Kommentarer til Modeller for Danske Fjorde og Kystnære Havområder

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Kommentarer til Modeller for Danske Fjorde og Kystnære Havområder"

Transkript

1 Bilag 7.1 Kommentarer til Modeller for Danske Fjorde og Kystnære Havområder Jan Kloppenborg Møller og Lasse Engbo Christiansen DTU Compute, Danmarks Tekniske Universitet 17. juni Formål Formålet med denne rapport er at kommentere og diskutere resultaterne præsenteret i den tredelte rapport Modeller for Danske Fjorde og Kystnære Havområder, som er udarbejdet af DHI og Aarhus Universitet, DCE. Det primære fokus i gennemgangen vil være på de statistiske modeller og brugen af data. Som nævnt er rapporten delt i tre, først en samlende oversigts rapport (Del 1)[2], dernæst en gennemgang af de mekanistiske modeller lavet DHI i del 2[1] og endelig indeholder del 3 en uddybning af den statistiske modellering[3]. Vi vil starte med at kommentere del-rapport 2 og 3. 2 Del 2 Den spatielle opløsning af de forskellige mekaniske modeller er ikke oplyst. 2.1 Dansk andel For at undersøge effekten af den danske tilførsel af kvælstof har man gennemført modelkørsler med 15%, 30% og 60% reduktion af den danske kvælstofstilførsel (N-load). Disse resultater bruges til at estimere indsatsbehovet vha. lineærregression. Et væsentligt element i den mekanistiske modellering er at den inkluderer udveksligen af vand mellem delområder og ikke mindst med Østersøen og Nordsøen. På side 33 er der en tabel, som viser den danske kvælstofsudlednings andel af klorofyl og Kd målene. Det undrer os, at der er så stor forskel i den danske andel når man sammenligner klorofyl og Kd indenfor vandområder. Og dette gør sig også gældende i de indre farvande, ja selv i de indre dele af limfjorden. Og hvordan hænger dette sammen med at der andre steder gives udtryk for at der er usikkerheder i modellen - specielt for ålegræs. 1

2 Figur 1: Hjarbæk fjord grafer for klorofyl (Øverst) og Lysdæmpning (Kd) (Nederst) - hentet fra ved at vælge vandområde Hjarbæk Fjord. Gul er den nuværende belastning, lilla den ønskede referencebelastning og rød og blå er regressionslinjer med og uden reduktion i fosfor tilførslen. På side 29 refereres til for yderligere grafer for de resterende vandområder - både for klorofyl og Kd. I rapporten er medtaget to eksempler for klorofyl, men ingen for Kd. Som et eksempel har vi kigget på Hjarbæk Fjord (Område ID 158), se figur 1. Det bemærkes, at regressionslinjerne ved den nuværende belastning (gul) rammer lidt over det nuværende klorofyl indhold og lysdæmpning, hvilket kan tilskrives usikkerhed. Men, hvis man bruger rapportens definition så skyldes det en negativ effekt af BSAP og GP, jf. Figur 7 side 27. Det er også værd at bemærke at regressionslinjen for lysdæmpning rammer under referencepunktet, så den maksimale effekt af DK N er over 100% jf. definitionen i figur 8 på side 28. Reelt skyldes det nok usikkerhed og da Hjarbæk er meget isoleret fra andre end danske kilder vil det være naturligt, hvis regressionslinjen gik igennem nutidsobservationen og referencepunktet - svarende til 100%. Men når man så kigger på tabel 3 på side 33 ser man at DHI kommer frem til at andelen af Kd som kan forklares ved kvælstofstilførsel fra dansk 2

3 land er 21,3% for Hjarbæk fjord - hvilket umiddelbart er i modstrid med deres definition. For klorofyl angives 93,9%, hvilket er i bedre overensstemmelse med figur 1. Da Kd-indikatoren er et af de to hovedmål undrer det os at præsentationen i resten af del-rapporten har det primære fokus på klorofyl. Fx. kunne det have været godt med en figur svarende til figur 11 (side 31) som viser Kd. Og afsnit 6.7 Opsummering mht. screeningsværktøj (side 34 i del 3) indeholder også kun konkrete kommentarer for klorofyl. For Odense Fjord nævnes det flere steder, at målestationen i den indre fjord ikke er repræsentativ, da der er lavvandet. Det bemærkes også, at målestationen i Haderslev Fjord ikke repræsenterer fjorden. Dette er så to eksempler, hvor modellen ikke kom til at passe godt nok med data, men vi savner en undersøgelse af hvor repræsentative de andre NOVANA målestationer er for deres repræsentative vandområder. Dette kan fx. gøres ved en form for krydsvalidering i de vandområder, hvor der er flere målestationer i det samme vandområde. Det nævnes flere steder, at der er usikkerheder i de mekanistiske modeller, men der gøres ikke noget for at kvantisere denne usikkerhed. Og da Kd er en ny udviklet del i modellerne mener vi det er væsentligt at redegøre for disse usikkerheder. En tilgang til dette kunne være en sensitivitetsanalyse, hvor de væsentligste parametre undersøges i hele det interval, som giver fysisk/biologisk mening. I del-rapport 3 står der envidere: Hvis scenarierne derimod afviger meget fra de nuværende forhold (fx scenarier med store reduktioner i næringsstoftilførsler) kan det påvirke modelusikkerheden. Det er desværre ikke muligt at kvantificere sådanne scenariers modelusikkerheder, da der i sagens natur ikke findes data at holde modelresultaterne op imod, men generelt vil usikkerheden på modelresultaterne øges jo længere væk man kommer fra kalibreringsområdet. (Del 3[3], side 23) 2.2 Indsatsbehov For at bestemme indsatsbehovet for den danske tilførsel beregnes først et behov for indsats: Status - Miljømål Behov for indsats = 100% (1) Status Ved at bruge de estimerede hældninger fra analyserne af den danske andel kommer man frem til definitionen på Indsatsbehov: Indsatsbehov = Behov for indsats Hældning = Status - Miljømål Status 1 100% (2) Hældning Her skal det bemærkes, at estimaterne af både Status og Hældning er behæftet med usikkerhed og de bør derfor betragtes som stokastiske variable. Usikkerheden for Status er formentlig så lille, at sandsynligheden for at den er nul er forsvindende, men dette gør sig ikke gældende for estimaterne af hældningen. Hældningerne er ikke angivet i rapporterne, men de er direkte sammenhængende med estimaterne af andelen af klorofyl/lysdæmpning, som kan forklares 3

4 ved kvælstoftilførsel fra dansk jord. Når andelen er lav er estimatet af hældningen også lav. Da der kun indgår 3 punkter i regressionerne vil der være væsentlige sandsynligheder for at dividere med nul! Og dermed vil usikkerheden på de estimerede indsatsbehov også være meget stor. NB: Der står også noget om, hvordan målestationerne bruges til at justere tal for hele områder, men det er nok i del Del 3 De statistiske modeller er baseret på data fra perioden og da der kun rapporteres en værdi af miljøindikatorerne per år giver op til 23 observationer per målestation. I den statistiske modellering deles data i et kalibreringsdatasæt og et valideringsdatasæt - så der er meget få observationer. Det beskrives også, at hver af de 8 forklarende variable testes i op til 43 månedsintervaller [3, Side 7]. Når der senere i rapporten angives hvilke variable der er valgt fremgår det ikke hvilket månedsinterval, som er brugt. Når de forklarende variable er valgt vha. krydsvalidering inddrages al data igen til parametriseringen af den endelige model, men det fremgår ikke, hvilken type denne er. Fra referencerne lader det til at være PLS (Partial Least Squares), men det er ikke helt klart. I Tabel 3[3, Side 10-11] kan man se, hvilke forklarende variable, som er blevet valgt. Men det fremgår ikke, hvormange observationer der er brugt i de enkelte modeller og man kan heller ikke se nogen estimater af hældninger blot et mål for den gennemsnitlige absolutte afvigelse og R 2, som ikke siger noget om usikkerheden på de estimerede hældninger. Som tidligere nævnt fremgår det heller ikke, hvilken periode der er brugt for de forklarende variable i hver enkelt model. De giver dog en samlet vurdering af hver af modellerne: 49 får OK (grøn(en enkelt har forkert farve)), 30 betegnes som varsomme (gul) og endelig er der 9, hvor der ikke er fundet nogen forklarende variable (blanke). Så det er kun for godt halvdelen af vandområderne, at der findes modeller, som beskriver systemet korrekt. Som i del 2 findes indsatsbehovet vha: Indsatsbehov = Status - Miljømål Status 1 100% (3) Hældning Status og miljømål er de samme, men der bruges estimater af hældninger fra de estimerede modeller. Alle tre variable er behæftet med nogen usikkerhed. Og denne er ikke kvanticeret. Det bemærkes, at N-load ikke indgår i alle de relevante modeller - i disse områder bruges en metaanalyse. I sidste afsnit på side 14 i del 2 er en klassisk ansvarsfraskrivelse, som er væsentlig, da der laves forudsigelser uden for det område, hvor der er data - dette øger usikkerheden, som stadig ikke er kvanticeret. Ligning 3 bruges direkte til at bestemme indsatsbehovet for korofylindikatoren. Men for lyssvækkelsesindikatoren omdøber de indsatsbehovet i ligningen til en afstand, som så bruges til at slå op i en tabel [3, Side 17]. Dette gøres så indsatsbehovet begrænses til intervallet fra 0 til hvor det ellers ville være 4

5 over 2.0 svarende til 200% i nogle områder - eller som der står: Ifølge modellerne er det for mange vandområder ikke muligt, på kort sigt, at opnå lysforhold, som svarer til lysforholdene i en reference situation eller i god tilstand, alene ved at regulere danske tilførsler fra land. Men ved at lave tabuleringen kommer det til at se ud som om det er muligt - og det er disse tal, som bringes videre når der senere laves et vægtet gennemsnit for at få et samlet indsatsbehov baseret på de statistiske modeller. I vores øjne er dette med til at rejse tvivl om forudsætningerne for at bruge ligning 3 til at bestemme indsatsbehov uden en dybere analyse af forudsætningerne for metoden, herunder korrelationer mellem områder. Det beskrives også, at der er tidsforsinkelser pga. ophobning af organisk bundet kvælstof i sedimenterne [3, Side 12] - dette vil give autokorrelation i residualerne og dermed øge usikkerhederne på estimaterne. For de andre indikatorer er der også ikke-kvanticerede usikkerheder. På side 21 angives det, at der for Limforden er taget højde for, at reduktioner i et opstrømsvandområde vil betyde, at det beregnede indsatsbehov for det tilstødende nedstrøms vandområde kan reduceres. Det er dog ikke angivet, hvordan dette er gjort. Endelig har man i tabel 6 både afrundet og grupperet indsatsbehov - så de fremkomne indsatsbehov får en klar afhængighed i visse områder (Det ser dog ud til at det ikke er de afrundede estimater, som er bragt videre til del 1). Et eksempel er vandområde 156 i Limfjorden, hvor der angives et indsatsbehov på 30%, som dog reduceres til 0%, hvis de beregnede reduktioner til vandområde 157 og Thisted Bredning implementeres (Fodnote 3, side 22). Her skal bemærkes at Thisted Bredning også er en del af vandområde 156, så der er klare forskelle mellem stationer inden for vandområder. Endelig er der lavet en meta-analyse og endnu en gang er der ikke taget højde for usikkerheder, som her må forventes at være større end for de områder, hvor der er tilstrækkelige data. 4 Del 1 Gennemgang af hvad der sker på siden med sammenligning Usikkerheder Som det er dokumenteret ovenfor er der væsentlige elementer af usikkerhed, som ikke er kvantiseret i de to modelleringstilgange. I del-rapport 1[2, s. 27] er der så medtaget en sammenligning af resultaterne for de 11 områder, hvor både mekanistiske og statistiske modeller er brugt. Udgangspunktet er Tabel 7, som er gengivet som Tabel 1. Inden vi kommenterer på fremgangsmåden vil vi starte med at vise, hvordan de sidste fem kolonner er fremkommet. MEK og STAT målbelastningerne er fundet ved: målbelastning = Nuværende belastning 100% reduktion 100% 5

6 Nuværende MEK STAT MEK mål- STAT mål- est. mål- usik. 95% usik. 95% omrid belastning N red. N red. belastning belastning belastning niveau niveau ton N/år % % ton N/år ton N/år ton N/år ton N/år % Tabel 1: Reproduktion af Tabel 7[2]. De estimerede målbelastninger fundet som gennemsnittet af de to modellers målbelastninger. Og man har valgt at angive et 95% niveau for usikkerheden som 2 gange standardafvigelsen af de to modellers målbelastninger. Og endelig fremkommer den sidste kolonne ved at dividere målet for usikkerhed med den estimerede målbelastning. Dette er altså gjort for hvert vandområde for sig. Statistisk set kan det give mening, at betragte de to modellers estimater af N reduktionen i % som uafhængige stokastiske variable (Det vil dog være svært, at argumentere for at de har den samme varians). Hvis man så vil give et 95% niveau for usikkerheden skal man huske, at der kun er 2 observationer og derfor skal standardafvigelsen ikke ganges med 2, som gjort, men med 97.5% fraktilen i en t-fordeling med 1 frihedsgrad: Dette medfører, at alle værdier i de to sidste kolonner bør ganges med 12.71/2 = Så de enkelte 95% usikkerhedsniveauer spænder fra 36% til 177%! ( Der skal ca. 60 uafhængige observationer til før 97.5% fraktilen i en t-fordeling er 2). I det efterfølgende gøres et forsøg på at kumulere usikkerheden. Hvis vi ser bort fra 2-tallet, så er det rigtigt, at variansen af en sum af uafhængige stokastiske reduceres som angivet: [ N ] N V ar X i = V ar[x i ] i=1 Dette gælder dog kun når de stokastiske variable er uafhængige. Da nogle af de 11 vandområder er nært beslægtede, e.g. vandområde 156 og 157 i Limfjorden og omkring Lillebælt, mener vi ikke at disse estimater er helt uafhængige og den samlede varians vil dermed være større. Endvidere bemærkes det at kumuleringen af variansen er foretaget for usikkerhederne i ton N per år. Denne er domineret af bidraget fra vandområde 156 efterfulgt af vandområde 157. Netop disse to vandområder er formentlig de mest korrelerede og dermed reduceres variansen ikke så meget ved at lægge dem sammen. Det skal dog siges at man ved at kumulere disse 11 tal får flere frihedsgrader og derfor kan man nu bruge en i=1 6

7 faktor 2.2 (I stedet for 12.7) og man vil finde en nedre grænse for usikkerheden på 10%, hvis og kun hvis de 11 vandområder er uafhængige. Afslutningsvis laves et forsøg på at skalere til hele landet. Her er man kommet frem til en usikkerhed på 95% niveau på landsplan på 1714 ton N/år. Dette er (måske inddirekte) fremkommet ved følgende udregning: ton/år = 1714ton/år 8962 For det første er målbelastningen på landsplan og i disse 11 vandområder behæftede med usikkerhed. Dette ville kunne give mening, hvis man lavede begge modeller for alle vandområder i hele landet (Uden at bruge meta-modeller og lignende). Her er der derimod tale om en skalering og det reducerer ikke usikkerheden, så med en kumuleret målbelastning på ton N/år fås en nedre grænse for usikkerheden til: ton/år = 3711ton/år (På baggrund af de 9% så i praksis vil den være endnu større...) Når man skalerer på denne måde antager man at de modellerede vandområder er repræsentative for resten af landet. Da størstedelen af belastningen og dermed usikkerheden kommer fra de indre dele af Limfjorden mener vi ikke nødvendigvis at disse er repræsentative for resten af landet - det vil i hvert fald kræve yderligere argumentation. En alternativ analyse vil være at lave en to-vejs variansanalyse med model og vandområde som forklarende variable. Dette kræver igen, at observationerne er uafhængige og at de har samme varians. Sidstnævnte vil ikke være tilfældet, hvis man kigger på udledninger, men kan vælge at kigge på de procentvise reduktioner, hvor antagelsen om ens varians formentlig vil være mere rimelig. Den analyse giver en p-værdi for forskelle mellem modeller på 6.3%, hvilket er marginalt større end den sædvanlige grænse på 5%, så modellen reduceres til en en-vejs anova, som kun indeholder vandområderne som forklarende variabel. Analysen giver et estimat af standardafvigelsen på 6.06% med 11 frihedsgrader, så et 95% niveau for usikkerhed bliver på 13.3%. Som det fremgår af kommentaren til side 21 i del-rapport 3 er de estimerede indsatsbehov for vandområde 156 og 157 korrelerede således at indsatsbehovet enten er 31% eller 0% (Hvor en del af vandområde 156 er holdt udenfor). Samtidig er vandområde 156 det vandområde som har den største nuværende belastning, og dermed en stor indflydelse på den samlede målbelastning. Hvis man gentager beregningerne som i Tabel 1 med denne ene ændring fås tallene i Tabel 2. Dette ændrer målbelastningen for de ensemble modellerede områder til ton N/år. Og tilsvarende bliver usikkerheden (på 95% niveau) 4724 ton N/år. Og usikkerheden i % er derfor 46%. 7

8 Nuværende MEK STAT MEK mål- STAT mål- est. mål- usik. 95% usik. 95% omrid belastning N red. N red. belastning belastning belastning niveau niveau ton N/år % % ton N/år ton N/år ton N/år ton N/år % Tabel 2: Genberegning af Tabel 1, hvor eneste ændring er at STAT reduktionen for vandområde 156 er sat ned til 0% jf. del-rapport 3. (Her er brugt en faktor 2 for at komme til usikkerhedsniveauet - dette er gjort for at lette sammenligningen med rapporten. Selvom vi mener, at man mindst bør bruge en faktor 2.2.) Hvis man også laver variansanalysen for reduktionerne i % finder man, at estimatet af standardafvigelsen er steget til 9.9% - stadig med 11 frihedsgrader - så et 95% niveau for usikkerheden bliver 21.7%. Vi er klar over, at Thisted Bredning er en del af vandområde 156 og derfor er en reduktion på 0% ikke retvisende, men vi har ikke grundlaget til at finde et bedre estimat, hvor der er korrigeret for påvirkningen fra vandområde 157. Derfor har vi valgt at medtage ovenstående analyse for at illustrere, hvor følsomt resultatet er. Dette eksempel viser også, at det største bidrag til usikkerheden (Med den valgte tilgang) kommer fra vandområde 156, hvor belastningen er størst, og dermed betydningen af dette særlige vandområde. 5 Afrunding Samlet set bliver der påpeget mulige kilder til usikkerheder en række steder i rapporterne, men disse kvanticeres ikke og bliver heller ikke taget med når der gøres et forsøg på at lave en samlet vurdering af usikkerheden [2, Side 27]. Den skalering, som er brugt i rapporterne til at komme fra de ensemble modellerede områder til landsplan, antager at man har lavet samme analyse i alle vandområder, ellers får man ikke den fundne reduktion i usikkerheden. Når skaleringen laves rigtigt forbliver 95% usikkerhedsniveauet på landsplan 9% og ikke 4.1%. Og de 9% er stadig en nedre grænse. Vi mener, at den fundne usikkerhed (på 95% niveau) er en nedre grænse, som kun opnås, hvis alle estimater for de 11 ensemble modellerede områder er uafhængige, men i delrapport 3 påpeges det, at de ikke er uafhængige. Derfor har 8

