Fokus på Forsyning. Datagrundlag og metode

Størrelse: px
Starte visningen fra side:

Download "Fokus på Forsyning. Datagrundlag og metode"

Transkript

1 Fokus på Forsyning I notatet gennemgås datagrundlaget for brancheanalysen af forsyningssektoren sammen med variable, regressionsmodellen og tilhørende tests. Slutteligt sammenfattes analysens resultater og brugbarhed. SPERA Grønnegade Århus C CVR

2 Præsentation Data til denne analyse er bygget på DANVA s rapport: Vand i tal Ydermere er der indhentet data fra selskabernes hjemmesider for at vurdere, om disse selskaber er et datterselskab og indgår i en overliggende selskabsstruktur, hvor denne struktur har ét eller flere forsyningsområder. De endelige variable, som er blevet brugt, er følgende: Driftsomkostninger (kr./solgt m ): Denne variabel er baseret på Vand i tal Ledningsnet (km.): Denne variabel er baseret på Vand i tal Vand/spild: Er en dummy-variabel, som antager værdien én, hvis et vilkårligt selskab udover at have spildevand som forsyningsområde også har vand. Hvis variablen antager værdien nul, vil selskabet ikke have vand som forsyningsart. Multi: Er en dummy-variabel, som antager værdien en, hvis et tilfældigt selskab har andre forsyningsarter end spildvand og vand. Dette kunne f.eks. være renovation. Hvis dummy variablen antager værdien nul, har selskabet ingen af disse forsyningsarter. Dummyvariablene vedr. forsyningsarter (Vand/spild og Multi) er konstrueret ud fra selskabernes hjemmesider og information omkring selskabernes engagement i de forskellige forsyningsarter. Det bemærkes i forhold til driftsomkostninger, at disse forudsættes korrekt afgrænset og fordelt til spildevand, såfremt der indgår andre selskaber eller forsyningsarter i selskabskonstruktionen. Det bemærkes også, at der kan være en mindre usikkerhed knyttet til, om alle omkostninger fordeles korrekt. Det er dog vurderingen, at de primære usikkerheder ofte knytter sig til opgørelsen af drift henholdsvis anlæg, hvor anlæg er holdt helt ude af denne analyse. Bearbejdning og observationer I Vand i tal 2012 er der data vedrørende 68 spildevandsselskaber. Når der bliver justeret for nulobservationer, er der 55 selskaber tilbage i stikprøven. En nulobservation skal forstås på den måde, at selskabet enten ingen kloakledninger har, eller at der er tomme observationer i de variable, som faktiske driftsomkostninger er udregnet fra. Faktiske driftsomkostninger er udregnet som summen af driftsomkostninger vedrørende transport, rensning og kundehåndtering. Følgende selskaber er derfor fjernet: Afløb Ballerup A/S, Brøndby Forsyning A/S, Frederiksberg Kloak A/S, Glostrup Spildevand A/S, KE Afløb A/S, Lyngby-Tårbæk Spildevand A/S, Nordvand (Gladsaxe Spildevand & Gentofte Spildevand), Vallensbæk Forsyning, Lynettefælleskabet I/S, Møllåværket Renseanlæg Lundtofte, Måløv Rens A/S, Spildevandscenter Avedøre I/S. 2

3 Regressionsmodellen Ud over de brugte variable findes i blandt DANVA s data mange andre variable, som er blevet forsøgt brugt for at forbedre modellen. Disse har dog enten forværret modellen eller har vist sig ikke at være signifikante. Den endelige regressionsmodel er præsenteret i (1) = + + / + + (1) Det valgte signifikansniveau er sat til 10% for at evaluere de enkelte t-statistikker. er en konstant. er signifikant og negativ. Denne variabel omhandler størrelsen på et selskab. Jo flere kilometer kloakledning et givent selskab har, des færre forventelige faktiske driftsomkostninger vil et selskab have. Det indikerer, at der er findes stordriftsfordele i spildevandsbranchen. er insignifikant. -koefficienten er negativ. Det indikerer, at kombinationen af spildevand og vand vil medføre lavere driftsomkostninger. Det bemærkes dog, at er imidlertid ikke statistisk signifikant. Det kan derfor ikke med statistisk sikkerhed fastslås, at vand som forsyningsart udover spildevand - medfører lavere driftsomkostninger. er på grænsen mellem at være statistisk signifikant og ikke-signifikant 1. Den positive koefficient viser, at selskaber med flere forsyningsarter udover spildevand og vand har højere driftsomkostninger. I nedenstående tabel er outputtet fra regressionsmodellen præsenteret. Tabel 1: Output regressionsanalyse Variabel C Ledningsnet Vand/spild Multi Koefficient 16-0,0019-1,67 1,43 T-statistik 12,58-2,19 1,31 1,67 P-værdi 0 0,03 0,2 0,10 Forklaringsgraden i modellen er på 16,33% (R^2). Dermed kan modellen forklare 16,33% af variationen i de faktiske driftsomkostninger for selskaberne. Hvis andre Forklaringsgraden antager en værdi mellem nul og 100 %. Hvis modellen fik tilføjet flere relevante variable ville forklaringsgraden blive højere. Hvis værdien er 100 % passer den lineære sammenhæng perfekt, og dermed forklarer de uafhængige variable al variation i den afhængige variabel. 1 er signifikant ved et signifikansniveau på 10,2 pct. Da signifikansniveauet kun er 0,2 % point over det tilladte, er variablen inkluderet i analysen, da den anses for at være yderst relevant. 3

4 Da forklaringsgraden er på 16,33% betyder det dermed at 83,67% af variationen i modellen skal forklares af andre faktorer. Det vil blandt andet indikere, at der kan være et potentiale for flere selskaber i analysen ud fra den fastlagte effektivitetsmodel. Forudsætninger For at validere modellen er følgende forudsætninger blevet testet: F1. Fejlledet har en forventet værdi lig med 0 F2. Homoskedasticitet F3. Ingen multikollinearitet F4. Normalfordelte fejlled F1. Fejlledet har en forventet værdi lig med 0 Dette undersøges ved hjælp af en RESET-TEST. Den undersøger om den lineære sammenhæng som modellen bygger på er korrekt. Dvs. om modellen er korrekt specificeret eller ej. Nedenstående er de enkelte hypoteser præsenteret. H 0 : Modellen er korrekt specificeret H 1 : modellen er forkert specificeret Reset-testen er baseret på en hjælpe-regression, hvor der testes på den afhængige variabel kvadreret. I testen på modellen fremkommer følgende resultat, se tabel 2. Tabel 2: Output RESET- test Værdi P-værdi T-statistik 0,08 0,94 Som det ses på p-værdien er variablen ikke signifikant da værdien på 0,94 er på langt over 0,05 som er grænsen for hvornår, en variabel er signifikant eller ej. Dvs. at vi med 95 % sandsynlighed kan sige at modellen er korrekt specificeret. Dermed er den lineære sammenhæng, som modellen bygger på, korrekt. F2. Homoskedasticitet Udover at teste for korrekt specifikation er modellen blevet testet for homoskedasticitet. Dette er gjort for at validere t-statistikerne. Hvis t-statistikerne ikke er valide, ville det skabe stor usikkerhed om variabel 4

5 koefficienternes brugbarhed i modellen. Der er lavet en såkaldt Breusch-Pagan test for heteroskedasticitet. Nedenstående er hypoteserne præsenteret. H 0 : Homoskedasticitet (konstant varians i residualet) H 1 : Heteroskedasticitet (ikke-konstant varians) Den p-værdi, der fremkommer ved testen, er på 0,35 som er større end grænseværdien på 0,05. Det betyder, at nul hypotesen ikke kan afvises. Der er dermed 95 % sandsynlighed for at residualerne har konstant varians, og at de estimerede t-statistikker er valide. F3. Ingen multikollinearitet Hvis der er multikollinearitet i modellen, er de uafhængige variable stærkt korrelerede. Dette betyder at man ikke bruge linear regression til at estimere modellen, da estimationen af regressionskoefficienterne bliver usikre. Tabel 3: Korrelations matrice VAND/SPILD MULTI KL VAND/SPILD 1,00 0,42 0,10 MULTI 0,42 1,00-0,12 KL 0,10-0,12 1,00 Multikollinearitet mellem forskellige individuelle koefficienter ville blive repræsenteret med værdien 1 i tabel 3. Da den højeste korrelationskoefficient har værdien 0,42 mellem MULTI og VAND/SPILD kan det konstateres at forudsætningen om ingen multikollinearitet er opfyldt. F4. Normalfordelte fejlled Som det fremgår af nedenstående figur, er fejlleddene generelt normalfordelte. Dette betyder at estimationen af både t-statistikke og koefficienter er korrekt. 5

6 Figur 1: Normalfordeling af residualer Sammenfatning De fire tests viser at regressionsmodellen både er korrekt specificeret, og at koefficienten for hver enkel variabel er brugbar. Dermed er er modellen ikke udsat for forudsætningsbrud. Det kan dermed forudsættes, at den opstillede effektivitetsmodel og regressionsanalysen beskriver sammenhængen mellem de enkelte variable korrekt. Analysen viser at jo større et ledningsnet, des mindre vil dets driftsomkostninger være. Der er en indikation på at spildevandsselskaber som også har vand som forsyningsarter, har lavere driftsomkostninger. Selskaber med forsyningsarter ud over spildevand og vand har større omkostninger. Regressionsmodellens forklaringsgrad er på 16,33%. Det indikerer, at der for flere selskaber kan være potentialer for effektiviseringer, nemlig de ikke forklarede omkostninger. Flere variable vil øge modellens forklaringskraft og imidlertid også svække den statistiske sikkerhed i effektivitetsmodellen. Det ændrer dog ikke på, at andre faktorer en ledningsnettets længde har betydning for forskelle mellem selskabernes omkostninger, og de estimerede potentialer skal derfor primært ses som indikationer på potentialer. 6

Fokus på forsyning Investeringer I: Behov og afkast Investeringer II: Konsekvenser

Fokus på forsyning Investeringer I: Behov og afkast Investeringer II: Konsekvenser Investeringer I: Behov og afkast Investeringer II: Konsekvenser : I notatet beskrives datagrundlaget for analyserne af spildevandsselskabernes tilstand, muligheder og valg vedr. investering og finansiering.

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Baggrundsnotat: Modelteknisk

Baggrundsnotat: Modelteknisk Sekretariatet for Energitilsynet Baggrundsnotat: Modelteknisk materiale Store forskelle i varmepriserne hvorfor? Center for Varme Tekniske bilag I dette baggrundsnotat gennemgås de økonometriske forhold

Læs mere

Bilag 12 Regressionsanalysens tabeller og forklaringer

Bilag 12 Regressionsanalysens tabeller og forklaringer Bilag 12 Regressionsanalysens tabeller og forklaringer Regressionsanalysens tabeller og forklaringer Regressionsanalysen vil være delt op i 2 blokke. Første blok vil analysere hvor meget de tre TPB variabler

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Bilag 7a: Den nye omkostningsækvivalent for Slam FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 2

Bilag 7a: Den nye omkostningsækvivalent for Slam FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 2 Bilag 7a: Den nye omkostningsækvivalent for Slam FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 2 Indholdsfortegnelse Baggrund for genberegning 1.1 Valg af elementer... 1 Resultater 2.1 Slambehandling...

Læs mere

Baggrundsnotat: Modelteknisk

Baggrundsnotat: Modelteknisk Energi-, Forsynings- og Klimaudvalget 2015-16 EFK Alm.del Bilag 410 Offentligt Sekretariatet for Energitilsynet Baggrundsnotat: Modelteknisk materiale Store forskelle i varmepriserne hvorfor? Center for

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

De variable, som er inkluderet i de forskellige modeller, er følgende:

De variable, som er inkluderet i de forskellige modeller, er følgende: DUL II. Undersøgelse af hvilke faktorer, der er væsentlige for at understøtte, at der er klare og veltilrettelagte mål tilstede i arbejdet med elevernes læring Følgende er en statistisk analyse af ovenstående

Læs mere

Bilag 16: Robusthedsanalyser af effektiviseringspotentialerne Bilaget indeholder analyser af effektiviseringspotentialernes robusthed.

Bilag 16: Robusthedsanalyser af effektiviseringspotentialerne Bilaget indeholder analyser af effektiviseringspotentialernes robusthed. Bilag 16: Robusthedsanalyser af effektiviseringspotentialerne Bilaget indeholder analyser af effektiviseringspotentialernes robusthed. FORSYNINGSSEKRETARIATET FEBRUAR 2013 INDLEDNING... 3 1. COSTDRIVERSAMMENSÆTNING...

Læs mere

Bilag 1: Beregning af omkostningsækvivalenter

Bilag 1: Beregning af omkostningsækvivalenter Bilag 1: Beregning af omkostningsækvivalenter Bilaget indeholder den tekniske beregning af omkostningsækvivalenterne til brug for benchmarkingen 2013. FORSYNINGSSEKRETARIATET FEBRUAR 2013 INDLEDNING...

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Simpel Lineær Regression: Model

Simpel Lineær Regression: Model Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]

Læs mere

Fokus på forsyning. Investeringer I: Behov og afkast

Fokus på forsyning. Investeringer I: Behov og afkast Fokus på forsyning SPERA har undersøgt spildevandsselskabernes investeringer. For det første er selskabernes investeringsniveau samt sammenhængen mellem alder og effekten af foretagne investeringer undersøgt.

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Appendiks A Anvendte test statistikker

Appendiks A Anvendte test statistikker Appendiks A Anvendte test statistikker Afhandlingen opdeler testene i henholdsvis parametriske og ikke-parametriske test. De første fire test er parametriske test, mens de ikke-parametriske test udgør

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/33

Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Albertslund Kommune. Rens Holding A/S LYN. Renseservice SCA. HOFOR Spildevand Holding A/S. HOFOR Vand Holding A/S. Albertslund Kommune

Albertslund Kommune. Rens Holding A/S LYN. Renseservice SCA. HOFOR Spildevand Holding A/S. HOFOR Vand Holding A/S. Albertslund Kommune Albertslund Kommune Albertslund Kommune 3,19% * (ca. 3,36%) HOFOR Vand HOFOR Spildevand eller Indirekte ejerskab 8 vandselskaber, Vand Albertslund A/S 6 spildevandsselskaber, Spildevand Albertslund A/S

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 3

Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 3 Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 3 Indholdsfortegnelse Indledning Prisudvikling 2.1 Prisudviklingen fra 2014 til

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Løsninger til kapitel 14

Løsninger til kapitel 14 Opgave 14.1 a) Linjetilpasningsplottet bliver: Løsninger til kapitel 14 Idet datapunkterne ligger tæt på og jævnt fordelt omkring den rette linje, så ser det ud til, at der med rimelighed er tale om en

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 2. maj 2007 KM2: F22 1 Program Specifikation og dataproblemer, fortsat (Wooldridge kap. 9): Betydning af målefejl Dataudvælgelse: Manglende observationer

Læs mere

Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser

Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET OKTOBER 2015 VERSION 2 Indholdsfortegnelse Indledning Prisudvikling 2.1 Prisudviklingen fra prisloft

Læs mere

Store forskelle i varmepriserne hvorfor?

Store forskelle i varmepriserne hvorfor? Store forskelle i varmepriserne hvorfor? Der er store prisforskelle på fjernvarme rundt om i landet. Energitilsynet analyserer her, hvordan brændselsvalg, beliggenhed i forhold kunderne, størrelse og ejerskab

Læs mere

Analyse af omkostningsstrukturen i den danske vandsektor

Analyse af omkostningsstrukturen i den danske vandsektor LS d. 12.11.2004 Analyse af omkostningsstrukturen i den danske vandsektor Baggrundsnotat vedrørende Dansk Økonomi, efterår 2004, kapitel III Dette baggrundsnotat indeholder estimationer af, hvilke faktorer

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Bilag 4: Beregning af de korrigerede netvolumenmål Bilaget indeholder en teknisk gennemgang af beregningen af de korrigerede netvolumenmål, som

Bilag 4: Beregning af de korrigerede netvolumenmål Bilaget indeholder en teknisk gennemgang af beregningen af de korrigerede netvolumenmål, som Bilag 4: Beregning af de korrigerede netvolumenmål Bilaget indeholder en teknisk gennemgang af beregningen af de korrigerede netvolumenmål, som indgår i benchmarkingmodellen. FORSYNINGSSEKRETARIATET FEBRUAR

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Den samlede model til estimation af lønpræmien er da givet ved:

Den samlede model til estimation af lønpræmien er da givet ved: Lønpræmien Lønpræmien i en branche kan indikere, om konkurrencen er hård eller svag i branchen. Hvis der er svag konkurrence mellem virksomhederne i branchen, vil det ofte give sig udslag i både højere

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvalitative egenskaber og dummyvariabler Kvantitative metoder 2 Dummyvariabler 28. marts 2007 Vi har (hovedsagligt) set på kvantitative variabler (løn, priser, forbrug, indkomst, )... Men hvad med kvalitative

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Test for strukturelle ændringer i investeringsadfærden

Test for strukturelle ændringer i investeringsadfærden d. 6.10.2016 De Økonomiske Råds Sekretariat Test for strukturelle ændringer i investeringsadfærden Dette notat redegør for de stabilitetstest af forskellige tidsserier vedrørende investeringsadfærden i

Læs mere

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007 Dagens program: Økonometri 1 Afslutningsforelæsning 23. maj 2007 6-trins procedure til IV estimation. Afrunding af IV: Rygning og fødselsvægt. Afrunding og perspektivering af Kvant 2. Opfølgning af introduktionsforelæsningen.

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression Indhold 1 Multipel lineær regression 2 1.1 Regression med 2 eksponeringsvariable......................... 2 1.2 Fortolkning og estimation................................ 3 1.3 AnovaTabel og multipel R

Læs mere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere DET ØKONOMISKE RÅD S E K R E T A R I A T E T d. 20. maj 2005 SG Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere Baggrundsnotat vedr. Dansk Økonomi, forår 2005, kapitel

Læs mere

Vejledende løsninger kapitel 9 opgaver

Vejledende løsninger kapitel 9 opgaver KAPITEL 9 OPGAVE 1 a) Hypoteser H 0 : Der er uafhængighed (ingen sammenhæng) i kontingenstabellen H 1 : Der er afhængighed (sammenhæng) i kontingenstabellen Observerede værdier Ny metode Gammel metode

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine

Læs mere

Helt overordnet er der to skridt i udvælgelsen af sammenlignelige kommuner:

Helt overordnet er der to skridt i udvælgelsen af sammenlignelige kommuner: N OTAT Metode, FLIS sammenligningskommuner Dette notat præsenterer metoden bag udregning af sammenligningskommuner i FLIS. Derudover præsenteres de første tre modeller der anvendes til at finde sammenligningskommuner

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression 1 Multipel lineær regression Regression med 2 eksponeringsvariable Fortolkning og estimation AnovaTabel og multipel R 2 Ensidet variansanalyse: Dummy kodning Kovariansanalyse og effektmodifikation Tosidet

Læs mere

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion Dagens program Økonometri 1 Dummy variable 4. marts 003 Emnet for denne forelæsning er kvalitative variable i den multiple regressionsmodel (Wooldridge kap. 7.5-7.6+8.1)! Husk at udfylde spørgeskema 3!

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression // SVAR

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression // SVAR ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression // SVAR Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

Fokus på forsyning INVESTERING OG FINANSIERING 2. INVESTERING OG ALDER FIGUR 1 INVESTERINGER OG LEDNINGSNETTETS ALDER

Fokus på forsyning INVESTERING OG FINANSIERING 2. INVESTERING OG ALDER FIGUR 1 INVESTERINGER OG LEDNINGSNETTETS ALDER Gennemførte investeringer kr./solgt m3 INVESTERING OG FINANSIERING 1. BAGGRUND Mange spildevandselskaber forventer stigende investeringer i de kommende år. Konsulent firmaet SPERA har undersøgt 44 spildevandsselskabers

Læs mere

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2.

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2. C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b. 5.000 4.800 4.600 4.400 4.00 4.000 3.800 3.600 3.400 3.00 3.000 1.19% 14.9% 7.38% 40.48% 53.57% 66.67% 79.76% 9.86% 010 011

Læs mere

Test nr. 6 af centrale elementer 02402

Test nr. 6 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 6 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Baggrundsnotat: Søskendes uddannelsesvalg og indkomst

Baggrundsnotat: Søskendes uddannelsesvalg og indkomst 17. december 2013 Baggrundsnotat: Søskendes uddannelsesvalg og indkomst Dette notat redegør for den økonometriske analyse af indkomstforskelle mellem personer med forskellige lange videregående uddannelser

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Ekstremregn i Danmark

Ekstremregn i Danmark Ekstremregn i Danmark Supplement til statistisk bearbejdning af nedbørsdata fra Spildevandskomiteens regnmålersystem 1979-96 Henrik Madsen August 2002 Miljø & Ressourcer DTU Danmark Tekniske Universitet

Læs mere

Eksamen i Statistik og skalavalidering

Eksamen i Statistik og skalavalidering Eksamen i Statistik og skalavalidering 2009-studieordning Til aflevering d. 22. december 2010 Efterårssemestret 2010, Kandidatuddannelsen i Folkesundhedsvidenskab Opgaven er udarbejdet af: Eksamensnummer

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Ifølge Dansk Energis analyse kan stigningen i grundbeløbsstøtten forklare størstedelen eller 72 % af faldet i fjernvarmepriserne fra 2010 til 2016.

Ifølge Dansk Energis analyse kan stigningen i grundbeløbsstøtten forklare størstedelen eller 72 % af faldet i fjernvarmepriserne fra 2010 til 2016. Analyse Dok. ansvarlig: JFH Sekretær: Sagsnr.: s2015-731 Doknr: d2016-13799-36.0 12-10-2016 Grundbeløbet og betydning for fjernvarmeprisen Resume De naturgasfyrede decentrale kraftvarmeværker modtager

Læs mere

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data)

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data) Dagens program Økonometri 1 Specifikation, og dataproblemer 10. april 003 Emnet for denne forelæsning er specifikation (Wooldridge kap. 9.-9.4)! Proxy variable! Målefejl! Manglende observationer! Dataudvælgelse!

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1 Økonometri 1 Prediktion. Dummyvariabler 9. oktober 2006 Økonometri 1: F9 1 Program frem til efterårsferien Om goodness-of-fit, prediktion og residualer (kap. 6.3-4) Kvalitative egenskaber i den multiple

Læs mere

UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER

UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER Undervisningseffekten udregnes som forskellen mellem den forventede og den faktiske karakter i 9. klasses afgangsprøve. Undervisningseffekten udregnes

Læs mere

Analyse 20. august 2015

Analyse 20. august 2015 Analyse 20. august 2015 Lukning af kaserner har ikke været forbundet med tab af lokale private eller offentlige arbejdspladser uden for forsvaret Af Kristian Thor Jakobsen, Nicolai Kaarsen og Edith Madsen

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Markante sæsonudsving på boligmarkedet

Markante sæsonudsving på boligmarkedet N O T A T Markante sæsonudsving på boligmarkedet 9. marts 0 Denne analyse estimerer effekten af de sæsonudsving, der præger prisudviklingen på boligmarkedet. Disse priseffekter kan være hensigtsmæssige

Læs mere

Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater.

Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater. Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater. 1 Sammenfatning Der er en statistisk signifikant positiv sammenhæng mellem opnåelse af et godt testresultat og elevernes oplevede

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 7. marts 2007 regressionsmodel 1 Opgave fra sidst (Gauss-Markov teoremet) Opgave: Vis at hvis M = I X X X X 1 ( ' ) ' er M idempoten dvs der

Læs mere

Generelt er korrelationen mellem elevens samlede vurdering i forsøg 1 og forsøg 2 på 0,79.

Generelt er korrelationen mellem elevens samlede vurdering i forsøg 1 og forsøg 2 på 0,79. Olof Palmes Allé 38 8200 Aarhus N Tlf.nr.: 35 87 88 89 E-mail: stil@stil.dk www.stil.dk CVR-nr.: 13223459 Undersøgelse af de nationale tests reliabilitet 26.02.2016 Sammenfatning I efteråret 2014 blev

Læs mere

Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge

Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge Redegørelsen ovenfor er baseret på statistiske analyser, der detaljeres i det følgende, et appendiks for hvert afsnit. Problematikken

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Løsninger til kapitel 15. størrelsen i kvadratmeter, X. en dummy-variabel, som indikerer om der er havudsigt eller ej, så er modellen

Løsninger til kapitel 15. størrelsen i kvadratmeter, X. en dummy-variabel, som indikerer om der er havudsigt eller ej, så er modellen Løsninger til kapitel 5 Opgave 5. a) Hvis Y indikerer prisen, størrelsen i kvadratmeter, afstanden i meter til vandet og en dummy-variael, som indikerer om der er havudsigt eller ej, så er modellen Y =

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Dansk Erhvervs gymnasieeffekt - sådan gjorde vi

Dansk Erhvervs gymnasieeffekt - sådan gjorde vi Dansk Erhvervs gymnasieeffekt - sådan gjorde vi INDHOLD Formålet har været at undersøge, hvor dygtige de enkelte gymnasier er til at løfte elevernes faglige niveau. Dette kan man ikke undersøge blot ved

Læs mere

Anna Kock Maj Bilag 7: Interview med Anders Rene Jensen, indkøbs- og marketingchef i Rema 1000

Anna Kock Maj Bilag 7: Interview med Anders Rene Jensen, indkøbs- og marketingchef i Rema 1000 Bilag Bilag 1: Oversigt over bilag på CD Bilag 7: Interview med Anders Rene Jensen, indkøbs- og marketingchef i Rema 1000 Bilag 8: Interview med Alexander Jensen, købmand i Rema 1000 Bilag 9: Bilag 10:

Læs mere

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version university of copenhagen University of Copenhagen Notat om statistisk inferens Larsen, Martin Vinæs Publication date: 2014 Document Version Peer-review version Citation for published version (APA): Larsen,

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

ca. 5 min. STATISTISKE TEGN

ca. 5 min. STATISTISKE TEGN ca. 5 min. STATISTISKE TEGN I statistik støder du tit på forskellige tegn - det som også kaldes for statistisk notation. Det kan virke forvirrende og uoverskueligt i starten. Men bare rolig: For det første

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Økonomisk Kandidateksamen 2004II Økonometri 1. Læsefærdigheder hos skoleelever i Danmark

Økonomisk Kandidateksamen 2004II Økonometri 1. Læsefærdigheder hos skoleelever i Danmark Økonomisk Kandidateksamen 2004II Økonometri 1 Læsefærdigheder hos skoleelever i Danmark Praktiske anvisninger til individuel tag-hjem eksamen i Økonometri 1: Start med at sikre dig at du kan få adgang

Læs mere