Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Størrelse: px
Starte visningen fra side:

Download "Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353"

Transkript

1 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi idleder dog med at se ærmere på takegagskompetece, der i praksis viser sig vaskelig at afgræse, me som det følgede afsit ka bidrage til at tydeliggøre. I KOMrapporte defieres takegagskompetece som: Dee kompetece består for det første i at være klar over, hvilke spørgsmål som er karakteristiske for matematik, i selv at stille sådae spørgsmål og i at have blik for, hvilke typer af svar som ka forvetes (KOM-rapporte 2002, s. 47). Det uddybes bl.a. ved at kue udvide et begreb ved abstraktio af egeskaber i begrebet, [og] i at forstå, hvad der ligger i geeraliserig af matematiske resultater. Vi har således ovefor abstraheret de cetrale egeskaber ved vores kedte tal til e mere abstrakt struktur, legemet. Dee proces ka således betragtes som udtryk for et væsetligt elemet i takegagskompetece. Og de resultater, vi ovefor og herefter fider for et legeme, vil selvfølgelig både gælde for de reelle tal og for de ratioale tal. Når vi i ω-boge kommer ærmere id på de komplekse tal, vil det hurtigt afsløres, at disse tal også udgør et legeme, hvorefter vi vil referere tilbage til ærværede kapitel og straks overtage alle de her udviklede begreber og resultater. Dee måde at tæke på er karakteristisk for matematik og cetral i takegagskompetece i matematik på de videregåede uddaelser, heruder også læreruddaelse. Det hører også med til takegagskompetece at kue skele mellem forskellige slags matematiske udsag og påstade, heruder betigede udsag, defiitioer, sætiger, fæomeologiske påstade om ekelttilfælde og formodiger baseret på ituitio eller erfariger med specialtilfælde (Kom-rapporte, s. 47) I starte af brøkkapitlet iddrog vi fæomeologiske påstade omkrig praktiske deligssituatioer med pizzaer og bordopstillig i restaurater. Det gav ogle idsigter og formodiger, som vi argumeterer for i kapitlet Kapitel 9 Algebraiske strukturer i skole 353

2 om É faglig vej geem brøkregig. Her løftede vi os over de praktiske fæomeer til ogle mere geerelle defiitioer og sætiger, der kue udledes af dem. Nu ka vi gå et tri videre. Med kostaterige af, at de ratioale tal er et legeme, ka vi emlig opbygge de videregåede regeregler meget præcist og logisk ud fra betigelsere for et legeme. Det vil vi seere omtale som e aksiomatisk-deduktiv fremstillig, e form der allerede for mere ed år side opstod ide for geometrie, me først for alvor er slået igeem ide for e ikke-geometrisk algebra ide for de seeste århudreder. I lærebøgeres færdige fremstillig af matematisk takegag skjules ofte det meget karakteristiske, at ma i praksis ædrer på sie defiitioer, hvis ma har problemer med at bevise ogle af de sætiger, som ma ad erfariges vej har lært at tro på. Måske er det edda rimeligt at hævde, at defiitioere kommer til sidst, år ma har fået det matematiske på plads, og det væsetlige har udkrystalliseret sig, jf. defiitioe af et legeme. Det er e defiitio, der klart er udspruget af, at ma har set tilstrækkeligt mage strukturer med fælles egeskaber til, at ma til sidst har udkrystalliseret e esses. Dette mod og dee eve til at sætte spørgsmål ved defiitioer er e vigtig del af videskabsmades takegagskompetece. Me at det er videskabsmades forhidrer ikke, at ma gaske lagsomt iddrager det i skoles matematikudervisig. Hvis ma ikke gør det, syder ma elevere for e væsetlig del af matematisk virksomhed og bidrager til at uderstøtte et autoritetstro sy på matematik, der hæver matematikke over ehver diskussio. Derfor vil vi tage fat på at diskutere defiitioer i et særligt afsit Drilske spørgsmål i potesregig. Vil ma læse e rigtig god fremstillig af det gesidige forhold mellem defiitioer og sætiger, så abefales det lille værk Proofs ad refutatios (Lakatos 1976). Potesregereglere i et legeme I et legeme L ka vi defiere poteser og derefter bevise reglere for regig med poteser. 354 del iv Algebra

3 Defiitio 4 For et hvert tal a i L og ethvert aturligt tal defieres a a a a... a, altså lig med i alt faktorer a, hvis produkt så udgør a. De klassiske betegelser for dee situatio er, at a kaldes e potes, a kaldes rode og kaldes ekspoete. I yere sprog ka forekomme, at også kaldes for potese og a kaldes grudtallet. Ud fra defiitio 4 og det faktum, at vi befider os i et legeme, ka vi u bevise e række sætiger om potesopløftig. Da vi idtil u ku har to dokumeterede eksempler på legemer, emlig ( Q,+, ) og ( R,+, ), er det altså i første omgag disse legemer, vi vil tæke på. Imidlertid vil vi i bevisere udelukkede beytte de grudlæggede egeskaber for legemer for at skærpe opmærksomhede på, at det etop er disse, der er grudlaget for bevisere. Ved ku at bygge på de grudlæggede egeskaber opår vi, at alle de følgede sætiger også vil gælde for de komplekse tal, som vi skal beskæftige os med i ω-boge. Sætig 9 For alle aturlige tal og m og alle tal a i L gælder + m ( m) a a a. Bevis Vi beytter blot defiitio 4 på lov for regigsarte gage : m a a ( a a a... a) ( a a a... a) faktorer m faktorer a ogle gage samt de associative (da paretesere ka hæves pga. de associative lov) + m ( a a a... a) a. + m faktorer Kapitel 9 Algebraiske strukturer i skole 355

4 Eksempel 2 Eksempler fra heholdsvis ( Q,+, ) og ( R,+, ) , , π π π 10, Sætig 10 For alle aturlige tal og alle tal a, b i legemet L gælder ( a b) a b. Bevis Ige beyttes defiitio 4 på potesopløftig og de associative lov for gage. Desude avedes de kommutative lov ogle gage: ( a b) ( a b) ( a b)... ( a b) a b a b... a b faktorer faktorer a og faktorer b ( a a... a) ( b b... b) a b. faktorer a og faktorer b Eksempel ( 2 3) 2 3, der i øvrigt er lig med Sætig 11 m m a a. For alle aturlige tal og m og alle tal a i L gælder: ( ) 356 del iv Algebra

5 Bevis Ige behøver vi blot at avede defiitio 4 og de associative lov: m ( a ) a a... a ( a a... a) ( a a... a)... ( a a... a) m faktorer m faktorer faktorer faktorer faktorer m a a... a a. m faktorer Eksempel , ( ) ( ) ( ), ( ) 3 3. Drilske spørgsmål i potesregig Vi skifter u fremstilligsform fra de strigete deduktive form med defiitio, sætig og bevis til e mere diskuterede. For etop på området med potesregeregler drejer de didaktiske problemer, ma som lærer løber id i, sig ofte om, hvorfor defiitioere er, som de er. Når ma således diskuterer regeregler omkrig poteser med lærerstuderede er de oftest forekommede spørgsmål: Hvorfor er a 0 1? og Hvorfor er det u lige, at 4 16? 2 1 I det følgede besvares disse og adre drilske spørgsmål, idet vi samtidig kommer id på, hvorda ma i matematikke tilstræber at fastholde pæe og simple sætiger samt selvfølgelig at udgå modstrid. Lad os imidlertid straks slå fast, at matematikke er e meeskelig kostruktio, og at der derfor på forhåd ikke er oget, der forhidrer matematikere i at defiere eller eller edda Det vil blot have ogle ubehagelige kosekveser. Mest markat ville det gå ud over de måske mest brugte regeregel for poteser, emlig sætig 9 ovefor: + a a m a ( m). Kapitel 9 Algebraiske strukturer i skole 357

6 Vi har allerede bevist, at dee regeregel må gælde for vilkårlige reelle tal a og vilkårlige aturlige tal m og. Og hvis vi u gere vil have dee ekle regeregel til også at gælde, år og m er midre ed eller lig med 0, så bliver vi simpelthe tvuget til at defiere a 0 1 og Det vil vi vise i det følgede, bl.a. ud fra de ovefor give defiitio 4 på a for lig et aturligt tal. 2 1 Sætig 12 (alme udgave) For alle hele tal og m og alle tal a i R, + a a m a ( m). ( a 0) gælder Sætig 12 skal i første omgag betragtes som et øske, vi opstiller, og u vil vi drage kosekvesere af dette øske. Vi ka kalde dee proces for e aalyse, idet vi atager, at sætige er sad, og ser, hvor det fører os he. Vi aalyserer os frem til, hvorda vi bedst ka defiere størrelser som 0 2 a og 4. Sætig 13 Af sætig 12 følger, at der ødvedigvis gælder: a og a a. Bevis Sætig 12, som vi skal bygge på, siger, at der for alle fra 0 forskellige + reelle tal a og for alle hele tal og m gælder, at a a m a ( m). Så lad a være et vilkårligt fra 0 forskelligt reelt tal, og lad m være et 0 + aturligt tal. Så gælder ifølge sætig 12, at m (0 m) a a a, altså at 0 m m a a a, idet (0 + m) m. 358 del iv Algebra

7 m Nu ved vi, at a er forskellig fra 0, så vi ka dividere med det på hver m 0 m m 0 a side af a a a, hvilket giver a 1. Vi har således bevist m a første del af sætig 13. For at bevise ade del af sætige lader vi ige a være et vilkårligt fra 0 forskelligt reelt tal og lader være et aturligt tal. Ifølge sætig 12 (alme udgave) er: 0 1 ( + ( )) a a a a, hvor det adet lighedsteg gælder, fordi + ( ) 0, og det tredje gælder ifølge det, vi etop har vist. Vi dividerer på hver side af a a 1 med a og får a 1 a, hvilket er påstade i ade del af sætig 13. Efter at have bevist sætig 13 har vi selvfølgelig stadig frihed til at defiere 0 a og a som vi vil, me sætig 13 fortæller os, at det både for matematik som videskab og for de bør, der skal lære faget i skole, ville være hesigtsmæssigt at vælge de defiitio, der foreslås i sætig 13. Det vælger vi derfor i dee bog. Defiitio 5 For alle aturlige tal og for alle fra 0 forskellige reelle tal a defierer vi: a og a a. Ud fra dee defiitio ka ma så til gegæld bevise, at sætig 12 gælder i si almee form. Beviset overlades til læsere. Kapitel 9 Algebraiske strukturer i skole 359

8 Øvelse 6 Prøv selv at gå geem argumetet bag sætig 13 ige og påvis helt kokret, at de eeste foruftige betydig af er 1, og tilsvarede bør 4 være det samme som. 16 Øvelse 7 Sætig 13 udsiger, at vi ikke ka få sætig 12 til at gælde geerelt, med midre vi accepterer defiitio 5. Hvis vi u accepterer defiitio 5, så ka vi faktisk bevise sætig 12 i si almee form. Dette hedder at dae e sytese (opbygig) efter de etop geemførte aalyse ( 2) Prøv at bevise sætig 12 i følgede kokrete tilfælde: Vis det ved at tage udgagspukt i defiitio 5. Et meget specielt resterede problem De oveståede aalyse giver ikke oget svar på, hvad vi med fordel ka forstå ved 0 a og a, år a er lig med 0. 1) Hvis vi repeterer første del af beviset for sætig 13, ser vi, at det bliver 0 m svært at kokludere oget ud fra m 0, idet der blot står 0 0 0, hvilket er sadt uaset, hvilke værdi vi tillægger 0 0. Så vi må kokludere, at vi er frit stillet i defiitioe af 0 0. Det er klart, at det ikke vil skabe større problemer i et almideligt hverdagsliv, hvis vi defierer , fordi det er meget svært at fide situatioer fra hverdage, hvor e beregig af 0 0 har oge betydig. Iteratioalt er ma imidlertid blevet eige om følgede foruftige argumet: Da a 0 1 for a 0, betyder det, at fuktioe f ( x) x 0 er kostat lig med 1 for x 0. Hvis vi u sætter x 0 1, så bliver fuktioe f ( x) x 0 kostat og altså kotiuert (ude pludselige sprig) for alle reelle tal x. Hvis vi sætter f (0) 0 0 lig med oget som helst adet ed 1, bliver fuktioe diskotiuert de vil være kostat, me pludselig 360 del iv Algebra

9 hoppe ved x 0. Derfor sætter vi x 0 1 efter dee bladig af æstetiske og praktiske overvejelser. Det sikrer, at alle de elemetære fuktioer i matematik (dem ma arbejder med på B-iveau i gymasiale uddaelser, og som vi skal se på i æste kapitel), bliver kotiuerte og dermed lettere at rege med i de videregåede matematik, både itert og i avedelsere. 2) Hvad agår a 1, så bliver de rigtig grim, hvis a sættes lig med a 1 1 0, idet der vil stå 0. Da det almideligvis er forbudt at dividere med 0, syes det ikke muligt på dee måde at tillægge 0 oge 0 0 meig. Nu skal ma ige huske på, at matematik er e meeskelig kostruktio, og at der derfor ikke er oget, der på forhåd er forbudt i matematik. Det er som i livet i øvrigt et spørgsmål om, hvorvidt ma vil bære kosekvesere af det, ma gør. Vi så ovefor, at vi havde lov at defiere 0 a og a, som vi ville, me hvis ikke vi gjorde som i defiitio 5, kue vi ikke redde sætig 12. Så, da matematik er meeskeværk, ka det da godt være, at vi kue klare problemet med Matematikere har allerede opfudet symbolet for 0 uedelig. Der kue være e vis foruft i at defiere 1 0 behøver blot at se på udviklige: som. Ma x 1 ½ 1/10 1/100 1/ / /x Altså, jo midre x bliver, desto større bliver 1. Dette kue godt friste til x at sige, at år x bliver uedelig lille, så skal 1 x være uedelig stor. Eller kort sagt: år x bliver 0, så bliver 1 x til. Kapitel 9 Algebraiske strukturer i skole 361

10 Imidlertid løber vi id i problemer, hvis vi faktisk vil påstå, at er et tal på lige fod med de adre reelle tal. For hvis det er tilfældet, må ma rege med det på sædvalig vis og får så følgede mærkelige udregig: , hvor vi efter forkortig med 0 på vestre side får: Da det er e almidelig regeregel, at a 0 0, så bliver kosekvese, at 1 0, hvilket vil medføre, at alle tal er lig med 0. Det er e al for stor pris at betale for at få lov til at give meig til et så specielt udtryk som 1 0. Vi vælger derfor også at opgive at tillægge det edu mere geerelle udtryk 0 oge meig. Opgave 8 Ma kue prøve at redde situatioe ved at hævde, at 0 ikke slår ed i e multiplikatio, me at de er jævbyrdige på e måde, så 0 1. Me det ka heller ikke lade sig gøre ude at skabe talmæssige katastrofer. Prøv fx at udrege hver side af 2 (0 ) (2 0) eller oget ligede, og se om du har lyst til at bære kosekvesere af de seeste atagelse. Digt e dialog: Lærere: Og x opløftet til ulte sætter vi lig med 1. Mads: Jo, me 4 i ade var 16, fordi vi skulle gage 4 med sig selv to gage. Hvis vi skal gage fire med sig selv ul gage, så giver det jo slet ige tig, og det er vel det samme som ul. Altså Lærere: digt videre Rødder i et legeme som de reelle tal Geerelt ka ma ikke uddrage kvadratrødder i et legeme. Specielt er der få kvadratrødder ide for det ratioale tallegeme, idet sadsylighede for, at et ratioalt tal har e ratioal kvadratrod, er meget lille, ja ærmest 0. Det 362 del iv Algebra

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

Talfølger og -rækker

Talfølger og -rækker Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation. De reelle tal Morte Grud Rasmusse 5. ovember 2015 Ordede mægder Defiitio 3.1 (Ordet mægde). pm, ăq kaldes e ordet mægde såfremt: For alle x, y P M gælder etop ét af følgede: x ă y, x y, y ă x @x, y, z

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor godschauffør området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Projekt 0.4 Modulo-regning, restklassegrupperne ( lille sætning. {} 0, ) og Fermats { } ...,-44,-20,4,28,52,...

Projekt 0.4 Modulo-regning, restklassegrupperne ( lille sætning. {} 0, ) og Fermats { } ...,-44,-20,4,28,52,... Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( {} 0, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

HALLO no en hjemme? Tema. + s. 28 Forstå dit barns hjerne

HALLO no en hjemme? Tema. + s. 28 Forstå dit barns hjerne HALLO o e hjemme? Eksperte forklarer, hvorfor det er så svært for små ører at høre efter. Se, hvorda det går, år Elie Holm tester de gode råd på si datter Liva, og få idblik i, hvad der sker i de lille

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

Psyken på overarbejde hva ka du gøre?

Psyken på overarbejde hva ka du gøre? Psyke på overarbejde hva ka du gøre? Idhold Hvorår kommer ma uder psykisk pres? 3 Hvad ka øge det psykiske pres på dit arbejde? 4 Typiske reaktioer 6 Hvorda forløber e krise? 7 Hvad ka du selv gøre? 9

Læs mere

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser...3 3. ermodyamikkes. hovedsætig....5 4. Reversibilitet...6 5. Reversibel maskie og maksimalt

Læs mere

Facilitering ITU 15. maj 2012

Facilitering ITU 15. maj 2012 Faciliterig ITU 15. maj 2012 Facilitatio is like movig with the elemets ad sailig the sea Vejvisere Velkomst de gode idflyvig Hvad er faciliterig? Kedeteg ved rolle som facilitator Facilitatores drejebog

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

Den Store Sekretærdag

Den Store Sekretærdag De Store Sekretærdag Tilmeld dig ide 1. oktober og få 300 kr. i rabat! De 25. ovember 2008 Tekologisk Istitut Taastrup De 8. december 2008 Mukebjerg Hotel Vejle Nia Siegefeldt, chefsekretær Camilla Miehe-Reard,

Læs mere

Sammensætning af regnearterne - supplerende eksempler

Sammensætning af regnearterne - supplerende eksempler Mtetik på AVU Ekseplet til iveu F, E og D Sesætig f regertere - supplerede eksepler Poteser... Rødder... d 0-tls-poteser... e Sesætig f regertere Side Mtetik på AVU Ekseplet til iveu F, E og D Sesætig

Læs mere

A14 4 Optiske egenskaber

A14 4 Optiske egenskaber A4 4 Optiske egeskaber Brydigsideks Når lys træffer e græseflade mellem to materialer, kastes oget af lyset tilbage (refleksio), mes oget går igeem græseflade med foradret retig (brydig eller refraktio).

Læs mere

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit!

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit! Vaebryderdage 2009 Vaes magt eller magt over vae? Valget er dit! Osdag de 4. marts 2009 taastr u p Vaebrydere Torbe Wiese Meditatiosgurue Heig Davere Hjereforskere Milea Pekowa COACHEN Chris MacDoald Ulrik

Læs mere

MOGENS ODDERSHEDE LARSEN. Komplekse tal

MOGENS ODDERSHEDE LARSEN. Komplekse tal MOGENS ODDERSHEDE LARSEN Komplekse tal a b. udgave 004 FORORD Dette otat giver e kort idførig i teorie for komplekse tal, regeregler, røddere i polyomier bl.a. med heblik på avedelser ved løsig af lieære

Læs mere

StudyGuide til Matematik B.

StudyGuide til Matematik B. StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag

Læs mere

Induktionsbevis og sum af række side 1/7

Induktionsbevis og sum af række side 1/7 Iduktosbevs og sum af række sde /7 Skrver ma,,,...,,..., =, 2, 3,... 2 3 taler ma om e talfølge, eller blot e følge. Adre eksempler på følger er, -,, -,, -,..., (-) +,..., =, 2, 3,..., 2, 3, 4,...,,...,

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

IMFUFA TEKST NR TEKSTER fra ROSKILDE UNIVERSITETSCENTER. Jørgen Larsen

IMFUFA TEKST NR TEKSTER fra ROSKILDE UNIVERSITETSCENTER. Jørgen Larsen TEKST NR 435 2004 Basisstatistik 2. udgave Jørge Larse August 2006 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING

Læs mere

Dårligt arbejdsmiljø koster dyrt

Dårligt arbejdsmiljø koster dyrt Dårligt arbejdsmiljø F O A f a g o g a r b e j d e koster dyrt Hvad koster et dårligt arbejdsmiljø, og hvad ka vi gøre for at bedre forholdee for de asatte idefor Kost- og Servicesektore? Læs her om de

Læs mere

Eksempel 10.1 En autoregressiv proces af orden 1 (ofte blot kaldet en AR(1)- proces) pårhar et opdateringsskema (10.1) med funktionen. for y R.

Eksempel 10.1 En autoregressiv proces af orden 1 (ofte blot kaldet en AR(1)- proces) pårhar et opdateringsskema (10.1) med funktionen. for y R. Kapitel 0 Markovkæder Vi vil i det følgede studere processer Y 0, Y, Y 2,... med værdier irgivet på forme Y = f (Y +ǫ for =, 2,... (0. Her erǫ,ǫ 2,... e følge af iid støjvariable med middelværdi 0, alle

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL Kapitel 0 KALIBRERING AF STRØMNINGSMODEL Torbe Obel Soeborg Hydrologisk afdelig, GEUS Nøglebegreber: Kalibrerigsprotokol, observatiosdata, kalibrerigskriterier, idetificerbarhed, etydighed, parameterestimatio,

Læs mere

Matematisk trafikmodellering

Matematisk trafikmodellering - Mathematical traffic modelig Grupper.: 8 Gruppemedlemmer: Jacob Hallberg Hasema Kim Alla Hase Ria Roja Kari Vejleder: Morte Blomhøj Semester: 4. Semester, forår 2007, hus 13.1 Studieretig: Det aturvideskabelige

Læs mere

Team Danmark tilfredshedsundersøgelse 2013

Team Danmark tilfredshedsundersøgelse 2013 Team Damark tilfredshedsudersøgelse 2013 Baggrudsrapport Trygve Buch Laub, Rasmus K. Storm, Lau Tofft-Jørgese & Ulrik Holskov Idrættes Aalyseistitut MIND THE CUSTOMER December 2013 Titel Team Damark tilfredshedsudersøgelse

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,

Læs mere

TEKST NR 435 2004. TEKSTER fra IMFUFA

TEKST NR 435 2004. TEKSTER fra IMFUFA TEKST NR 435 2004 Basisstatisti 2. udgave Jørge Larse August 2006 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING

Læs mere

Børn og unge med seksuelt bekymrende og krænkende adfærd

Børn og unge med seksuelt bekymrende og krænkende adfærd Projekt Vest for Storebælt Bør og uge med seksuelt bekymrede og krækede adfærd Hvorår er der grud til bekymrig? Hvorda hevises et bar/e ug til gruppebehadlig? Hvad hadler projektet om? Projekt Vest for

Læs mere

Hvordan hjælper trøster vi hinanden, når livet er svært?

Hvordan hjælper trøster vi hinanden, når livet er svært? Hvorda hjælper trøster vi hiade, år livet er svært? - at være magtesløs med de magtesløse Dask Myelomatoseforeig Temadag, Hotel Scadic, Aalborg Lørdag de 2. april 2016 kl. 14.00-15.30 Ole Raakjær, præst

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige

Læs mere

FOREBYGGELSE OG BEKÆMPELSE AF ROTTER

FOREBYGGELSE OG BEKÆMPELSE AF ROTTER Hadligspla for FOREBYGGELSE OG BEKÆMPELSE AF ROTTER 2016-2018 LYNGBY-TAARBÆK KOMMUNE 2015 Lygby-Taarbæk Kommue Trykt på Rådhustrykkeriet Grafik Layout: Ole Lud Aderse, Iter Service INDHOLD Rotte - dyret

Læs mere

Nanomaterialer Anvendelser og arbejdsmiljøforhold

Nanomaterialer Anvendelser og arbejdsmiljøforhold F O A F A G O G A R B E J D E Naomaterialer Avedelser og arbejdsmiljøforhold Dee Kort & Godt pjece heveder sig til dig, som er medlem af FOA. Pjece giver iformatio om: Hvad er et aomateriale? Eksempler

Læs mere

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q 3, 45926535 8979323846 2643383279 50288497 693993750 5820974944 592307864 0628620899 8628034825 34270679 82480865 3282306647 0938446095 505822372 535940828 4874502 84027093 85205559 6446229489 549303896

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

Bachelorprojekt for BSc-graden i matematik

Bachelorprojekt for BSc-graden i matematik D E T N A T U R V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Bachelorprojekt for BSc-grade i matematik Mikkel Abrahamse & Sue Precht Reeh Ekstremal grafteori Vejleder:

Læs mere

Nanomaterialer i virkeligheden F O A F A G O G A R B E J D E

Nanomaterialer i virkeligheden F O A F A G O G A R B E J D E F O A F A G O G A R B E J D E Naomaterialer i virkelighede Arbejdsmiljøkoferece i Kost- og Servicesektore 9. september 2013 Naomaterialer i virkelighede Idhold Gå ikke i paik eller baglås. I ka sagtes

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

HD i Afsætningsøkonomi Efteruddannelse HDA. social sciences. Det Samfundsvidenskabelige Fakultet Syddansk Universitet

HD i Afsætningsøkonomi Efteruddannelse HDA. social sciences. Det Samfundsvidenskabelige Fakultet Syddansk Universitet HD i Afsætigsøkoomi Efteruddaelse HDA I social scieces Det Samfudsvideskabelige Fakultet Syddask Uiversitet HD i Afsætigsøkoomi ÂÂ K læsss ii: Koldig HD specialet i Afsætigsøkoomi giver dig et solidt grudlag

Læs mere

HASTIGHEDSKORT FOR DANMARK VHA. GPS

HASTIGHEDSKORT FOR DANMARK VHA. GPS HASTIGHEDSKORT FOR DANMARK VHA. GPS Ove Aderse xcalibur@cs.aau.dk Istitut for Datalogi Aalborg Uiversitet Harry Lahrma lahrma@pla.aau.dk Trafikforskigsgruppe Aalborg Uiversitet Kristia Torp torp@cs.aau.dk

Læs mere

De Platoniske legemer De fem regulære polyeder

De Platoniske legemer De fem regulære polyeder De Platoiske legemer De fem regulære polyeder Ole Witt-Hase jauar 7 Idhold. Polygoer.... Nogle topologiske betragtiger.... Eulers polyedersætig.... Typer af et på e kugleflade.... Toplasvikle i e regulær

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

Modul 14: Goodness-of-fit test og krydstabelanalyse

Modul 14: Goodness-of-fit test og krydstabelanalyse Forskigsehede for Statistik ST01: Elemetær Statistik Bet Jørgese Modul 14: Goodess-of-fit test og krydstabelaalyse 14.1 Idledig....................................... 1 14.2 χ 2 -test i e r c krydstabel.............................

Læs mere

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen Bilag 5: DEA-odelle Bilaget ideholder e teis besrivelse af DEA-odelle FRSYNINGSSERETARIATET FEBRUAR 2013 INDLEDNING... 3 INPUTSTYRET DEA-MDEL... 3 UTPUTSTYRET DEA-MDEL... 7 SALAAFAST... 12 2 Idledig Data

Læs mere

Projekt 4.1 Potensbegrebet og geometriske rækker

Projekt 4.1 Potensbegrebet og geometriske rækker Hvd er mtemtik? C, i-bog ISBN 978 87 766 499 8 Projekter: pitel 4 Projekt 4. Potesbegrebet og geometriske rækker Vi hr defieret e ekspoetiel vækst, som e vækstmodel, hvor de fhægige vribel, - værdie, fremskrives

Læs mere

6 Populære fordelinger

6 Populære fordelinger 6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).

Læs mere

Program. 08:30 Indtjekning med kaffe, te og morgenbrød 09:00 Indledning ved dirigenten. 09.10 It-organisationens udfordringer

Program. 08:30 Indtjekning med kaffe, te og morgenbrød 09:00 Indledning ved dirigenten. 09.10 It-organisationens udfordringer Program 08:30 Idtjekig med kaffe, te og morgebrød 09:00 Idledig ved dirigete Peter Høygaard, parter Devoteam Cosultig A/S 09.10 It-orgaisatioes udfordriger 2009 få mere for midre og spar de rigtige steder

Læs mere

FOAs 10 bud på fremtidens velfærd

FOAs 10 bud på fremtidens velfærd F O A f a g o g a r b e j d e FOAs 10 bud på fremtides velfærd FOA Fag og Arbejde 1 Politisk asvarlig: Deis Kristese Redaktio: Claus Corelius, Kasper Maiche og Lars Ole Preisler Hase Layout: Girafisk Desig

Læs mere

Viden Om Vind oftere, stop i tide

Viden Om Vind oftere, stop i tide Vide Om Vid oftere, stop i tide Spørgsmål og svar Idhold Risici og relevas 2 Steffe Aderse Sadsyligheder 5 Per Hedegård Spørgsmål til eksperte 7 Thomas Aderse Til 8 Rasmus Østergaard Pederse E sikker strategi

Læs mere

Den grådige metode 2

Den grådige metode 2 Algoritmedesig 1 De grådige metode De grådige metode Et problem løses ved at foretage e række beslutiger Beslutigere træffes e ad gage i e eller ade rækkefølge Hver beslutig er baseret på et grådighedskriterium

Læs mere

TIMEGLASSETS FASER: Introen er et foto og nogle spørgsmål til hele kapitlet. Meningen med introen er, at du og

TIMEGLASSETS FASER: Introen er et foto og nogle spørgsmål til hele kapitlet. Meningen med introen er, at du og TIMEGLASSETS FASER: INTRO Itroe er et foto og ogle spørgsmål til hele kapitlet. Meige med itroe er, at du og di klasse skal få e ide om, hvad kapitlet hadler om, og hvad I skal lære. Prøv at svare på spørgsmålee

Læs mere

Prisfastsættelse af digitale goder - Microsoft

Prisfastsættelse af digitale goder - Microsoft Iteretøkoomi: risfastsættelse af digitale goder Afleveret d. 9 maj 003 Af Julie ech og Malee Aja org risfastsættelse af digitale goder - Microsoft Af Julie ech og Malee Aja org.0.0 DIGITALE GODER....0.0

Læs mere

Begreber og definitioner

Begreber og definitioner Begreber og defiitioer Daske husstades forbrug på de medierelaterede udgiftsposter stiger og udgør i 2012*) 11,3 % af husstadees samlede forbrug mod 5,5 % i 1994. For husstade med de laveste idkomster

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

EGA Vejledning om EGA og monotont arbejde

EGA Vejledning om EGA og monotont arbejde EGA og mootot arbejde 04/09/02 14:27 Side 1 Orgaisatioer repræseteret i Idustries Brachearbejdsmiljøråd: Arbejdstagerside: Arbejdsgiverside: Dask Metal Specialarbejderforbudet Kvideligt Arbejderforbud

Læs mere

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet)

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet) Oversigt (idholdsfortegelse) Bilag 1 Bilag 2 Bilag 3 De fulde tekst Bekedtgørelse om takstædriger i offetlig servicetrafik i trafikselskaber og hos jerbaevirksomheder m.v. (takststigigsloftet) I medfør

Læs mere

Introduktion. Ide, mål og formål

Introduktion. Ide, mål og formål Itroduktio Dette er e itroduktio til forskigs- og udvikligsprojektet Udviklig af e eksemplarisk participatorisk model for implemeterig af redskaber til opsporig og tidlig idsats i relatio til potetielt

Læs mere

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag Hvidbog omhadlede de idkome idsigelser, bemærkiger og kommetarer til forslag til Kommuepla 2009 Udgave A: Rækkefølge som forslag 19. auar 2010 Idhold Idledig. 3 Proces og behadlig m.v 3 Hvidboges opbygig..

Læs mere

Aalborg Universitet. Landsbyer i storkommunen Lemvigh, Kasper ; Møller, Jørgen. Publication date: 2011

Aalborg Universitet. Landsbyer i storkommunen Lemvigh, Kasper ; Møller, Jørgen. Publication date: 2011 Aalborg Uiversitet Ladsbyer i storkommue Lemvigh, Kasper ; Møller, Jørge Publicatio date: 2011 Documet Versio Tidlig versio også kaldet pre-prit Lik to publicatio from Aalborg Uiversity Citatio for published

Læs mere

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag

Hvidbog omhandlende de indkomne indsigelser, bemærkninger og kommentarer til forslag til Kommuneplan 2009. Udgave A: Rækkefølge som forslag Hvidbog omhadlede de idkome idsigelser, bemærkiger og kommetarer til forslag til Kommuepla 2009 Udgave A: Rækkefølge som forslag 4. jauar 2010 Idhold Idledig. 3 Proces og behadlig m.v 3 Hvidboges opbygig..

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

Information til dig, der er elev som tekstil- og beklædningsassistent. og/eller beklædningshåndværker. Hej elev!

Information til dig, der er elev som tekstil- og beklædningsassistent. og/eller beklædningshåndværker. Hej elev! Iformatio til dig, der er elev som tekstil- og beklædigsassistet og/eller beklædigshådværker Hej elev! Til dig som er elev som tekstil- og beklædigsassistet og/eller beklædigshådværker Idustri Hej elev!

Læs mere