9 vi medtaget et eksempel, hvoraf det fremgår at estimaterne er meget følsomme for udfaldet af en enkelt model i et enkelt område. Et af de usikkerhedselementer, som ikke er beskrevet i rapporterne er effekten af usikkerheden på de estimerede hældninger, som bruges til at bestemme indsatsbehov. Da der divideres med estimatet er det meget vigtigt at man forholder sig til risikoen for at dividere med nul (Pga. fordelingen af estimaterne). Det vil være godt, hvis man medtager estimater af usikkerhederne i alle dele af den statistiske modellering. Da der kun er mellem 15 og 23 observationer i hvert datasæt og da der forudsiges uden for de områder, hvor der er observationer, er der væsentlige usikkerheder på estimaterne. Sluttelig er det meget vanskeligt at forholde sig til værdien af de præsenterede resultater når de omtalte usikkerheder ikke er kvantificeret og præsenteret for alle del-modeller. Litteratur [1] Anders Chr. Erichsen and Hanne Kaas. Modeller for danske fjorde og kystnære havområder - del 2. Technical report, DHI, Marts [2] Anders Chr. Erichsen, Hanne Kaas, Karen Timmermann, Stiig Markager, Jesper Christensen, and Ciarán Murray. Modeller for danske fjorde og kystnære havområder - del 1. Technical report, Aarhus universitet og DHI, December [3] Karen Timmermann, Jesper P.A. Christensen, Ciarán Murray, and Stiig Markager. Statistiske modeller for danske fjorde og kystnære havområder (del 3) (udkast version ). Technical report, Aarhus universitet,

Modeller for danske fjorde og kystnære havområder

Modeller for danske fjorde og kystnære havområder NST projektet Implementeringen af modeller til brug for vandforvaltningen Modeller for danske fjorde og kystnære havområder Indsatsoptimering i henhold til inderfjorde og yderfjorde Naturstyrelsen Rapport

Læs mere

Vandområde planer - Beregnede kvælstofindsatsbehov for Norsminde Fjord

Vandområde planer - Beregnede kvælstofindsatsbehov for Norsminde Fjord 22. juni 2015 Notat Vandområde planer - Beregnede kvælstofindsatsbehov for Norsminde Fjord Indledning I notatet søges det klarlagt hvilke modeller og beregningsmetoder der er anvendt til fastsættelse af

Læs mere

Hvordan reagerer recipienten? Karen Timmermann Anders Erichsen

Hvordan reagerer recipienten? Karen Timmermann Anders Erichsen Hvordan reagerer recipienten? Karen Timmermann Anders Erichsen AARHUS UNIVERSITET Betydningen af kvælstof for miljøtilstanden? Karen Timmermann Anders Erichsen AARHUS UNIVERSITET Myter Man skal måle ikke

Læs mere

Vandområde planer - Beregnede kvælstofindsatsbehov for farvande

Vandområde planer - Beregnede kvælstofindsatsbehov for farvande 1. juni 2015 Notat Vandområde planer - Beregnede kvælstofindsatsbehov for farvande omkring Fyn Indledning Dette notat er tilsigtet konsulenter som har vandplaner som fagligt arbejdsområde. I notatet søges

Læs mere

Vandområdeplan Vanddistrikt 1, Jylland og Fyn

Vandområdeplan Vanddistrikt 1, Jylland og Fyn Ringkøbing-Skjern Kommunes bemærkninger til udkast til Vandområdeplanerne 2015-2021. Ringkøbing-Skjern Kommune har gennemgået udkast til vandområdeplanerne for Vandområdedistrikt I Jylland og Fyn og har

Læs mere

Marint forvaltningsværktøj - marine vandplansmodeller Karen Timmermann, Stiig Markager Hanne Kaas & Anders Erichsen

Marint forvaltningsværktøj - marine vandplansmodeller Karen Timmermann, Stiig Markager Hanne Kaas & Anders Erichsen Marint forvaltningsværktøj - marine vandplansmodeller Karen Timmermann, Stiig Markager Hanne Kaas & Anders Erichsen AARHUS UNIVERSITET Agenda Baggrund Modeller Metode til beregning af indsats, statistiske

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Miljømål for fjorde er og er urealistisk fastsat fra dansk side

Miljømål for fjorde er og er urealistisk fastsat fra dansk side Bilag 7.4 Miljømål for fjorde er og er urealistisk fastsat fra dansk side De danske miljømål for klorofyl og ålegræs er ikke i samklang med nabolande og er urealistisk højt fastsat af de danske myndigheder.

Læs mere

Vandområde planer - Beregnede kvælstofindsatsbehov for Ringkøbing fjord

Vandområde planer - Beregnede kvælstofindsatsbehov for Ringkøbing fjord 22. juni 2015 Vandområde planer - Beregnede kvælstofindsatsbehov for Ringkøbing fjord Generelt om beregningsmetoder Det beregnede kvælstofreduktionsbehov som fremgår af forslag til vandområdeplaner, som

Læs mere

September Miljø- og Fødevareudvalget L 68 endeligt svar på spørgsmål 62 Offentligt

September Miljø- og Fødevareudvalget L 68 endeligt svar på spørgsmål 62 Offentligt Miljø- og Fødevareudvalget 2015-16 L 68 endeligt svar på spørgsmål 62 Offentligt Fyn J.nr. NST-404-00180 Ref. stepe Den 23. september 2015 Tillæg til Miljøministeriets kontrakt med DHI vedrørende forskning

Læs mere

Præcisering af trendanalyser af den normaliserede totale og diffuse kvælstoftransport i perioden

Præcisering af trendanalyser af den normaliserede totale og diffuse kvælstoftransport i perioden Præcisering af trendanalyser af den normaliserede totale og diffuse kvælstoftransport i perioden 2005-2012 Notat fra DCE - Nationalt Center for Miljø og Energi Dato: 7. april 2014 30. april 2014 Søren

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Fastsættelse af reduktionsmål og indsats for fjorde og kystvande i Vandområdeplanerne Kontorchef Harley Bundgaard Madsen, Miljøstyrelsen

Fastsættelse af reduktionsmål og indsats for fjorde og kystvande i Vandområdeplanerne Kontorchef Harley Bundgaard Madsen, Miljøstyrelsen Differentieret regulering Erfaringer og ønsker til fremtidens miljøregulering. IDAmiljø den 3. april 2017 Fastsættelse af reduktionsmål og indsats for fjorde og kystvande i Vandområdeplanerne Kontorchef

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Det sydfynske øhav som rammevilkår for landbruget på Fyn. Stiig Markager Aarhus Universitet

Det sydfynske øhav som rammevilkår for landbruget på Fyn. Stiig Markager Aarhus Universitet Det sydfynske øhav som rammevilkår for landbruget på Fyn. Aarhus Universitet Den gode danske muld Næringsrig jord Fladt landskab Pålidelig nedbør Den gode danske muld Habor-Bosch processen N 2 + 3 H 2

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

National kvælstofmodel Oplandsmodel til belastning og virkemidler

National kvælstofmodel Oplandsmodel til belastning og virkemidler National kvælstofmodel Oplandsmodel til belastning og virkemidler Kortleverancer Anker Lajer Højberg, Jørgen Windolf, Christen Duus Børgesen, Lars Troldborg, Henrik Tornbjerg, Gitte Blicher-Mathiesen,

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Nitrat retentionskortlægningen

Nitrat retentionskortlægningen Natur & Miljø 2014, Odense kongrescenter 20.-21. maj 2014 Nitrat retentionskortlægningen Baggrund Metodik Særlige udfordringer Skala Produkter GEUS, Aarhus Universitet (DCE og DCA) og DHI Seniorforsker,

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Estimation og usikkerhed

Estimation og usikkerhed Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode

Læs mere

Indholdsfortegnelse. Miljørigtige køretøjer i Aarhus. Effekter af en mere miljørigtig vognpark i Aarhus Kommune. Aarhus Kommune. Notat - kort version

Indholdsfortegnelse. Miljørigtige køretøjer i Aarhus. Effekter af en mere miljørigtig vognpark i Aarhus Kommune. Aarhus Kommune. Notat - kort version Aarhus Kommune Miljørigtige køretøjer i Aarhus Effekter af en mere miljørigtig vognpark i Aarhus Kommune COWI A/S Jens Chr Skous Vej 9 8000 Aarhus C Telefon 56 40 00 00 wwwcowidk Notat - kort version Indholdsfortegnelse

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere DET ØKONOMISKE RÅD S E K R E T A R I A T E T d. 20. maj 2005 SG Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere Baggrundsnotat vedr. Dansk Økonomi, forår 2005, kapitel

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Modeller for Danske Fjorde og Kystnære Havområder Del 1 Metode til bestemmelse af målbelastning

Modeller for Danske Fjorde og Kystnære Havområder Del 1 Metode til bestemmelse af målbelastning NST projektet Implementeringen af modeller til brug for vandforvaltningen ler for Danske Fjorde og Kystnære Havområder Del 1 Metode til bestemmelse af målbelastning Dokumentation Naturstyrelsen Rapport

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Beregning af målbelastninger svarende til vandrammedirektivets fem tilstandsklasser

Beregning af målbelastninger svarende til vandrammedirektivets fem tilstandsklasser Miljø- og Fødevareudvalget 2015-16 L 68 endeligt svar på spørgsmål 62 Offentligt Beregning af målbelastninger svarende til vandrammedirektivets fem tilstandsklasser Notat fra DCE og DHI Dato: 24. januar

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER

UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER Undervisningseffekten udregnes som forskellen mellem den forventede og den faktiske karakter i 9. klasses afgangsprøve. Undervisningseffekten udregnes

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

)DJOLJ UDSSRUW IUD '08 QU 129$1$ 0DULQH RPUnGHU 7LOVWDQG RJ XGYLNOLQJ L PLOM RJ QDWXUNYDOLWHWHQ *XQQL UWHEMHUJ UHG %LODJ Bilag-1

)DJOLJ UDSSRUW IUD '08 QU 129$1$ 0DULQH RPUnGHU 7LOVWDQG RJ XGYLNOLQJ L PLOM RJ QDWXUNYDOLWHWHQ *XQQL UWHEMHUJ UHG %LODJ Bilag-1 )DJOLJUDSSRUWIUD'08QU 129$1$ 0DULQHRPUnGHU 7LOVWDQGRJXGYLNOLQJLPLOM RJQDWXUNYDOLWHWHQ *XQQL UWHEMHUJUHG %LODJ Bilag-1 %LODJ %HVNULYHOVHDIDQYHQGWHLQGHNVRJNRUUHNWLRQHUIRU NOLPDWLVNHYDULDWLRQHU 1 ULQJVVWRINRQFHQWUDWLRQHUNORURI\ORJVLJWG\EGH

Læs mere

Kvælstofreduktionsberegninger til kystvande: Fejlbehæftede, forvredet fortolkning af egne resultater og tilsidesættelse af viden

Kvælstofreduktionsberegninger til kystvande: Fejlbehæftede, forvredet fortolkning af egne resultater og tilsidesættelse af viden Bilag 7.2 Kvælstofreduktionsberegninger til kystvande: Fejlbehæftede, forvredet fortolkning af egne resultater og tilsidesættelse af viden På trods af en betydelig indsats for at forbedre grundlaget for

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

2 km 2 stenrev = 800 tons N, kan det virkelig passe?

2 km 2 stenrev = 800 tons N, kan det virkelig passe? Stenrev i Limfjorden en anden måde at nå miljømålene på 2 km 2 stenrev = 800 tons N, kan det virkelig passe? Flemming Møhlenberg, Jesper H Andersen & Ciarán Murray, DHI Peter B Christensen, Tage Dalsgaard,

Læs mere

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen.

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari jerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Formål: Formålet med denne øvelse er at anvende Ohms lov på en såkaldt spændingsdeler,

Læs mere

Beregning af afstrømningsnormaliseret belastningsniveau til vandområder

Beregning af afstrømningsnormaliseret belastningsniveau til vandområder Beregning af afstrømningsnormaliseret belastningsniveau til vandområder Notat fra DCE - Nationalt Center for Miljø og Energi Dato: 19. januar 2016 Søren E. Larsen Institut for Bioscience Rekvirent: Naturstyrelsen

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Notat fra DCE - Nationalt Center for Miljø og Energi Dato: 11. august 2016 Rev.: 6. oktober 2016

Notat fra DCE - Nationalt Center for Miljø og Energi Dato: 11. august 2016 Rev.: 6. oktober 2016 Tillæg til Notat om omfordeling af arealdelen af husdyrgodkendelser i den nuværende regulering og ved forslag til ny husdyrregulering og effekter på kvælstofudledningen Notat fra DCE - Nationalt Center

Læs mere

Stastistik og Databehandling på en TI-83

Stastistik og Databehandling på en TI-83 Stastistik og Databehandling på en TI-83 Af Jonas L. Jensen (jonas@imf.au.dk). 1 Fordelingsfunktioner Husk på, at en fordelingsfunktion for en stokastisk variabel X er funktionen F X (t) = P (X t) og at

Læs mere

Notat vedr. interkalibrering af ålegræs

Notat vedr. interkalibrering af ålegræs Notat vedr. interkalibrering af ålegræs Notat fra DCE - Nationalt Center for Miljø og Energi Dato: 4. januar 2012 Michael Bo Rasmussen Thorsten Balsby Institut for Bioscience Rekvirent: Naturstyrelsen

Læs mere

Evaluering af Soltimer

Evaluering af Soltimer DANMARKS METEOROLOGISKE INSTITUT TEKNISK RAPPORT 01-16 Evaluering af Soltimer Maja Kjørup Nielsen Juni 2001 København 2001 ISSN 0906-897X (Online 1399-1388) Indholdsfortegnelse Indledning... 1 Beregning

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

LUP læsevejledning til afdelingsrapporter

LUP læsevejledning til afdelingsrapporter Indhold Hvordan du bruger læsevejledningen... 1 Oversigtsfigur... 2 Temafigur... 3 Spørgsmålstabel... 4 Respondenter og repræsentativitet... 6 Uddybende forklaring af elementer i figurer og tabeller...

Læs mere

Vejdirektoratet VVM-UNDERSØGELSE FOR NY STORSTRØMSBRO Svar på høringssvar fra NST om forholdet til Vandplanerne.

Vejdirektoratet VVM-UNDERSØGELSE FOR NY STORSTRØMSBRO Svar på høringssvar fra NST om forholdet til Vandplanerne. Notat Vejdirektoratet VVM-UNDERSØGELSE FOR NY STORSTRØMSBRO Svar på høringssvar fra NST om forholdet til Vandplanerne. 20. februar 2015 Projekt nr. 214379 Udarbejdet af JAD, LKP, MXJ Kontrolleret af LKR

Læs mere

Metode til beregning af karakterer for service og kvalitet på sygehuse. Notat af 26. september 2006

Metode til beregning af karakterer for service og kvalitet på sygehuse. Notat af 26. september 2006 Metode til beregning af karakterer for service og kvalitet på sygehuse. Notat af 26. september 2006 I Regeringens debatoplæg Et åbent og gennemsigtigt sundhedsvæsen fra 2003 redegøres for brug af et overordnet

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Fokus på Forsyning. Datagrundlag og metode

Fokus på Forsyning. Datagrundlag og metode Fokus på Forsyning I notatet gennemgås datagrundlaget for brancheanalysen af forsyningssektoren sammen med variable, regressionsmodellen og tilhørende tests. Slutteligt sammenfattes analysens resultater

Læs mere

LUP Fødende læsevejledning til afdelingsrapporter

LUP Fødende læsevejledning til afdelingsrapporter Indhold Hvordan du bruger læsevejledningen... 1 Oversigtsfigur... 2 Temafigur... 3 Spørgsmålstabel... 4 Respondenter og repræsentativitet... 6 Uddybende forklaring af elementer i figurer og tabeller...

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

Modelstrategien særlige faglige udfordringer for kystvande

Modelstrategien særlige faglige udfordringer for kystvande Møde i Faglig Referencegruppe. Den 2. september 2013. IDA-huset. Modelstrategien særlige faglige udfordringer for kystvande Harley Bundgaard Madsen Den overordnede modelstrategi Marine problemstillinger

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Test for strukturelle ændringer i investeringsadfærden

Test for strukturelle ændringer i investeringsadfærden d. 6.10.2016 De Økonomiske Råds Sekretariat Test for strukturelle ændringer i investeringsadfærden Dette notat redegør for de stabilitetstest af forskellige tidsserier vedrørende investeringsadfærden i

Læs mere

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl. 9.00 12.00 IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt. Opgavesættet består af 5

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

ANALYSEKVALITETSKRAV TIL PARAMETRE DER PT. IKKE ER

ANALYSEKVALITETSKRAV TIL PARAMETRE DER PT. IKKE ER Notat 11.4 dato den /7-011 ANALYSEKVALITETSKRAV TIL PARAMETRE DER PT. IKKE ER DÆKKET AF BKG. NR. 866 1 Bekendtgørelsens bilag 1.10, Kontrol af jord Endeligt forslag til kvalitetskrav for nye parametre

Læs mere

Vandområdeplaner

Vandområdeplaner Vandområdeplaner 2015-2021 Stormøde, foreningerne i Landbrug & Fødevarer Den 16. april 2015 Kontorchef Thomas Bruun Jessen Vandområdeplaner 2015 2021 Formel for vandområdeplanlægning Nyt plankoncept Udkast

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Anvendelse af modelværktøjer til vurdering af målbelastning for søer i vandområdeplaner

Anvendelse af modelværktøjer til vurdering af målbelastning for søer i vandområdeplaner Anvendelse af modelværktøjer til vurdering af målbelastning for søer i vandområdeplaner 2015-2021 Metodenotat Godkendt på mødet den 30. juni 2014 i Styregruppen for projekt Implementering af modelværktøjer

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Effekten af indvandring på indfødte danskeres løn og beskæftigelse

Effekten af indvandring på indfødte danskeres løn og beskæftigelse d. 22.05.2017 Brian Krogh Graversen (DØRS) Effekten af indvandring på indfødte danskeres løn og beskæftigelse I kapitlet Udenlandsk arbejdskraft i Dansk Økonomi, forår 2017 analyseres det, hvordan indvandringen

Læs mere

Modeller for Danske Fjorde og Kystnære Havområder

Modeller for Danske Fjorde og Kystnære Havområder NST projektet Implementeringen af modeller til brug for vandforvaltningen ler for Danske Fjorde og Kystnære Havområder Beregning af indsatsbehov og målbelastning for de åbne farvande med udgangspunkt i

Læs mere

ANALYSEKVALITETSKRAV TIL PARAMETRE DER PT. IKKE ER

ANALYSEKVALITETSKRAV TIL PARAMETRE DER PT. IKKE ER ANALYSEKVALITETSKRAV TIL PARAMETRE DER PT. IKKE ER DÆKKET AF BKG. NR. 866 1 Generelle principper Analysekvalitetskrav for parametre, der pt. ikke er dækket af den gældende bekendtgørelse nr. 866, frembringes

Læs mere

Bilag 7. SFA-modellen

Bilag 7. SFA-modellen Bilag 7 SFA-modellen November 2016 Bilag 7 Konkurrence- og Forbrugerstyrelsen Forsyningssekretariatet Carl Jacobsens Vej 35 2500 Valby Tlf.: +45 41 71 50 00 E-mail: kfst@kfst.dk Online ISBN 978-87-7029-650-2

Læs mere

Kvælstof, iltsvind og havmiljø

Kvælstof, iltsvind og havmiljø Skanderborg, Februar 2014 Kvælstof, iltsvind og havmiljø Hvilken betydning har kvælstof for en god økologisk tilstand i vore fjorde og havet omkring Danmark?, Indhold 1) Danmarks udledninger af kvælstof

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Notat om basisanalyse: Opgave 2.2 Stofbelastning (N, P) af søer og kystvande

Notat om basisanalyse: Opgave 2.2 Stofbelastning (N, P) af søer og kystvande Notat om basisanalyse: Opgave 2.2 Stofbelastning (N, P) af søer og kystvande Notat fra DCE - Nationalt Center for Miljø og Energi Dato: 11. oktober 2013 Rev.: 2. december 2013 Jørgen Windolf, Søren E.

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Notat. Beregning af reduktionsmål for Limfjorden. Projekt: 3132, Konsulentydelser Miljø Side 1 af 6. Indledning

Notat. Beregning af reduktionsmål for Limfjorden. Projekt: 3132, Konsulentydelser Miljø Side 1 af 6. Indledning Notat Beregning af reduktionsmål for Limfjorden Dansk Landbrugsrådgivning Landscentret Plan & Miljø Ansvarlig Flemming Gertz Oprettet 02-11-2007 Projekt: 3132, Konsulentydelser Miljø Side 1 af 6 Indledning

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere