOR BIOLOGER. Vinteren 1985/86. Opgaver til besvarelse i 4 t i me r. Alle sædvanlige hjælpemidler er tillae. Ved bedømmelsen vægtes alle

Læs mere

DiploMat 1 Inhomogene lineære differentialligninger

DiploMat 1 Inhomogene lineære differentialligninger DiploMat 1 Inhomogene lineære differentialligninger Preben Alsholm Uge Efterår 2008 1 Lineære Differentialligninger af anden orden 1.1 Den inhomogene ligning I Den inhomogene ligning I Vi betragter nu

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Oplægget henvender sig primært til specielt interesserede 3g elever med matematik A og kemi A.

Oplægget henvender sig primært til specielt interesserede 3g elever med matematik A og kemi A. OPLÆG TIL STUDIERETNINGSPROJEKT I MATEMATIK-KEMI OM OSCILLERENDE REAKTIONER OG MATEMATISKE MODELLER Indledning De fleste kemiske reaktioner forløber uproblematisk inil der opnås kemisk ligevægt, eksempelvis

Læs mere

Prøveeksamen i Calculus

Prøveeksamen i Calculus Prøveeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Marts 6 Dette eksamenssæt består af 9 nummererede sider med 4 afkrydsningsopgaver.

Læs mere

Studieretningsprojekt i matematik og biologi Lotka-Volterra modellen en beskrivelse af forholdet mellem byttedyr og rovdyr

Studieretningsprojekt i matematik og biologi Lotka-Volterra modellen en beskrivelse af forholdet mellem byttedyr og rovdyr 8. april 2007 Studieretningsprojekt i matematik og biologi Lotka-Volterra modellen en beskrivelse af forholdet mellem byttedyr og rovdyr Skrevet af Flóvin Tór Nygaard Næs og Lise Danelund Introduktion

Læs mere

Matematisk modellering og numeriske metoder. Lektion 4

Matematisk modellering og numeriske metoder. Lektion 4 Matematisk modellering og numeriske metoder Lektion 4 Morten Grud Rasmussen 17. september, 013 1 Homogene andenordens lineære ODE er [Bogens afsnit.1] 1.1 Linearitetsprincippet Vi så sidste gang, at førsteordens

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Matematisk modellering og numeriske metoder. Lektion 6

Matematisk modellering og numeriske metoder. Lektion 6 Matematisk modellering og numeriske metoder Lektion 6 Morten Grud Rasmussen 24. september, 2013 1 Forcerede oscillationer [Bogens afsnit 2.8, side 85] 1.1 Et forstyrret masse-fjeder-system I udledningen

Læs mere

Differentialligninger med TI-Interactive!

Differentialligninger med TI-Interactive! Differentialligninger med TI-Interactive! Jan Leffers (2008) Indholdsfortegnelse Indholdsfortegnelse...3 1. ordens differentialligninger... 4 Den fuldstændige løsning... 4 Løsning med bibetingelse...4

Læs mere

Lineære 2. ordens differentialligninger med konstante koefficienter

Lineære 2. ordens differentialligninger med konstante koefficienter enote 13 1 enote 13 Lineære 2. ordens differentialligninger med konstante koefficienter I forlængelse af enote 11 og enote 12 om differentialligninger, kommer nu denne enote omkring 2. ordens differentialligninger.

Læs mere

Projekt: Logistisk vækst med/uden høst

Projekt: Logistisk vækst med/uden høst Projekt: Logistisk vækst med/uden høst I dette projekt skal vi arbejde med differentialligninger, specielt med logistisk vækst og med en udvidelse, hvor der indgår høst. Den eksponentielle vækst (type:

Læs mere

Oversigt Matematik Alfa 1, Januar 2003

Oversigt Matematik Alfa 1, Januar 2003 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK NOVEMBER 008 MATEMATIK A-NIVEAU g Prøve november 008 1. delprøve: 1 time med formelsamling samt. delprøve: timer med alle hjælpemidler Alle delspørgsmål indenfor hver af

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Dosering af anæstesistoffer

Dosering af anæstesistoffer Dosering af anæstesistoffer Køreplan 01005 Matematik 1 - FORÅR 2005 1 Formål Formålet med opgaven er at undersøge hvordan man kan opnå kendskab til koncentrationen af anæstesistoffer i vævet på en person

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 14.00 STX091-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Kontinuerte og differentiable modeller benyttet i SRP med matematik A og biologi A eller B

Kontinuerte og differentiable modeller benyttet i SRP med matematik A og biologi A eller B 1 Kontinuerte og differentiable modeller benyttet i SRP med matematik A og biologi A eller B Bent Selchau Indledningsvis vil vi betragte to typer populationsudviklinger, som altid bliver gennemgået i matematikundervisningen

Læs mere

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011 Matematik A Højere teknisk eksamen Forberedelsesmateriale htx112-mat/a-26082011 Fredag den 26. august 2011 Forord Forberedelsesmateriale til prøverne i matematik A Der er afsat 10 timer på 2 dage til

Læs mere

Differentialligninger

Differentialligninger 9 Differentialligninger Linjeelementer Differentialligningen (1) y = x y kan tolkes således, at den i ethvert punkt ( x 0, y 0 ), giver oplysning om tangenthældningen α for en eventuel løsningskurve gennem

Læs mere

2. ordens differentialligninger. Svingninger.

2. ordens differentialligninger. Svingninger. arts 011, LC. ordens differentialligninger. Svingninger. Fjederkonstant k = 50 kg/s s X S 80 kg F1 F S er forlængelsen af fjederen, når loddets vægt belaster fjederen. X er den påtvungne forlængelse af

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx103-mat/a-101010 Fredag den 10. december 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Differensligninger og populationsstørrelser

Differensligninger og populationsstørrelser Differensligninger og populationsstørrelser Søren Højsgaard Department of Mathematical Sciences Aalborg University, Denmark October 22, 2015 Printed: October 22, 2015 File: differensligninger-slides.tex

Læs mere

M A T E M A T I K A 3

M A T E M A T I K A 3 M A T E M A T I K A 3 M I K E A U E R B A C H WWW.MATHEMATICUS.DK z a z # e z # a a x # e x ay # e y y x Matematik A3. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes

Læs mere

Differentialligninger og nummeriske metoder. Thomas G. Kristensen 7. februar 2002

Differentialligninger og nummeriske metoder. Thomas G. Kristensen 7. februar 2002 Differentialligninger og nummeriske metoder Thomas G. Kristensen 7. februar 2002 1 INDHOLD 2 Indhold 1 Indledning 3 2 Definition af 1. og 2. ordens differentialligninger 3 2.1 1. ordens differentialligninger....................

Læs mere

Workshop i differentialligninger

Workshop i differentialligninger Workshop i differentialligninger Indholdsfortegnelse Eksempler på eksamensopgaver side 1 Opgave 1 7: side 1 Projekter: side 3 8. Isokliner side 3 9. Logistisk vækst med jagt/fiskeri side 4 10. Romeo og

Læs mere

STUDENTEREKSAMEN MAJ 2008 MATEMATIK A-NIVEAU. Onsdag den 14. maj 2008. Kl. 09.00 14.00 STX081-MAA

STUDENTEREKSAMEN MAJ 2008 MATEMATIK A-NIVEAU. Onsdag den 14. maj 2008. Kl. 09.00 14.00 STX081-MAA STUDENTEREKSAMEN MAJ 008 MATEMATIK A-NIVEAU Onsdag den 14. maj 008 Kl. 09.00 14.00 STX081-MAA Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål. Delprøven

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Koblede differentialligninger.

Koblede differentialligninger. 2. 3. 4. Koblede differentialligninger. En udvidelse af Newtons afkølingslov løst numerisk ved hjælp af integralkurver. Sidste gang så vi på, hvordan vi kunne opstille og løse en model for afkølingen af

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014 Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx141-matn/a-05052014 Mandag den 5. maj 2014 Forberedelsesmateriale til stx A net MATEMATIK

Læs mere

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 1stx131-MAT/A-24052013 Fredag den 24. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

Matematisk modellering og numeriske metoder. Lektion 1

Matematisk modellering og numeriske metoder. Lektion 1 Matematisk modellering og numeriske metoder Lektion 1 Morten Grud Rasmussen 4. september, 2013 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).

Læs mere

Differentialligninger Et undervisningsforløb med Derive og modelbygning Højt niveau i matematik i gymnasiet

Differentialligninger Et undervisningsforløb med Derive og modelbygning Højt niveau i matematik i gymnasiet Differentialligninger Et undervisningsforløb med Derive og modelbygning Højt niveau i matematik i gymnasiet Niels Hjersing Per Hammershøj Jensen Børge Jørgensen Indholdsfortegnelse 1 1. Forord... 3 2.

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

MODUL 8. Differensligninger. Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN. Modulet er baseret på noter af Peter BEELEN.

MODUL 8. Differensligninger. Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN. Modulet er baseret på noter af Peter BEELEN. MODUL 8 Differensligninger Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN Modulet er baseret på noter af Peter BEELEN. 26. august 2014 2 Indhold 1 Introduktion 5 1.1 Rekursioner og differensligninger.........................

Læs mere

DIFFERENTIALLIGNINGER

DIFFERENTIALLIGNINGER Preben Alsholm DIFFERENTIALLIGNINGER I KEMI OG ØKOLOGI Danmarks Ingeniørakademi, Kemiafdelingen, 1993. FORORD Denne bog er skrevet for studerende med interesse for matematisk ræsonnement. Den kvalitative

Læs mere

Reaktionskinetik

Reaktionskinetik [PJ] Kemi.dfw Reaktionskinetik Kemi A-niveau Vi starter med at repetere siderne 38-4 i Kemi Nulte ordens kemisk reaktion Det kunne fx være den enzymkatalyseret proces: A + E -> B + E Vi følger hvordan

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

HTX. Matematik A. Onsdag den 11. maj Kl GL111 - MAA - HTX

HTX. Matematik A. Onsdag den 11. maj Kl GL111 - MAA - HTX HTX Matematik A Onsdag den 11. maj 2011 Kl. 09.00-14.00 GL111 - MAA - HTX 1 2 Side 1 af 7 sider Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte

Læs mere

Ugesedler til sommerkursus

Ugesedler til sommerkursus Aalborg Universitet - Adgangskursus Ugesedler til sommerkursus Matematik B til A Jens Friis 12 Adgangskursus Strandvejen 12 14 9000 Aalborg tlf. 99 40 97 70 ak.aau.dk sommer Matematik A 1. Lektion : Mandag

Læs mere

Differentialligninger af første orden

Differentialligninger af første orden Differentialligninger af første orden Preben Alsholm Februar 2006 Basale begreber. Eksistens og entydighed. En differentialligning af første orden er en ligning, der sammenknytter differentialkvotienten

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

gl. Matematik A Studentereksamen

gl. Matematik A Studentereksamen gl. Matematik A Studentereksamen gl-1stx131-mat/a-24052013 Fredag den 24. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU. Onsdag den 13. august 2008. Kl. 09.00 13.00 STX082-MAB

STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU. Onsdag den 13. august 2008. Kl. 09.00 13.00 STX082-MAB STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU Onsdag den 13 august 2008 Kl 0900 1300 STX082-MAB Opgavesættet er delt i to dele Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål Delprøven

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald

Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald Der findes mange situationer, hvor en bestemt størrelse ændres som følge af vekselvirkninger med

Læs mere

Note om Laplace-transformationen

Note om Laplace-transformationen Note om Laplace-transformationen Den harmoniske oscillator omskrevet til et ligningssystem I dette opgavesæt benyttes laplacetransformationen til at løse koblede differentialligninger. Fordelen ved at

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet Forberedelsesmateriale frs-matn/a-270420 Onsdag den 27. april 20 Forberedelsesmateriale til stx-a-net MATEMATIK Der skal afsættes

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

Løsningsforslag til opgavesæt 5

Løsningsforslag til opgavesæt 5 Matematik F Matematik F Løsningsforslag til opgavesæt 5 Opgave : Se kursushjemmesiden. Opgave : a) π dθ 5 + 4 sin θ = e iθ, = ie iθ dθ, dθ = i sin θ = eiθ e iθ i = i(5 + 4( / )) = i = + 5i Integranden

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

INFINITESIMALREGNING del 3 Differentialligninger Funktioner af flere variable Differentialligningssystemer

INFINITESIMALREGNING del 3 Differentialligninger Funktioner af flere variable Differentialligningssystemer INFINITESIMALREGNING del 3 Differentialligninger Funktioner af flere variable Differentialligningssstemer x-klasserne Gammel Hellerup Gmnasium 1 Indholdsfortegnelse DIFFERENTIALLIGNINGER... 3 Lineære 1.ordens

Læs mere

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU Tirsdag den 18. december 2007 Kl. 09.00 13.00 STX073-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Formelsamling til MatIntro kurset på Københavns Universitet

Formelsamling til MatIntro kurset på Københavns Universitet Formelsamling til MatIntro kurset på Københavns Universitet af Michael Flemming Hansen Version 1.0 1. februar 2012 Indhold 1 Funktioner af en variabel 4 1.1 Komplekse tal........................... 4 1.1.1

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 1stx111-MAT/A-18052011 Onsdag den 18. maj 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid). Tangenthældninger langs en kurve.

Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid). Tangenthældninger langs en kurve. Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid) Tangenthældninger langs en kurve x Retningsfelter x x(t) sin(π t) + x / π cos(π t) Jeppe Revall Frisvad

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG INDHOLDSFORTEGNELSE Formelsamling... side Grundlæggende færdigheder... side 4 a Finde konstanterne a og b i en regneforskrift (og p eller r)... side 4 b

Læs mere

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives.

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives. Eksamensspørgsmål - maj/juni 2016 1. Tal Du skal redegøre for løsningsregler for ligninger. Forklar, hvordan følgende ligning kan løses grafisk: x + 4 = 3x - 2 Redegør for opstilling af formler til løsning

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Eksempler på differentialligningsmodeller

Eksempler på differentialligningsmodeller 1 Indledning Matematisk modellering er et redskab, som finder anvendelse i et utal af både videnskabelige og samfundsmæssige sammenhænge. En matematisk model søger at knytte en sammenhæng mellem et ikke-matematisk

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Eksamen i Calculus Fredag den 8. januar 2016

Eksamen i Calculus Fredag den 8. januar 2016 Eksamen i Calculus Fredag den 8. januar 2016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen htx112-mat/a-30082011 Tirsdag den 30. august 2011 kl. 9.00-14.00 Side 1 af 7 sider Matematik A 2011 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen

Læs mere

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet

STUDENTEREKSAMEN AUGUST 2009 MATEMATIK A-NIVEAU. Onsdag den 12. august 2009. Kl. 09.00 14.00 STX092-MAA. Undervisningsministeriet STUDENTEREKSAMEN AUGUST 009 MATEMATIK A-NIVEAU Onsdag den 1. august 009 Kl. 09.00 14.00 STX09-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Temaøvelse i differentialligninger Biokemiske Svingninger

Temaøvelse i differentialligninger Biokemiske Svingninger Temaøvelse i differentialligninger Biokemiske Svingninger Rev. 12. november 2009 I denne temaøvelse studerer vi en simpel model for gærglykolyse. Vi starter i Del 1 med at beskrive modellen. Denne model

Læs mere

Matematik A. Højere handelseksamen. Mandag den 18. august 2014 kl hhx142-mat/a

Matematik A. Højere handelseksamen. Mandag den 18. august 2014 kl hhx142-mat/a Matematik A Højere handelseksamen hhx14-mat/a-1808014 Mandag den 18. august 014 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Matematisk modellering og numeriske metoder. Eksempelsamling

Matematisk modellering og numeriske metoder. Eksempelsamling Matematisk modellering og numeriske metoder Eksempelsamling Morten Grud Rasmussen 2. december 206 Indhold Analytiske metoder 3. Metoder til ODE er af første orden............................ 3.. Separation

Læs mere

Kulstof-14 datering. Første del: Metoden. Isotoper af kulstof

Kulstof-14 datering. Første del: Metoden. Isotoper af kulstof Kulstof-14 datering Første del: Metoden I slutningen af 1940'erne finder et team på University of Chicago under ledelse af Willard Libby ud af, at man kan bruge det radioaktive stof kulstof 14 ( 14 C),

Læs mere

Numerisk/grafisk løsning af differentialigninger med TI-Nspire CAS version 1.7

Numerisk/grafisk løsning af differentialigninger med TI-Nspire CAS version 1.7 Numerisk/grafisk løsning af differentialigninger med TI-Nspire CAS version 1.7 Baseret på noter af Knud Nissen og Bjørn Felsager Kapitel 1: Grafisk løsning af differentialligninger side 1 Kapitel 2: Første

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx131-MATn/A-29052013 Onsdag den 29. maj 2013 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret

Læs mere