1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

Størrelse: px
Starte visningen fra side:

Download "1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger"

Transkript

1 Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University 2800 Lyngby Denmark Overview 1 enote 1: Simple plots og deskriptive statistik 2 enote2: Diskrete fordelinger 3 enote 2: Kontinuerte fordelinger 4 enote 3: Konfidensintervaller for én gruppe/stikprøve 5 enote 3: Hypotese tests for én gruppe/stikprøve 6 enote 3: Statistik for to grupper/stikprøver 7 enote 4: Statistik ved simulation 8 enote 5: Simpel lineær regressions analyse 9 enote 6: Multipel lineær regressions analyse 10 enote 8: Envejs variansanalyse (envejs ANOVA) 11 enote 8: Tovejs variansanalyse (ANOVA) 12 enote 7: Inferens for andele Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 1: Simple plots og deskriptive statistik enote 1: Simple plots og deskriptiv statistik Teknikker til at se på data! (deskriptiv statistik) Opsummerende beregningsstørrelser Gennemsnittet: x Empirisk standard afvigelse: s Empirisk varians: s 2 Median, øvre- og nedre kvartiler Empririsk korrelation Simple plots Scatter plot (xy plot) Histogram (empirisk tæthed) Kumulativ fordeling (empirisk fordeling) Boxplots, søjlediagram, cirkeldiagram (lagkagediagram) enote2: Diskrete fordelinger enote2: Diskrete fordelinger Grundlæggende koncepter: Stokastisk variabel (udfaldet af et endnu ikke udført eksperiment) Tæthedsfunktion: f(x) = P (X = x) (pdf) Fordelingsfunktion: F (x) = P (X x) (cdf) Middelværdi: µ = E(X) Standard afvigelse: σ Varians: σ 2 Specifikke distributioner: Binomial (terningekast) Hypergeometrisk (trækning uden tilbagelægning) Poisson (antal hændelser i interval) Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

2 enote 2: Kontinuerte fordelinger enote 2: Kontinuerte fordelinger Grundlæggende koncepter: Tæthedsfunktion: f(x) (pdf) Fordelingsfunktion: F (x) = P (X x) (cdf) Middelværdi (µ) og varians (σ 2 ) Regneregler for stokastiske variabler Specifikke fordelinger: Normal Log-Normal Uniform Exponential t χ 2 F enote 3: Konfidensintervaller for én gruppe/stikprøve enote 3: Konfidensintervaller for én gruppe/stikprøve Grundlæggende koncepter Estimation Signifikans niveau α Konfidensintervaller (fanger rigtige prm. 1 α af gangene) Population og tilfældig stikprøve Stikprøvefordelinger (t og χ 2 ) Centrale grænseværdisætning Specifikke metoder, én gruppe/stikprøve: Konfidensintervaller for middelværdi (t-fordeling) og varians (χ 2 fordeling) Forsøgsplanlægning: beregn stikprøvestørrelsen n for den ønskede præcision Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 3: Hypotese tests for én gruppe/stikprøve enote 3: Hypotese tests for én gruppe/stikprøve enote 3: Statistik for to grupper/stikprøver enote 3: Statistik for to grupper/stikprøver Grundlæggende koncepter: Hypoteser p-værdi (sandsynlighed for teststørrelsen eller mere ekstremt, hvis H 0 er sand, e.g. P (T > t obs )) Type I fejl: (i virkeligheden ingen effekt, men H 0 afvises) P (Type I) = α Type II fejl: (i virkeligheden effekt, men H 0 afvises ikke) P (Type II) = β Testens styrke er β Specifikke metoder, én gruppe: t-test for middelværdiniveau Stikprøvestørrelse for ønsket styrke Normal qq-plot Specifikke metoder, to grupper: Test og konfidensintervaller for forskel i middelværdi (t-test) Forsøgsplanlægning: Beregn sample størrelsen for den ønskede styrke Specifikke metoder, to PARREDE grupper: "Tag differencen for hver måling" "statistik for én gruppe" Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

3 enote 4: Statistik ved simulation enote 4: Statistik ved simulation Introduktion til simulering (Beregn statistik mange gange) Fejlforplantning (error propagation rules) (F.eks. igennem ikke-lineær funktion) Bootstrapping: Parametrisk (Simuler mange udfald af stokastisk var.) Ikke-parametrisk (Træk direkte fra data) Konfidensintervaller (og derfor også hypotesetest) Specifikke setups: (4 versioner af konfidensintervaller) Èn gruppe/stikprøve og to grupper/stikprøver data Parametrisk vs. ikke-parametrisk enote 5: Simpel lineær regressions analyse enote 5: Simpel lineær regressions analyse To variable: x og y Beregn mindstekvadraters estimat af rette linje Inferens med simpel lineær regressionsmodel Statistisk model: Y i = β 0 + β 1 x i + ε i Estimation af konfidensintervaller og tests for β 0 og β 1 Konfidensintervaller for linjen (95% gange ligger linjen indenfor) Prædiktionsintervaller for punkter (95% af nye punkter ligger indenfor) ρ, R og R 2 ρ er korrelationen (= sign R R) beskriver graden af lineær sammenhæng mellem x og y R 2 er andelen af den totale variation som er forklaret af modellen Afvises H 0 : β 1 = 0 så afvises også H 0 : ρ = 0 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 6: Multipel lineær regressions analyse enote 6: Multipel lineær regressions analyse Flere variabler: y, x 1, x 2,... (y afhængig/respons var. og x er er forklarende/uafhængige var.) Mindstekvadraters rette plan (et plan da der er >2 dimensioner) Inferens for en multipel lineær regressionmodel Statistisk model: Y i = β 0 + β 1 x 1,i + β 2 x 2,i ε i Estimation af konfidensintervaller og tests for β er Konfidensintervaller for modellen (For det forventede plan) Prædiktionsintervaller for nye punkter enote 8: Envejs variansanalyse (envejs ANOVA) enote 8: Envejs variansanalyse (envejs ANOVA) k UAFHÆNGIGE grupper Specifikke metoder, envejs variansanalyse: Test der sammenligner middelværdien af grupperne ANOVA-tabel: SST = SS(T r) + SSE F -test Post hoc test(s): parvise t-test med/uden Bonferroni korrektion R 2 er andelen af den totale variationen som er forklaret af modellen Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

4 enote 8: Tovejs variansanalyse (ANOVA) enote 8: Tovejs variansanalyse (tovejs ANOVA) Blokdesign giver to faktorer ANOVA-tabel: SST = SS(T r) + SS(Bl) + SSE F -test SST, SS(T r) og SS(Bl) beregnes som ved envejs ANOVA SSE = SST SS(T r) SS(Bl) Post hoc test: parvise t-test med/uden Bonferroni korrektion enote 7: Inferens for andele enote 7: Inferens for andele Specifikke metoder, én, to og k > 2 grupper Binær/kategorisk respons Estimation og konfidensintervaller for andele Metoder til store stikprøver vs. til små stikprøver Hypoteser for én andel Hypoteser for to andele Analyse af antalstabeller (χ 2 -test) (Alle forventede antal > 5) Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Overview enote 7: Inferens for andele enote 1: Simple Graphics and Summary Statistics enote 1: Simple Graphics and Summary Statistics 1 enote 1: Simple plots og deskriptive statistik 2 enote2: Diskrete fordelinger 3 enote 2: Kontinuerte fordelinger 4 enote 3: Konfidensintervaller for én gruppe/stikprøve 5 enote 3: Hypotese tests for én gruppe/stikprøve 6 enote 3: Statistik for to grupper/stikprøver 7 enote 4: Statistik ved simulation 8 enote 5: Simpel lineær regressions analyse 9 enote 6: Multipel lineær regressions analyse 10 enote 8: Envejs variansanalyse (envejs ANOVA) 11 enote 8: Tovejs variansanalyse (ANOVA) 12 enote 7: Inferens for andele Look at data as it is! (descriptive statistics) Summary Statistics Sample mean: x Sample standard deviation: s Sample variance: s 2 Median, upper- and lower quartiles Sample correlation Simple graphics Scatter plot (xy plot) Histogram (empirical density) Cumulative distribution (empirical distribution) Boxplots, Bar charts, Pie charts Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

5 enote 2: Discrete Distributions enote 2: Discrete Distributions General concepts: Random variable (Outcome of yet not carried out experiment) Density function: f(x) = P (X = x) (pdf) Distribution function: F (x) = P (X x) (cdf) Mean: µ = E(X) Standard deviation: σ Variance: σ 2 Specific distributions: The binomial distribution (Dice roll) The hypergeometric distribution (Draw without replacement) The Poisson distribution (Number of events in interval) enote 2: Continuous Distributions enote 2: Continuous Distributions General concepts: Density function: f(x) (pdf) Distribution: F (x) = P (X x) (cdf) Mean (µ) and variance (σ 2 ) Calculation rules for random variables Specific distributions: Normal Log-Normal Uniform Exponential t χ 2 F Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 3: One sample confidence intervals enote 3: One sample confidence intervals General concepts Estimation Significance level α Confidence intervals (Catches true value 1 α times) Population and a random sample Sampling distributions (t and χ 2 ) Central Limit Theorem Specific methods, one sample: Confidence intervals for the mean (t-distribution) and variance (χ 2 distribution) Design of experiments: calculating the sample size n for wanted precision enote 3: One sample hypothesis testing enote 3: One sample hypothesis testing General concepts: Hypotheses p-value (Probability for observing the test value or more extreme, if H 0 is true, e.g. P (T > t obs )) Type I error: (No effect in reality, but H 0 is rejected) P (Type I) = α Type II error: (In reality an effect, but H 0 is not rejected) P (Type II) = β Power of a test is β Specific methods, one sample: t-test for mean difference Sample size for wanted power Normal qq-plot Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

6 enote 3: Two Sample statistics enote 3: Two Samples Specific methods, two samples: Test and confidence interval for the mean difference (t-test) Planning: calculating the sample size for wanted power Specific methods, two PAIRED samples: "Take difference" "One sample" enote 4: Statistics by simulation enote 4, Statistics by simulation Introduction to simulation (Calculate the statistic many times) Error propagation rules (e.g. through a non-linear function) Bootstrapping: Parametric (Simulate many outcomes of random var.) Non-parametric (Draw values directly from data) Confidence intervals (and hence also hypothesis testing) Specific situations: (4 versions of confidence intervals) One-sample and Two-sample data Parametric vs. non-parametric Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 5: Simple linear Regression Analysis enote 5: Simple linear Regression Analysis Two quantitative variables: x and y Calculating least squares line Inferences for a simple linear regression model Statistical model: y i = β 0 + β 1 x i + ε i Interval estimation and test for β 0 and β 1. Confidence interval for the line (95% times the line will be inside) Prediction interval for punkter (95% times new points will be inside) ρ, R og R 2 ρ is the correlation (= sign R R) describes the strength of linear relation between x and y R 2 is the fraction of the total variation explained by the model If H 0 : β 1 = 0 is rejected, then H 0 : ρ = 0 is also rejected Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 6: Multiple linear Regression Analysis enote 6: Multiple linear Regression Analysis Many quantitative variables: y, x 1, x 2,... (y is the dependent/response var. and x s are explanatory/independent var.) Calculating least squares plane (A plane since there are >2 dimensions) Inferences for a the multiple linear regression model Statistical model: y i = β 0 + β 1 x 1,i + β 2 x 2,i ε i Confidence interval estimation and test for the β s Confidence interval for the expected fit (fitted line) Prediction interval for new points R 2 expresses the proportion of the total variation explained by the linear fit Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

7 enote 8: One-way Analysis of Variance enote 8: One-way Analysis of Variance enote 8: Two-way Analysis of Variance enote 8: Two-way Analysis of Variance Specific methods, k INDEPENDENT samples One-way analysis of variance Test for comparing the means of the groups ANOVA-table: SST = SS(T r) + SSE F -test Post hoc test: pairwise t-test with/without Bonferroni correction Block design - two-way analysis of variance ANOVA-tabel: SST = SS(T r) + SS(Bl) + SSE F -test. SST, SS(T r) and SS(Bl) calculated as one-way ANOVA SSE = SST SS(T r) SS(Bl) Post hoc test: pairwise t-test with/without Bonferroni correction Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 7: Inferences for Proportions enote 7: Inferences for Proportions Specific methods, one, two and k > 2 samples Binary/categorical response Estimation and confidence interval of proportions Large sample vs. small sample methods Hypotheses for one proportion Hypotheses for two proportions Analysis of contingency tables (χ 2 -test) (All expected > 5) Per Bruun Brockhoff Introduktion til statistik, Forelæsning 13 Foråret / 39

Kursus 02402/02323 Introduktion til statistik. Forelæsning 13: Et overblik over kursets indhold. Klaus K. Andersen og Per Bruun Brockhoff

Kursus 02402/02323 Introduktion til statistik. Forelæsning 13: Et overblik over kursets indhold. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote 2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote 2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Peder Bacher DTU Compute, Dynamiske Systemer Building 303B, Room 017 Danish Technical University 2800 Lyngby

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen Kursus 02402/02323 Introducerende Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Oversigt 1 Intro: Regneeksempel og TV-data fra B&O 2 Model og hypotese Per Bruun Brockhoff DTU Compute, Statistik

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Introduktion til Statistik. Forelæsning 12: Inferens for andele. Peder Bacher

Introduktion til Statistik. Forelæsning 12: Inferens for andele. Peder Bacher Introduktion til Statistik Forelæsning 12: Inferens for andele Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen Introduktion til Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Introduktion til Statistik. Forelæsning 10: Inferens for andele. Peder Bacher

Introduktion til Statistik. Forelæsning 10: Inferens for andele. Peder Bacher Introduktion til Statistik Forelæsning 10: Inferens for andele Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Kursus 02402/02323 Introducerende Statistik

Kursus 02402/02323 Introducerende Statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test)

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test) Kursus 02402/02323 Introducerende Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Forelæsning 1: Intro og beskrivende statistik

Forelæsning 1: Intro og beskrivende statistik Kursus 02402 Introduktion til Statistik Forelæsning 1: Intro og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen Kursus 02402/02323 Introducerende Statistik Forelæsning 6: Sammenligning af to grupper Oversigt 1 Motiverende eksempel - energiforbrug 2 Hypotesetest (Repetition) 3 Klaus K. Andersen og Per Bruun Brockhoff

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt enote 5: Simpel lineær regressions analse Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression To variable: og Beregn mindstekvadraters estimat af ret linje Inferens med

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Forelæsning 11: Tovejs variansanalyse, ANOVA

Forelæsning 11: Tovejs variansanalyse, ANOVA Introduktion til Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , ) Statistik for MPH: 7 29. oktober 2015 www.biostat.ku.dk/~pka/mph15 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

Statistik for MPH: 7

Statistik for MPH: 7 Statistik for MPH: 7 3. november 2011 www.biostat.ku.dk/~pka/mph11 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

Kursus 02402/02323 Introducerende Statistik. Forelæsning 6: Sammenligning af to grupper

Kursus 02402/02323 Introducerende Statistik. Forelæsning 6: Sammenligning af to grupper Kursus 02402/02323 Introducerende Statistik Forelæsning 6: Sammenligning af to grupper Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen

Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen Kursus 02402/02323 Introducerende Statistik Forelæsning 6: Sammenligning af to grupper Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

Question I.1 (1) We use Method 3.8 from Chapter 3 to achieve

Question I.1 (1) We use Method 3.8 from Chapter 3 to achieve Correct answers: 35132 25225 11354 53441 12141 32235 Exercise I Question I.1 (1) We use Method 3.8 from Chapter 3 to achieve And since, qt(0.95, 24) ## [1] 1.710882 90.4 ± t 0.95 10.3 25 We get that 10.3

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Kvant Eksamen December 2010 3 timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer.

Kvant Eksamen December 2010 3 timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer. Kvant Eksamen December 2010 3 timer med hjælpemidler 1 Hvad er en continuous variable? Giv 2 illustrationer. What is a continuous variable? Give two illustrations. 2 Hvorfor kan man bedre drage konklusioner

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Kursus 02402/02323 Introducerende Statistik. Forelæsning 7: Simuleringsbaseret statistik

Kursus 02402/02323 Introducerende Statistik. Forelæsning 7: Simuleringsbaseret statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 7: Simuleringsbaseret statistik Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

enote 4: Statistik ved simulering Kursus 02402/02323 Introducerende Statistik Forelæsning 7: Simuleringsbaseret statistik Peder Bacher

enote 4: Statistik ved simulering Kursus 02402/02323 Introducerende Statistik Forelæsning 7: Simuleringsbaseret statistik Peder Bacher Kursus 02402/02323 Introducerende Statistik Forelæsning 7: Simuleringsbaseret statistik Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel

Oversigt. 1 Eksempel. 2 Fordelingen for gennemsnittet t-fordelingen. 3 Konfidensintervallet for µ Eksempel Kursus 02402/02323 Introducerende Statistik Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 7: Simuleringsbaseret statistik. Klaus K. Andersen og Per Bruun Brockhoff

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 7: Simuleringsbaseret statistik. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Introducerende Statistik Forelæsning 7: Simuleringsbaseret statistik Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet 2800

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin aug-juni 10/11 Institution Campus Vejle Handelsgymnasie Uddannelse Fag og niveau Lærer(e) Hold HHX Statistik

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 11. juni Opgavesættet består af 4 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

q-værdien som skal sammenlignes med den kritiske Chi-i-Anden værdi p-værdien som skal sammenlignes med signifikansniveauet.

q-værdien som skal sammenlignes med den kritiske Chi-i-Anden værdi p-værdien som skal sammenlignes med signifikansniveauet. Introduktion: Chi-i-Anden test (Goodness of Fit) på computeren fungerer som en "black-boks"- kommando, hvor eleverne med udgangspunkt i en nulhypotese (H ) taster de forventede og de observerede talværdier

Læs mere

enote 3: Hypotesetests for én gruppe/stikprøve Introduktion til Statistik Forelæsning 5: Hypotesetest, power og modelkontrol - one sample Peder Bacher

enote 3: Hypotesetests for én gruppe/stikprøve Introduktion til Statistik Forelæsning 5: Hypotesetest, power og modelkontrol - one sample Peder Bacher Introduktion til Statistik Forelæsning 5: Hypotesetest, power og modelkontrol - one sample Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning

Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning Statistik Introduktion Deskriptiv statistik Sandsynslighedregning Introduktion Kasper K. Berthelsen, Institut f. Mat. Fag 8 Kursusgange Individuel mundtlig eksamen (7-skala) Udgangspunkt i opgaver Software:

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere