1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

Størrelse: px
Starte visningen fra side:

Download "1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger"

Transkript

1 Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University 2800 Lyngby Denmark Overview 1 enote 1: Simple plots og deskriptive statistik 2 enote2: Diskrete fordelinger 3 enote 2: Kontinuerte fordelinger 4 enote 3: Konfidensintervaller for én gruppe/stikprøve 5 enote 3: Hypotese tests for én gruppe/stikprøve 6 enote 3: Statistik for to grupper/stikprøver 7 enote 4: Statistik ved simulation 8 enote 5: Simpel lineær regressions analyse 9 enote 6: Multipel lineær regressions analyse 10 enote 8: Envejs variansanalyse (envejs ANOVA) 11 enote 8: Tovejs variansanalyse (ANOVA) 12 enote 7: Inferens for andele Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 1: Simple plots og deskriptive statistik enote 1: Simple plots og deskriptiv statistik Teknikker til at se på data! (deskriptiv statistik) Opsummerende beregningsstørrelser Gennemsnittet: x Empirisk standard afvigelse: s Empirisk varians: s 2 Median, øvre- og nedre kvartiler Empririsk korrelation Simple plots Scatter plot (xy plot) Histogram (empirisk tæthed) Kumulativ fordeling (empirisk fordeling) Boxplots, søjlediagram, cirkeldiagram (lagkagediagram) enote2: Diskrete fordelinger enote2: Diskrete fordelinger Grundlæggende koncepter: Stokastisk variabel (udfaldet af et endnu ikke udført eksperiment) Tæthedsfunktion: f(x) = P (X = x) (pdf) Fordelingsfunktion: F (x) = P (X x) (cdf) Middelværdi: µ = E(X) Standard afvigelse: σ Varians: σ 2 Specifikke distributioner: Binomial (terningekast) Hypergeometrisk (trækning uden tilbagelægning) Poisson (antal hændelser i interval) Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

2 enote 2: Kontinuerte fordelinger enote 2: Kontinuerte fordelinger Grundlæggende koncepter: Tæthedsfunktion: f(x) (pdf) Fordelingsfunktion: F (x) = P (X x) (cdf) Middelværdi (µ) og varians (σ 2 ) Regneregler for stokastiske variabler Specifikke fordelinger: Normal Log-Normal Uniform Exponential t χ 2 F enote 3: Konfidensintervaller for én gruppe/stikprøve enote 3: Konfidensintervaller for én gruppe/stikprøve Grundlæggende koncepter Estimation Signifikans niveau α Konfidensintervaller (fanger rigtige prm. 1 α af gangene) Population og tilfældig stikprøve Stikprøvefordelinger (t og χ 2 ) Centrale grænseværdisætning Specifikke metoder, én gruppe/stikprøve: Konfidensintervaller for middelværdi (t-fordeling) og varians (χ 2 fordeling) Forsøgsplanlægning: beregn stikprøvestørrelsen n for den ønskede præcision Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 3: Hypotese tests for én gruppe/stikprøve enote 3: Hypotese tests for én gruppe/stikprøve enote 3: Statistik for to grupper/stikprøver enote 3: Statistik for to grupper/stikprøver Grundlæggende koncepter: Hypoteser p-værdi (sandsynlighed for teststørrelsen eller mere ekstremt, hvis H 0 er sand, e.g. P (T > t obs )) Type I fejl: (i virkeligheden ingen effekt, men H 0 afvises) P (Type I) = α Type II fejl: (i virkeligheden effekt, men H 0 afvises ikke) P (Type II) = β Testens styrke er β Specifikke metoder, én gruppe: t-test for middelværdiniveau Stikprøvestørrelse for ønsket styrke Normal qq-plot Specifikke metoder, to grupper: Test og konfidensintervaller for forskel i middelværdi (t-test) Forsøgsplanlægning: Beregn sample størrelsen for den ønskede styrke Specifikke metoder, to PARREDE grupper: "Tag differencen for hver måling" "statistik for én gruppe" Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

3 enote 4: Statistik ved simulation enote 4: Statistik ved simulation Introduktion til simulering (Beregn statistik mange gange) Fejlforplantning (error propagation rules) (F.eks. igennem ikke-lineær funktion) Bootstrapping: Parametrisk (Simuler mange udfald af stokastisk var.) Ikke-parametrisk (Træk direkte fra data) Konfidensintervaller (og derfor også hypotesetest) Specifikke setups: (4 versioner af konfidensintervaller) Èn gruppe/stikprøve og to grupper/stikprøver data Parametrisk vs. ikke-parametrisk enote 5: Simpel lineær regressions analyse enote 5: Simpel lineær regressions analyse To variable: x og y Beregn mindstekvadraters estimat af rette linje Inferens med simpel lineær regressionsmodel Statistisk model: Y i = β 0 + β 1 x i + ε i Estimation af konfidensintervaller og tests for β 0 og β 1 Konfidensintervaller for linjen (95% gange ligger linjen indenfor) Prædiktionsintervaller for punkter (95% af nye punkter ligger indenfor) ρ, R og R 2 ρ er korrelationen (= sign R R) beskriver graden af lineær sammenhæng mellem x og y R 2 er andelen af den totale variation som er forklaret af modellen Afvises H 0 : β 1 = 0 så afvises også H 0 : ρ = 0 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 6: Multipel lineær regressions analyse enote 6: Multipel lineær regressions analyse Flere variabler: y, x 1, x 2,... (y afhængig/respons var. og x er er forklarende/uafhængige var.) Mindstekvadraters rette plan (et plan da der er >2 dimensioner) Inferens for en multipel lineær regressionmodel Statistisk model: Y i = β 0 + β 1 x 1,i + β 2 x 2,i ε i Estimation af konfidensintervaller og tests for β er Konfidensintervaller for modellen (For det forventede plan) Prædiktionsintervaller for nye punkter enote 8: Envejs variansanalyse (envejs ANOVA) enote 8: Envejs variansanalyse (envejs ANOVA) k UAFHÆNGIGE grupper Specifikke metoder, envejs variansanalyse: Test der sammenligner middelværdien af grupperne ANOVA-tabel: SST = SS(T r) + SSE F -test Post hoc test(s): parvise t-test med/uden Bonferroni korrektion R 2 er andelen af den totale variationen som er forklaret af modellen Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

4 enote 8: Tovejs variansanalyse (ANOVA) enote 8: Tovejs variansanalyse (tovejs ANOVA) Blokdesign giver to faktorer ANOVA-tabel: SST = SS(T r) + SS(Bl) + SSE F -test SST, SS(T r) og SS(Bl) beregnes som ved envejs ANOVA SSE = SST SS(T r) SS(Bl) Post hoc test: parvise t-test med/uden Bonferroni korrektion enote 7: Inferens for andele enote 7: Inferens for andele Specifikke metoder, én, to og k > 2 grupper Binær/kategorisk respons Estimation og konfidensintervaller for andele Metoder til store stikprøver vs. til små stikprøver Hypoteser for én andel Hypoteser for to andele Analyse af antalstabeller (χ 2 -test) (Alle forventede antal > 5) Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Overview enote 7: Inferens for andele enote 1: Simple Graphics and Summary Statistics enote 1: Simple Graphics and Summary Statistics 1 enote 1: Simple plots og deskriptive statistik 2 enote2: Diskrete fordelinger 3 enote 2: Kontinuerte fordelinger 4 enote 3: Konfidensintervaller for én gruppe/stikprøve 5 enote 3: Hypotese tests for én gruppe/stikprøve 6 enote 3: Statistik for to grupper/stikprøver 7 enote 4: Statistik ved simulation 8 enote 5: Simpel lineær regressions analyse 9 enote 6: Multipel lineær regressions analyse 10 enote 8: Envejs variansanalyse (envejs ANOVA) 11 enote 8: Tovejs variansanalyse (ANOVA) 12 enote 7: Inferens for andele Look at data as it is! (descriptive statistics) Summary Statistics Sample mean: x Sample standard deviation: s Sample variance: s 2 Median, upper- and lower quartiles Sample correlation Simple graphics Scatter plot (xy plot) Histogram (empirical density) Cumulative distribution (empirical distribution) Boxplots, Bar charts, Pie charts Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

5 enote 2: Discrete Distributions enote 2: Discrete Distributions General concepts: Random variable (Outcome of yet not carried out experiment) Density function: f(x) = P (X = x) (pdf) Distribution function: F (x) = P (X x) (cdf) Mean: µ = E(X) Standard deviation: σ Variance: σ 2 Specific distributions: The binomial distribution (Dice roll) The hypergeometric distribution (Draw without replacement) The Poisson distribution (Number of events in interval) enote 2: Continuous Distributions enote 2: Continuous Distributions General concepts: Density function: f(x) (pdf) Distribution: F (x) = P (X x) (cdf) Mean (µ) and variance (σ 2 ) Calculation rules for random variables Specific distributions: Normal Log-Normal Uniform Exponential t χ 2 F Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 3: One sample confidence intervals enote 3: One sample confidence intervals General concepts Estimation Significance level α Confidence intervals (Catches true value 1 α times) Population and a random sample Sampling distributions (t and χ 2 ) Central Limit Theorem Specific methods, one sample: Confidence intervals for the mean (t-distribution) and variance (χ 2 distribution) Design of experiments: calculating the sample size n for wanted precision enote 3: One sample hypothesis testing enote 3: One sample hypothesis testing General concepts: Hypotheses p-value (Probability for observing the test value or more extreme, if H 0 is true, e.g. P (T > t obs )) Type I error: (No effect in reality, but H 0 is rejected) P (Type I) = α Type II error: (In reality an effect, but H 0 is not rejected) P (Type II) = β Power of a test is β Specific methods, one sample: t-test for mean difference Sample size for wanted power Normal qq-plot Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

6 enote 3: Two Sample statistics enote 3: Two Samples Specific methods, two samples: Test and confidence interval for the mean difference (t-test) Planning: calculating the sample size for wanted power Specific methods, two PAIRED samples: "Take difference" "One sample" enote 4: Statistics by simulation enote 4, Statistics by simulation Introduction to simulation (Calculate the statistic many times) Error propagation rules (e.g. through a non-linear function) Bootstrapping: Parametric (Simulate many outcomes of random var.) Non-parametric (Draw values directly from data) Confidence intervals (and hence also hypothesis testing) Specific situations: (4 versions of confidence intervals) One-sample and Two-sample data Parametric vs. non-parametric Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 5: Simple linear Regression Analysis enote 5: Simple linear Regression Analysis Two quantitative variables: x and y Calculating least squares line Inferences for a simple linear regression model Statistical model: y i = β 0 + β 1 x i + ε i Interval estimation and test for β 0 and β 1. Confidence interval for the line (95% times the line will be inside) Prediction interval for punkter (95% times new points will be inside) ρ, R og R 2 ρ is the correlation (= sign R R) describes the strength of linear relation between x and y R 2 is the fraction of the total variation explained by the model If H 0 : β 1 = 0 is rejected, then H 0 : ρ = 0 is also rejected Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 6: Multiple linear Regression Analysis enote 6: Multiple linear Regression Analysis Many quantitative variables: y, x 1, x 2,... (y is the dependent/response var. and x s are explanatory/independent var.) Calculating least squares plane (A plane since there are >2 dimensions) Inferences for a the multiple linear regression model Statistical model: y i = β 0 + β 1 x 1,i + β 2 x 2,i ε i Confidence interval estimation and test for the β s Confidence interval for the expected fit (fitted line) Prediction interval for new points R 2 expresses the proportion of the total variation explained by the linear fit Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

7 enote 8: One-way Analysis of Variance enote 8: One-way Analysis of Variance enote 8: Two-way Analysis of Variance enote 8: Two-way Analysis of Variance Specific methods, k INDEPENDENT samples One-way analysis of variance Test for comparing the means of the groups ANOVA-table: SST = SS(T r) + SSE F -test Post hoc test: pairwise t-test with/without Bonferroni correction Block design - two-way analysis of variance ANOVA-tabel: SST = SS(T r) + SS(Bl) + SSE F -test. SST, SS(T r) and SS(Bl) calculated as one-way ANOVA SSE = SST SS(T r) SS(Bl) Post hoc test: pairwise t-test with/without Bonferroni correction Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 7: Inferences for Proportions enote 7: Inferences for Proportions Specific methods, one, two and k > 2 samples Binary/categorical response Estimation and confidence interval of proportions Large sample vs. small sample methods Hypotheses for one proportion Hypotheses for two proportions Analysis of contingency tables (χ 2 -test) (All expected > 5) Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test)

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test) Kursus 02402/02323 Introducerende Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Oversigt. 1 Praktisk Information. 2 Introduction to Statistics - a primer. 3 Intro Case historier: IBM Big data, Novo Nordisk small data, Skive fjord

Oversigt. 1 Praktisk Information. 2 Introduction to Statistics - a primer. 3 Intro Case historier: IBM Big data, Novo Nordisk small data, Skive fjord Course 02402/02323 Introducerende Statistik Forelæsning 1: Intro, R og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Engelsk-dansk ordliste jfr. bogens indeksregister

Engelsk-dansk ordliste jfr. bogens indeksregister Engelsk-dansk ordliste jfr. bogens indeksregister Absolute variation Numerisk variation (uden fortegn) Acceptable Quality Level (AQL) Tilfredsstillende kvalitetsniveau Acceptance number Godkendelses tal

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

En meget kort introduktion til R på polit

En meget kort introduktion til R på polit En meget kort introduktion til R på polit Sebastian Barfort sebastian.barfort@econ.ku.dk Indhold 1 Introduktion 1 2 R som lommeregner 2 3 Tabeller, grafer og estimation 6 4 Økonomiske figurer 11 1 Introduktion

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Liste over relevante ISO statistik standarder

Liste over relevante ISO statistik standarder Liste over relevante statistik standarder Betegnel se Nummer Status Udga Udga ve nr. ve År titel Dansk titel DS/ 2602 P 2 1981 Statistical interpretation of test results - Estimation of the mean - Statistisk

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

R i 02402: Introduktion til Statistik

R i 02402: Introduktion til Statistik R i 02402: Introduktion til Statistik Per Bruun Brockhoff DTU Informatik, DK-2800 Lyngby 20. juni 2011 Indhold 1 Anvendelse af R på Databar-systemet på DTU 5 1.1 Adgang......................................

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Statistik (deskriptiv)

Statistik (deskriptiv) Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag Jens Ledet Jensen på data, og statistik er derfor et nødvendigt værktøj i disse sammenhænge. Gennem konkrete datasæt og problemstillinger giver Statistik viden fra data en grundig indføring i de basale

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Appendix 14... 40 Dataset... 40

Appendix 14... 40 Dataset... 40 Table of content: 1... 1 Interview with Project Leader... 1 2... 3 Qualitative Interview Question... 3 3... 4 The Quantitative Questionnaires... 4 4... 12 Interview with Employee... 12 5... 13 Second Internal

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Skolesektionen på www.ballerup.dk

Skolesektionen på www.ballerup.dk Skolesektionen på www.ballerup.dk Louise Callisen Dyhr (ldyh) Marie Louise Gottlieb Frederiksen (mgfr) Janus Askø Madsen (jaam) Nanna Petersen (nshy) Antal tegn: 28319 Afleveringsdato: 21. maj 2014 1 Indledning...

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

Kursus i @Risk (stokastisk simulering) Øvelsesmanual

Kursus i @Risk (stokastisk simulering) Øvelsesmanual Kursus i @Risk (stokastisk simulering) Øvelsesmanual Hvorfor @Risk og dette kursus? Større og mere komplekse landbrugsbedrifter kræver gode beslutningsværktøjer. I traditionelle regneark regnes der på

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Kvantitative og kvalitative metoder. Søren R. Frimodt-Møller, 19. oktober 2012

Kvantitative og kvalitative metoder. Søren R. Frimodt-Møller, 19. oktober 2012 Kvantitative og kvalitative metoder Søren R. Frimodt-Møller, 19. oktober 2012 Program 1. Forskningsspørgsmål 2. Kvantitative vs. kvalitative metoder 3. Eksempler på konkrete forskningsmetoder 4. Sampling-begrebet

Læs mere

IDRÆTSSTATISTIK BIND 1

IDRÆTSSTATISTIK BIND 1 IDRÆTSSTATISTIK BIND 1 ii Det Naturvidenskabelige Fakultet Aarhus Universitet Reprocenter Preben Blæsild og Jørgen Granfeldt 2001 ISBN 87-87436-05-1 Bd.1 iii Forord Denne bog er skrevet til brug i et statistikkursus

Læs mere

Variansanalyse (ANOVA)

Variansanalyse (ANOVA) 3 / 46 2 / 46 4 / 46 Faculty of Health Sciences Indhold dag 2 Variansanalyse (ANOVA) Ulla B Mogensen Biostatistisk Afd., SUND, KU. Mail: ulmo@sund.ku.dk T-testet fra dag 1 Ensidet variansanalyse. Modelkontrol.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2014 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik niveau

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 16. april 2015 l Dias nummer 1 Sidste gang

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere

GRUNDLÆGGENDE STATISTIK

GRUNDLÆGGENDE STATISTIK Stephan Skovlund APRIL 2013 GRUNDLÆGGENDE STATISTIK Statistik med fokus på anvendelighed i erhvervslivet Statistik Excel - Dataanalyse Statlearn.com Indholdsfortegnelse FORORD... 6 KAPITEL 1: STATISTIKKENS

Læs mere

ISCC. IMM Statistical Consulting Center. Brugervejledning til beregningsmodul til robust estimation af nugget effect. Technical University of Denmark

ISCC. IMM Statistical Consulting Center. Brugervejledning til beregningsmodul til robust estimation af nugget effect. Technical University of Denmark IMM Statistical Consulting Center Technical University of Denmark ISCC Brugervejledning til beregningsmodul til robust estimation af nugget effect Endelig udgave til Eurofins af Christian Dehlendorff 15.

Læs mere

Per Vejrup-Hansen STATISTIK. med Excel. 2. udgave

Per Vejrup-Hansen STATISTIK. med Excel. 2. udgave Per Vejrup-Hansen STATISTIK med Excel 2. udgave Per Vejrup-Hansen Statistik med Excel Per Vejrup-Hansen Statistik med Excel 2. trykte udgave 2012 1. e-bogsudgave 2012 Samfundslitteratur 2012 e-isbn: 978-87-593-1736-5

Læs mere

Statistisk forsøgsplanlægning. med benyttelse af Statgraphics

Statistisk forsøgsplanlægning. med benyttelse af Statgraphics MOGENS ODDERSHEDE LARSEN Statistisk forsøgsplanlægning med benyttelse af Statgraphics Vekselvirkning CD 10 8 C 1 udbytte 6 4 0 1 3 4 D 11 udgave 00, DTU FORORD Dette notat er baseret på at de studerende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: maj-juni 2011/2012 ZBC Ringsted Hhx Matematik B Jens Jørvad 12hhx21 Oversigt over

Læs mere

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)...

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... χ Indhold Formål med noten... Goodness of fit metoden (GOF)... 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... ) χ -fordelingerne (fordelingsfunktionernes egenskaber)... 6 3) χ -

Læs mere

Howell, D. C. (2011): Fundamental Statistics for the Behavorial Sciences. (pp. 1-246) Pre-PressPMG : Wadsworth.

Howell, D. C. (2011): Fundamental Statistics for the Behavorial Sciences. (pp. 1-246) Pre-PressPMG : Wadsworth. Howell, D. C. (2011): Fundamental Statistics for the Behavorial Sciences. (pp. 1-246) Pre-PressPMG : Wadsworth. Kap 1, s. 1-14: INTRODUCTION - Statistik referere til et sæt procedurer og regler, som anvendes

Læs mere

INTRODUKTION TIL dele af SAS

INTRODUKTION TIL dele af SAS INTRODUKTION TIL dele af SAS Der er flere forskellige angrebsvinkler ved statistiske analyser i SAS. Vi skal her kun beskæftige os med to af disse, nemlig Direkte programmering. Brug af SAS ANALYST Hvilken

Læs mere

ANVENDT STATISTIK (med anvendelse af Excel)

ANVENDT STATISTIK (med anvendelse af Excel) MOGENS ODDERSHEDE LARSEN ANVENDT STATISTIK (med anvendelse af Excel) Hyppighed 0 18 16 14 1 10 8 6 4 0 6,94 7,0 7,1 7,18 7,6 7,34 7,4 7,5 7,58 7,66 Mere Hyppighed. udgave 008 FORORD Notatet er bygget op

Læs mere

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring 7. april 2011 Indhold 1 Undersøgelsesdesign 5 1.1 Kausalitet............................. 5 1.2 Validitet og bias......................... 6 1.3

Læs mere

Fortolkning, illustration mm. af interaktion i lineære regressionsmodeller ved hjælp af MS Excel og SPSS

Fortolkning, illustration mm. af interaktion i lineære regressionsmodeller ved hjælp af MS Excel og SPSS Fortolkning, illustration mm. af interaktion i lineære regressionsmodeller ved hjælp af MS Excel og SPSS KIM MANNEMAR SØNDERSKOV Tlf. 8942 1260 E-mail: ks@ps.au.dk INSTITUT FOR STATSKUNDSKAB AARHUS UNIVERSITET

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 2013/14

Læs mere

Stikordsregister. (c) = kommando

Stikordsregister. (c) = kommando Stikordsregister (c) = kommando Symboler!= (forskellig fra) Se operatorer &-operatoren Se operatorer /* */ (kommentering) Se do-file // (kommentering) Se do-file /// (line join indicator) 41, 96 -operatoren

Læs mere

STATISTIK MED SAS. MORTEN FENGER Cand.merc.(scm.) på den nemme måde med step-by-step cases, som alle kan forholde sig til.

STATISTIK MED SAS. MORTEN FENGER Cand.merc.(scm.) på den nemme måde med step-by-step cases, som alle kan forholde sig til. MORTEN FENGER Cand.merc.(scm.) Denne e-bog introducerer dig til markedets stærkeste statistikværktøj. SAS kan alt inden for analytics og er samtidig let at lære. Derfor er det bare med at komme i gang

Læs mere

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4 Indholdsfortegnelse INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF OULATIONEN... 4 DELOGAVE 1...5 BEGREBSVALIDITET... 6 Differentiel item funktionsanalyser...7 Differentiel item effekt...10 Lokal

Læs mere

WPS / R day. Rune Juhl (DTU Technical University of Denmark. 11th December 2013. DTU Compute Department of Applied Mathematics and Computer Science

WPS / R day. Rune Juhl (DTU Technical University of Denmark. 11th December 2013. DTU Compute Department of Applied Mathematics and Computer Science WPS / R day Rune Juhl DTU Technical University of Denmark DTU Compute Department of Applied Mathematics and Computer Science 11th December 2013 DTU WPS Compute / R day Department of Applied 11th December

Læs mere

µ = κ (θ); Kanonisk link, θ = g(µ) Poul Thyregod, 9. maj Specialkursus vid.stat. foraar 2005

µ = κ (θ); Kanonisk link, θ = g(µ) Poul Thyregod, 9. maj Specialkursus vid.stat. foraar 2005 Hierarkiske generaliserede lineære modeller Lee og Nelder, Biometrika (21) 88, pp 987-16 Dagens program: Mandag den 2. maj Hierarkiske generaliserede lineære modeller - Afslutning Hierarkisk generaliseret

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2015 Institution Vejen Business College Uddannelse Fag og niveau HHX Matematik niveau B Lærer(e)

Læs mere

Normalfordelingen. Erik Vestergaard

Normalfordelingen. Erik Vestergaard Normalfordelingen Erik Vestergaard Erik Vestergaard www.matematiksider.dk Erik Vestergaard, 008. Billeder: Forside: jakobkramer.dk/jakob Kramer Side 7: istock.com/elenathewise Side 8: istock.com/jaroon

Læs mere

Introduktion til SPSS

Introduktion til SPSS Introduktion til SPSS Øvelserne på dette statistikkursus skal gennemføres ved hjælp af det såkaldte SPSS program. Det er erfaringsmæssigt sådan, at man i forbindelse af øvelserne på statistikkurser bruger

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Stokastiske processer og køteori 9. kursusgang Anders Gorst-Rasmussen Institut for Matematiske Fag Aalborg Universitet 1 OPSAMLING EKSAKTE MODELLER Fordele: Praktiske til initierende analyser/dimensionering

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

En statistikstuderendes bekendelser Søren Wengel Mogensen

En statistikstuderendes bekendelser Søren Wengel Mogensen Oplysning 23 En statistikstuderendes bekendelser Søren Wengel Mogensen Om at skrive BSc-opgave i anvendt statistik. Der findes matematikere (i hvert fald matematikstuderende), der mener, at den rene matematik

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh123-mat/b-17122012 Mandag den 17. december 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Hjorth Kvalitetsudvikling Firmakurser 2013

Hjorth Kvalitetsudvikling Firmakurser 2013 Hjorth Kvalitetsudvikling Firmakurser 2013 Denne oversigt indeholder eksempler på firmakurser, der udbydes af Hjorth Kvalitetsudvikling i 2013. Alle kurserne har været afholdt adskillige gange i danske

Læs mere

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder Spar Nord Banks ansøgningsscoremodel - et ekspertbaseret ratingsystem for nye udlånskunder Mål for ansøgningsscoremodel Rating af nye udlånskunder som beskrives vha. en række variable: alder, boligform,

Læs mere

Hvordan finder man en god skala vha. Raschmetoden? Svend Kreiner & Tine Nielsen

Hvordan finder man en god skala vha. Raschmetoden? Svend Kreiner & Tine Nielsen Hvordan finder man en god skala vha. Raschmetoden? Svend Kreiner & Tine Nielsen 1 Svaret: Man spørger en, der har forstand på det, som man gerne vil måle 2 Eksempel: Spiritualitet Peter A., Peter G. &

Læs mere

VIDEREGÅENDE STATISTIK

VIDEREGÅENDE STATISTIK MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK herunder kvalitetskontrol Udgave 10a 015 FORORD Denne lærebog kan læses på baggrund af en statistisk viden svarende til lærebogen M. Oddershede Larsen :

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord

Læs mere

Trolling Master Bornholm 2013

Trolling Master Bornholm 2013 Trolling Master Bornholm 2013 (English version further down) Tilmeldingerne til 2013 I dag nåede vi op på 77 tilmeldte både. Det er lidt lavere end samme tidspunkt sidste år. Til gengæld er det glædeligt,

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Faculty of Health Sciences. Basal Statistik. Praktiske bemærkninger om kurset. Lene Theil Skovgaard. 1. september 2015

Faculty of Health Sciences. Basal Statistik. Praktiske bemærkninger om kurset. Lene Theil Skovgaard. 1. september 2015 Faculty of Health Sciences Basal Statistik Praktiske bemærkninger om kurset. Lene Theil Skovgaard 1. september 2015 1 / 19 Undervisningstider Forelæsninger tirsdag 10.15 13.00 for ca. 125 personer (i princippet)

Læs mere

Basal Statistik. Undervisningstider. Formål med kurset. Faculty of Health Sciences. Praktiske bemærkninger om kurset.

Basal Statistik. Undervisningstider. Formål med kurset. Faculty of Health Sciences. Praktiske bemærkninger om kurset. Faculty of Health Sciences Undervisningstider Basal Statistik Praktiske bemærkninger om kurset. Lene Theil Skovgaard 1. september 2015 Forelæsninger tirsdag 10.15 13.00 for ca. 125 personer (i princippet)

Læs mere

Sandsynlighedsbaserede metoder

Sandsynlighedsbaserede metoder Metodeartikel 29 Sandsynlighedsbaserede metoder Monte Carlo-metoden Daniel Kjær I sidste udgave af Famøs kunne læseren finde første halvdel af en todelt artikelserie om sandsynlighedsbaserede metoder under

Læs mere

RentCalC V2.0. 2012 Soft-Solutions

RentCalC V2.0. 2012 Soft-Solutions Udlejnings software Vores udvikling er ikke stoppet!! by Soft-Solutions RentCalC, som er danmarks ubetinget bedste udlejnings software, kan hjælpe dig med på en hurtigt og simple måde, at holde styr på

Læs mere

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter.

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Eksempel I Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Per Bruun Brockhoff IMM DTU 02402 Eksempler 1 Eksempel I Tiden mellem kundeankomster på et posthus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

FSC IV Rapport nr. 250 Uge 35, 2012

FSC IV Rapport nr. 250 Uge 35, 2012 FSC IV Rapport nr. 250 Uge 35, 2012 FDB Analyse Lars Aarup Analysechef la@fdb.dk Mobil: 30 91 92 66 Erhard Nielsen Analytiker en@fdb.dk Mobil: 30 91 92 59 Thomas S. Pedersen Presse- og analysemedarbejder

Læs mere

Kandidatuddannelsen i Socialt Arbejde

Kandidatuddannelsen i Socialt Arbejde Modul 5 Valgfag 5, 10 eller 15 ECTS-point Kvantitativ metode i studiet af socialt arbejde og sociale problemer Foråret 2013 14. januar 2013 Kandidatuddannelsen i Socialt Arbejde udbyder et valgfrit modul,

Læs mere

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF Sammenligning af to måleserier En af de mest grundlæggende problemstillinger i statistik består i at undersøge om to forskellige måleserier er signifikant forskellige eller om forskellen på de to serier

Læs mere