Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 4

Størrelse: px
Starte visningen fra side:

Download "Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 4"

Transkript

1 Insiu for Maemaiske Fag Maemaisk Modellering 1 Aarhus Universie Eva B. Vedel Jensen 12. februar 2008 UGESEDDEL 4 OBS! Øvelseslokale for hold MM4 (Jonas Bæklunds hold) er ændre il Koll. G3 på IMF. Ændringen gælder fra den 14. februar. Forelæsningerne orsdag den 7. februar og irsdag den 12. februar. Jeg har gennemgåe følgende emner vedrørende analyse af normalfordele daa (allene i parenes angiver sider i BG): To normalfordele observaionsrækker med forskellig varians (p ) Likelihood mehoden (p ) - I ser også på dee emne ved de eoreiske øvelser i denne uge Lineær regression (p ) Teoreiske øvelser i ugen februar. (Opgaverne 4 og 5 kan regnes efer orsdagsforelæsningen). 1) Opgave ) I denne opgave vil vi vise fordelingsresulae vedr. β side 125. Fordelingsresulae for α vises ilsvarende. Vi berager alså den lineære regression M 2 : x i N(α + β i, σ 2 ), hvor de er underforsåe, a observaionerne er uafhængige. Lad. = 1 i, SSD = ( i. ) 2, SP D x = (x i x. )( i. ), n hvor x. er definere som.. (a) Vis, a n ( i. ) = 0 og slu heraf a SP D x = x i ( i. ) (b) Vis, a SP D x N(β SSD, σ 2 SSD ) og slu heraf a fordelingen af β er som angive side ) Gennemgå, sammen med insrukoren, hvordan journalis daa i Table 3.6, side 118, i BG kan analyseres ved hjælp af PROC GLM i SAS. Maeriale il dee finder I på nee under slides. Den relevane fil hedder f5.bemaerk.pdf. De ilhørende SAS program f5.program.sas findes samme sed. 4) Eksamen, Maemaisk Modellering 1, Sommer 2004, Opgave 4. (Kan regnes efer orsdagsforelæsningen.) 1

2 5) På kursushjemmesiden, ved linke il denne ugeseddel, findes e SAS-program, der gennemregner den foregående opgave. Kør dee program, og besvar følgende spørgsmål. (a) Berag den førse kørsel, som har overskif Linear Regression. (Svarende il model-linjen model x=/ss1 clparm;). Gør rede for hvilken model der specificeres i model-linjen. Gør desuden rede for hvad der kan aflæses under Error og under Parameer i oupu. (b) Berag den 2. kørsel, som har overskrifen Linear Regression paa xny. (Der svarer il model-linjen model xny=/ss1 clparm; Bemærk a xny er definere som xny=x-0.2*). Hvilke es kan vi aflæse under Parameer i oupu? Afleveringsopgave. Berag modellen for o observaionsrækker fra normalfordelingen med samme varians X ij N(µ i, σ 2 ), i = 1, 2, j = 1,..., n i. Udled likelihood raio ese for hypoesen H 0µ : µ 1 = µ 2. Saisik Laboraorium 18. februar. Se førs og fremmes på de opgaver, der kan involvere SAS, dvs. opgaverne under 3), 4) og 5) i ovensående program for de eoreiske øvelser i ugen februar. Forelæsningerne orsdag den 14. februar og irsdag den 19. februar. Omhandler Afnsi 3.3.2, 3.3.3, 3.3.4, sam Desuden PROC GLM i SAS, svarende il side Afsniene og gennemgås senere. Afsniene og kan læses kursorisk. Læs dog om de sandardiserede residualer side 128 (omkring (3.58) (3.59)). Desuden når jeg a gå i gang med Afsni om more han wo samples. Øvrige bemærkninger: Bemærkninger il likelihood meoden: 1) Likelihood meoden er nyig i siuaioner, hvor de ikke er oplag, hvordan paramere skal esimeres og hypoeser eses. (Se f.eks. afsnie om lineær regression). 2) Bemærk a likelihood raio ese for µ = µ 0 i en normalfordel observaionsrække er ækvivalen med u-ese (3.5), når variansen er kend og -ese (3.9), når variansen er ukend. Vi siger, a o es er ækvivalene, når de resulerer i samme essandsynlighed. Mere generel gælder, a likelihood raio ese er ækvivalen med alle de (eksake) -es vi vil lave fremover. 3) I en normalfordel observaionsrække er µ = x. Maksimum likelihood esimae for σ 2 er σ 2 = 1 SSD. Vi vil dog forsa benye de middelværdiree variansskøn n s2. Bemærkninger il lineær regression: 1) Når vi skal konrollere modellen M 2 i (3.48), kan vi bland ande analysere residualerne (eng.: raw residuals) definere i (3.49). De sandardiserede residualer r i fremkommer ved a sandardisere r i således a r i N(0, σ2 ). 2) Under særlige omsændigheder er de mulig a ese modellen M 2. Se og Venlig hilsen Eva

3 Maemaisk Modellering 1 (reeksamen) Side 6 Opgave 4 Ved a observere en supernova kan man besemme o sørrelser, som vi her vil kalde x og. Man forvener, a der approksimaiv er en lineær sammenhæng på formen x = α + β, hvor β = 0.2. Konsanen k H = 10 α+5 kaldes for Hubbles konsan, og kan bland ande benyes il a besemme universes alder. Til ineresserede kan oplyses, a k H måles i enheden km/(s Mpc). Her svarer km il kilomeer, s il sekund, og en Mpc er cirka lig med km. Til sammenligning er e lysår cirka Mpc. Man har besem x og for 20 supernovaer. Vi vil i de følgende berage de 20 observerede værdier af som fase al, mens de 20 observerede værdier af x er udfald af sokasiske variable. For a undersøge om daa kan beskrives ved en lineær regression af x på, har man lave re konrolegninger, som kan ses på de næse o sider. I Figur 1 er værdierne af x og indegne sammen med den esimerede regressionslinje. I Figur 2 ses e frakildiagram for de sandardiserede residualer ved en lineær regression af x på. Endelig ses i Figur 3 de sandardiserede residualer egne op mod. 1) Gør, med udgangspunk i Figur 1-3, rede for, a de er rimelig a modellere daa ved en lineær regression af x på. Sandardberegninger basere på de observerede værdier af x og resulerer i nedensående abel. n 20 x S USS SP I øvrig kan de anbefales, a man benyer så mange beydende cifre som mulig ved mellemregninger i de næse spørgsmål. 2) Esimer afskæringen α og hældningen β i den lineære regression af x på. Esimer også variansen på x. 3) Vis, a de kan anages, a hældningen β er 0.2. Som nævn ovenfor lader vi k H = 10 α+5 beegne Hubbles konsan. 4) Beregn e 95%-konfidensinerval for α. Esimer Hubbles konsan k H og beregn e 95%-konfidensinerval for denne parameer. Opgaven forsæes

4 Maemaisk Modellering 1 (reeksamen) Side 7 x Figur 1: x egne op mod. Desuden er den esimerede regressionslinje indegne. Opgaven forsæes

5 Maemaisk Modellering 1 (reeksamen) Side p f r a c i l e s a n d _ r e s i Figur 2: Frakildiagram for de sandardiserede residualer ved en lineær regression af x på S a n d a r d i s e r e d e r e s i d u a l e r Figur 3: De sandardiserede residualer egne op mod.

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

k normalfordelte observationsrækker (ensidet variansanalyse)

k normalfordelte observationsrækker (ensidet variansanalyse) k normalfordelte observationsrækker (ensidet variansanalyse) Lad x ij, i = 1,...,k, j = 1,..., n i, være udfald af stokastiske variable X ij og betragt modellen M 1 : X ij N(µ i, σ 2 ). Estimaterne er

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Bankernes renter forklares af andet end Nationalbankens udlånsrente

Bankernes renter forklares af andet end Nationalbankens udlånsrente N O T A T Bankernes rener forklares af ande end Naionalbankens udlånsrene 20. maj 2009 Kor resumé I forbindelse med de senese renesænkninger fra Naionalbanken er bankerne bleve beskyld for ikke a sænke

Læs mere

Estimation af markup i det danske erhvervsliv

Estimation af markup i det danske erhvervsliv d. 16.11.2005 JH Esimaion af markup i de danske erhvervsliv Baggrundsnoa vedrørende Dansk Økonomi, eferår 2005, kapiel II Noae præsenerer esimaioner af markup i forskellige danske erhverv. I esimaionerne

Læs mere

Funktionel form for effektivitetsindeks i det nye forbrugssystem

Funktionel form for effektivitetsindeks i det nye forbrugssystem Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh. augus 007 Funkionel form for effekiviesindeks i de nye forbrugssysem Resumé: Der findes o måder a opskrive effekiviesudvidede CES-funkioner med o

Læs mere

Undervisningsmaterialie

Undervisningsmaterialie The ScienceMah-projec: Idea: Claus Michelsen & Jan Alexis ielsen, Syddansk Universie Odense, Denmark Undervisningsmaerialie Ark il suderende og opgaver The ScienceMah-projec: Idea: Claus Michelsen & Jan

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014 Maemaik A Sudenereksamen Forberedelsesmaeriale il de digiale eksamensopgaver med adgang il inernee sx141-matn/a-0505014 Mandag den 5. maj 014 Forberedelsesmaeriale il sx A ne MATEMATIK Der skal afsæes

Læs mere

Matematisk Modellering 1 Cheat Sheet

Matematisk Modellering 1 Cheat Sheet By a team of brave computer scientists: Mads P. Buch, Tobias Brixen, Troels Thorsen, Peder Detlefsen, Mark Gottenborg, Peter Krogshede - 1 Contents 1 Basalt 3 1.1 Varianser...............................

Læs mere

Modellering af benzin- og bilforbruget med bilstocken bestemt på baggrund af samlet forbrug

Modellering af benzin- og bilforbruget med bilstocken bestemt på baggrund af samlet forbrug Danmarks Saisik MODELGRUPPEN Arbejdspapir* 13. maj 2005 Modellering af benzin- og bilforbruge med bilsocken besem på baggrund af samle forbrug Resumé: Dee redje papir om en ny model for biler og benzin

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Nulkuponobligationer

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Nulkuponobligationer Dagens forelæsning Ingen-Arbirage princippe Claus Munk kap. 4 Nulkuponobligaioner Simpel og generel boosrapping Nulkuponrenesrukuren Forwardrener 2 Obligaionsprisfassæelse Arbirage Værdien af en obligaion

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Opgave 1: Regressionsanalyse

Opgave 1: Regressionsanalyse Opgave : Regressiosaalyse La u, x,..., u, x være par af reelle al. Vi skal u besemme e ree liie, er passer bes me isse alpar i e forsa a summe x s α βu s miimeres. Ma fier alså e liie, x ˆα + ˆβu, for

Læs mere

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst Oversig Eksempler på hvordan maemaik indgår i undervisningen på LIFE Gymnasielærerdag Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk Sofskife og kropsvæg hos paedyr Vægforhold mellem

Læs mere

MAKRO 2 ENDOGEN VÆKST

MAKRO 2 ENDOGEN VÆKST ENDOGEN VÆKST MAKRO 2 2. årsprøve Forelæsning 7 Kapiel 8 Hans Jørgen Whia-Jacobsen econ.ku.dk/okojacob/makro-2-f09/makro I modeller med endogen væks er den langsigede væksrae i oupu pr. mand endogen besem.

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og EPDEMER DYAMK AF Kasper Larsen, Bjarke Vilser Hansen Henriee Elgaard issen, Louise Legaard og Charloe Plesher-Frankild 1. Miniprojek idefagssupplering, RUC Deember 2007 DLEDG Maemaisk modellering kan anvendes

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Eksponentielle sammenhänge

Eksponentielle sammenhänge Eksponenielle sammenhänge y 800,95 1 0 1 y 80 76 7, 5 5% % 1 009 Karsen Juul Dee häfe er en forsäelse af häfe "LineÄre sammenhänge, 008" Indhold 14 Hvad er en eksponeniel sammenhäng? 53 15 Signing og fald

Læs mere

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver Newons afkølingslov løs ved hjælp af linjeelemener og inegralkurver Vi så idligere på e eksempel, hvor en kop kakao med emperauren sar afkøles i e lokale med emperauren slu. Vi fik, a emperaurfalde var

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003

RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003 RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Eferårssemesre 2003 Generelle bemærkninger Opgaven er den redje i en ny ordning, hvorefer eksamen efer førse semeser af makro på 2.år

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Dynamik i effektivitetsudvidede CES-nyttefunktioner

Dynamik i effektivitetsudvidede CES-nyttefunktioner Danmarks Saisik MODELGRUPPEN Arbejdspapir Grane Høegh. augus 006 Dynamik i effekiviesudvidede CES-nyefunkioner Resumé: I dee papir benyes effekiviesudvidede CES-nyefunkioner il a finde de relaive forbrug

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

Ny ligning for usercost

Ny ligning for usercost Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 8. okober 2008 Ny ligning for usercos Resumé: Usercos er bleve ændre frem og ilbage i srukur og vil i den nye modelversion have noge der minder om

Læs mere

Udlånsvækst drives af efterspørgslen

Udlånsvækst drives af efterspørgslen N O T A T Udlånsvæks drives af eferspørgslen 12. januar 211 Kor resumé Der har den senese id være megen fokus på bankers og realkrediinsiuers udlån il virksomheder og husholdninger. Især er bankerne fra

Læs mere

Bilbeholdningen i ADAM på NR-tal

Bilbeholdningen i ADAM på NR-tal Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 4. april 2008 Bilbeholdningen i ADAM på NR-al Resumé: Dee papir foreslår a lade bilbeholdningen i ADAM være lig den officielle bilbeholdning fra Naionalregnskabe.

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72.

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72. Bioeknologi 2, Tema 4 5 Kineik Kineik er sudier af reakionshasigheden hvor man eksperimenel undersøger de fakorer, der påvirker reakionshasigheden, og hvor resulaerne afslører reakionens mekanisme og ransiion

Læs mere

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen STATISTIK Skriftlig evaluering, 3. semester, mandag den 6. januar 004 kl. 9.00-13.00. Alle hjælpemidler er tilladt. Opgaveløsningen forsynes med navn og CPR-nr. OPGAVE 1 Et firma tuner biler. Antallet

Læs mere

Modellering af den Nordiske spotpris på elektricitet

Modellering af den Nordiske spotpris på elektricitet Modellering af den Nordiske spopris på elekricie Speciale Udarbejde af: Randi Krisiansen Oecon. 10. semeser Samfundsøkonomi, Aalborg Universie 2 RANDI KRISTIANSEN STUDIENUMMER 20062862 Tielblad Uddannelse:

Læs mere

Vi sætter. (Signal støj- forhold) Poul Thyregod, 25. april Specialkursus vid.stat. foraar Lad Y i angiver observationer fra i te udtagne balle.

Vi sætter. (Signal støj- forhold) Poul Thyregod, 25. april Specialkursus vid.stat. foraar Lad Y i angiver observationer fra i te udtagne balle. Modellens parametre Mandag den 25 april Hierarkiske normalfordelingsmodeller Dagens program: Resume af ensidet variansanalysemodel med tilfældig effekt estimation af tilfældige effekter, fortolkning som

Læs mere

Danmarks fremtidige befolkning Befolkningsfremskrivning 2009. Marianne Frank Hansen og Mathilde Louise Barington

Danmarks fremtidige befolkning Befolkningsfremskrivning 2009. Marianne Frank Hansen og Mathilde Louise Barington Danmarks fremidige befolkning Befolkningsfremskrivning 29 Marianne Frank Hansen og Mahilde Louise Baringon Augus 29 Indholdsforegnelse Danmarks fremidige befolkning... 1 Befolkningsfremskrivning 29...

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

Udkast pr. 27/11-2003 til: Equity Premium Puzzle - den danske brik

Udkast pr. 27/11-2003 til: Equity Premium Puzzle - den danske brik Danmarks Saisik MODELGRUPPEN Arbejdspapir Jakob Nielsen 27. november 2003 Claus Færch-Jensen Udkas pr. 27/11-2003 il: Equiy Premium Puzzle - den danske brik Resumé: Papire beskriver udviklingen på de danske

Læs mere

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk Oversig Mes repeiion med fokus på de sværese emner Modul 3: Differenialligninger af. orden Maemaik og modeller 29 Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk 3 simple yper differenialligninger

Læs mere

Beskrivelse af forskningsprojekt om FUNDAMENTALE OG FAKTISKE BOLIGPRISER I DANMARK OG SVERIGE

Beskrivelse af forskningsprojekt om FUNDAMENTALE OG FAKTISKE BOLIGPRISER I DANMARK OG SVERIGE Beskrivelse af forskningsprojek om FUNDAMENTALE OG FAKTISKE BOLIGPRISER I DANMARK OG SVERIGE Michael Bergman og Peer Birch Sørensen Økonomisk Insiu, Københavns Universie Okober 202 Projekes baggrund og

Læs mere

Efterspørgslen efter læger 2012-2035

Efterspørgslen efter læger 2012-2035 2013 5746 PS/HM Eferspørgslen efer læger 2012-2035 50000 45000 40000 35000 30000 25000 20000 15000 10000 5000 Anal eferspurge læger i sundhedsudgifalernaive Anal eferspurge læger i finanskrisealernaive

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

Nanostatistik: Lineær regression

Nanostatistik: Lineær regression Nanostatistik: Lineær regression JLJ Nanostatistik: Lineær regression p. 1/41 Sammenhænge Funktionssammenhæng: y er en funktion af x. Ex: Hvis jeg kender afstanden mellem to galakser så kender jeg også

Læs mere

DiploMat Løsninger til 4-timersprøven 4/6 2004

DiploMat Løsninger til 4-timersprøven 4/6 2004 DiploMa Løsninger il -imersprøven / Preben Alsholm / Opgave Polynomie p er give ved p (z) = z 8 z + z + z 8z + De oplyses, a polynomie også kan skrives således p (z) = z + z z + Vi skal nde polynomies

Læs mere

Sammenhæng mellem prisindeks for månedstal, kvartalstal og årstal i ejendomssalgsstatistikken

Sammenhæng mellem prisindeks for månedstal, kvartalstal og årstal i ejendomssalgsstatistikken 6. sepember 2013 JHO Priser og Forbrug Sammenhæng mellem prisindeks for månedsal, kvaralsal og årsal i ejendomssalgssaisikken Dee noa gennemgår sammenhængen mellem prisindeks for månedsal, kvaralsal og

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Baggrundsnotat: Estimation af elasticitet af skattepligtig arbejdsindkomst

Baggrundsnotat: Estimation af elasticitet af skattepligtig arbejdsindkomst d. 02.11.2011 Esben Anon Schulz Baggrundsnoa: Esimaion af elasicie af skaepligig arbejdsindkoms Dee baggrundsnoa beskriver kor meode og resulaer vedrørende esimaionen af elasicieen af skaepligig arbejdsindkoms.

Læs mere

Den erhvervspolitiske værdi af støtten til den danske vindmølleindustri

Den erhvervspolitiske værdi af støtten til den danske vindmølleindustri N N N '(7.2120,6.( 5c' 6 (. 5 ( 7 $ 5, $ 7 ( 7 Den erhvervspoliiske værdi af søen il den danske vindmølleindusri Svend Jespersen Arbejdspapir 2002:3 Sekreariae udgiver arbejdspapirer, hvori der redegøres

Læs mere

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl.

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl. Skriflig Eksamen Daasrukurer og lgorimer (DM0) Insiu for Maemaik og Daalogi Odense Universie Torsdag den. januar 199, kl. 9{1 lle sdvanlige hjlpemidler (lrebger, noaer, ec.) sam brug af lommeregner er

Læs mere

Lindab Comdif. Fleksibilitet ved fortrængning. fortrængningsarmaturer. Comdif er en serie af luftfordelingsarmaturer til fortrængningsventilation.

Lindab Comdif. Fleksibilitet ved fortrængning. fortrængningsarmaturer. Comdif er en serie af luftfordelingsarmaturer til fortrængningsventilation. comfor forrængningsarmaurer Lindab Comdif 0 Lindab Comdif Ved forrængningsvenilaion ilføres lufen direke i opholds-zonen ved gulvniveau - med lav hasighed og underemperaur. Lufen udbreder sig over hele

Læs mere

Prisfastsættelse af fastforrentede konverterbare realkreditobligationer

Prisfastsættelse af fastforrentede konverterbare realkreditobligationer Copenhagen Business School 2010 Kandidaspeciale Cand.merc.ma Prisfassæelse af fasforrenede konvererbare realkrediobligaioner Vejleder: Niels Rom Aflevering: 28. juli 2010 Forfaere: Mille Lykke Helverskov

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Danmarks Nationalbank

Danmarks Nationalbank Danmarks Naionalbank Kvar al so ver sig 3. kvaral Del 2 202 D A N M A R K S N A T I O N A L B A N K 2 0 2 3 KVARTALSOVERSIGT, 3. KVARTAL 202, Del 2 De lille billede på forsiden viser Arne Jacobsens ur,

Læs mere

Lidt om trigonometriske funktioner

Lidt om trigonometriske funktioner DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK TRIGNMETRISKE FUNKTINER EFTERÅRET 000 Lid m rignmeriske funkiner Funkinerne cs g sin De rignmeriske funkiner defines i den elemenære maemaik ved

Læs mere

Produktionspotentialet i dansk økonomi

Produktionspotentialet i dansk økonomi 51 Produkionspoeniale i dansk økonomi Af Asger Lau Andersen og Moren Hedegaard Rasmussen, Økonomisk Afdeling 1 1. INDLEDNING OG SAMMENFATNING Den økonomiske udvikling er i Danmark såvel som i alle andre

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Øger Transparens Konkurrencen? - Teoretisk modellering og anvendelse på markedet for mobiltelefoni

Øger Transparens Konkurrencen? - Teoretisk modellering og anvendelse på markedet for mobiltelefoni DET SAMFUNDSVIDENSKABELIGE FAKULTET KØBENHAVNS UNIVERSITET Øger Transarens Konkurrencen? - Teoreisk modellering og anvendelse å markede for mobilelefoni Bjørn Kyed Olsen Nr. 97/004 Projek- & Karrierevejledningen

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Opdatering af tilstande i afløbssystemer ved brug af on-line målinger.

Opdatering af tilstande i afløbssystemer ved brug af on-line målinger. Opdaering af ilsande i afløbssysemer ved brug af on-line målinger. Juni 1999 Karsen Arnbjerg-Nielsen Insiu for Miljøeknologi Danmarks Tekniske Universie Dee er en nepublikaion, der kan downloades fra hp://www.im.du.dk/publicaions/fullex/1999/im1999-052.pdf

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

FitzHugh Nagumo modellen

FitzHugh Nagumo modellen FizHugh Nagumo modellen maemaisk modellering af signaler i nerve- og muskelceller Torsen Tranum Rømer, Frederikserg Gymnasium Fagene maemaik og idræ supplerer hinanden god inden for en lang række emner.

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Module 9: Residualanalyse

Module 9: Residualanalyse Mathematical Statistics ST6: Linear Models Bent Jørgensen og Pia Larsen Module 9: Residualanalyse 9 Rå residualer 92 Standardiserede residualer 3 93 Ensidig variansanalyse 4 94 Studentiserede residualer

Læs mere

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen Fysikrappor: Vejr og klima Maila Walmod, 13 HTX, Rosklide I gruppe med Ann-Sofie N Schou og Camilla Jensen Afleveringsdao: 30 november 2007 1 I dagens deba høres orde global opvarmning ofe Men hvad vil

Læs mere

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger MOGENS ODDERSHEDE LARSEN Sædvanlige Differenialligninger a b. udgave 004 FORORD Dee noa giver en indføring i eorien for sædvanlige differenialligninger. Der lægges især væg på løsningen af lineære differenialligninger

Læs mere

Matematikkens mysterier - på et højt niveau. 4. Rumgeometri

Matematikkens mysterier - på et højt niveau. 4. Rumgeometri Maemaikkens mserier - på e høj niveau af Kenneh Hansen 4. Rumgeomeri Hvordan kan o forskellige planer ligge i forhold il hinanden? 4. Rumgeomeri Indhold 4. Vekorer i rumme 4. Krdsproduke 7 4. Planer og

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage Dages forelæsig Ige-Arbirage pricippe Claus Muk kap. 4 Nulkupoobligaioer Simpel og geerel boosrappig Forwardreer Obligaiosprisfassæelse Arbirage Værdie af e obligaio Nuidsværdie af obligaioes fremidige

Læs mere

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde...

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde... Modul 13: Exercises 13.1 Substrat.......................... 1 13.2 Polynomiel regression.................. 3 13.3 Biomasse.......................... 4 13.4 Kreatinin.......................... 7 13.5 Læsefærdighed......................

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde...

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde... Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 13: Exercises 13.1 Substrat........................................ 1 13.2 Polynomiel regression................................

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Danmarks fremtidige befolkning Befolkningsfremskrivning 2006. Marianne Frank Hansen, Lars Haagen Pedersen og Peter Stephensen

Danmarks fremtidige befolkning Befolkningsfremskrivning 2006. Marianne Frank Hansen, Lars Haagen Pedersen og Peter Stephensen Danmarks fremidige befolkning Befolkningsfremskrivning 26 Marianne Frank Hansen, Lars Haagen Pedersen og Peer Sephensen Juni 26 Indholdsforegnelse Forord...4 1. Indledning...6 2. Befolkningsfremskrivningsmodellen...8

Læs mere

Multivariate kointegrationsanalyser - En analyse af risikopræmien på det danske aktiemarked

Multivariate kointegrationsanalyser - En analyse af risikopræmien på det danske aktiemarked Cand.merc.(ma)-sudie Økonomisk nsiu Kandidaafhandling Mulivariae koinegraionsanalyser - En analyse af risikopræmien på de danske akiemarked Suderende: Louise Wellner Bech flevere: 9. april 9 Vejleder:

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

N O T A T Lønninger i banksektoren en ny analyse af lønpræmier. Kort resumé

N O T A T Lønninger i banksektoren en ny analyse af lønpræmier. Kort resumé N O T A T Lønninger i banksekoren en ny analyse af lønpræmier Kor resumé Konkurrencesyrelsen offenliggør i forbindelse med den årlige konkurrenceredegørelse beregninger på såkalde lønpræmier i danske brancher.

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over.

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Rumgeomeri Hvis man ønsker mere udfordring, kan man springe de førse 0 opgaver over Opgave I rumme er give punkerne A og B Besem en parameerfremsilling for linjen l som indeholder punkerne A og B, når

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

Nanostatistik: Opgavebesvarelser

Nanostatistik: Opgavebesvarelser Nanostatistik: Opgavebesvarelser JLJ Nanostatistik: Opgavebesvarelser p. 1/16 Pakkemaskine En producent hævder at poserne indeholder i gennemsnit 16 ounces sukker. Data: 10 pakker sukker: 16.1, 15.8, 15.8,

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

6.1 VURDERING AF VAR MODELLER VED HJÆLP AF STATISTISKE TEST

6.1 VURDERING AF VAR MODELLER VED HJÆLP AF STATISTISKE TEST SMMENLIGNING F VLUE T RISK MODELLER 8 6 SMMENLIGNING F VLUE T RISK MODELLER De er af sor ieresse for fiasielle akører a vurdere de avede VaR model. Ikke blo er de vigig a vide, hvor øjagig de avede model

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

Lektion 10 Reaktionshastigheder Epidemimodeller

Lektion 10 Reaktionshastigheder Epidemimodeller Lekion 1 Reakionshasigheder Epidemimodeller Simpel epidemimodel Kermack-McKendric epidemimodel Kemiske reakionshasigheder 1 Simpel epidemimodel I en populaion af N individer er I() inficerede og resen

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere