MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

Størrelse: px
Starte visningen fra side:

Download "MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012"

Transkript

1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 4 Statistik & sandsynlighedsregning 2016

2 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette uddrag indeholder kapitel 4 som handler om statistik og sandsynlighedsregning. Der vil blive foretaget beregninger samt illustrationer i CAS programmer herunder Excel, GeoGebra samt Maple 2016 anvendes til de mere komplicerede udregninger, idet man forudsætter, at man kan anvende CAS til eksamen. Undervejs anvendes en tabel over kritiske værdier af χ 2 test fordelingen Til bestemmelse af de kritiske værdier under konklusionen. Dette ses på sidste side. For anvendelse af dokumentet, anbefales det, at man prøver at løse opgaven først, inden man anvender løsningerne Side 1 ud af 19

3 Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 STX matematik A niveau, kapitel 4 Statistik og sandsynlighedsregning Opgave Opgave Der aflæses og det ses, at kvartilsættet er Hermed er kvartilsættet fundet. Start = 0 Nedre = 6 Median = 8 Øvre = 9 Slut = 13 Inden man kan lave boksplot, nedskrives alle oplysninger fra det mindste til det største tal, angivet i rækkefølgen: 20,25,25,27,28,31,33,34,36,37,44,50,59,85,86 Så kan man finde medianen, den er indlysende, idet det er midten. (Grøn) 20,25,25,27,28,31,33, 34, 36,37,44,50,59,85,86 Heraf kan man aflæse hhv. nedre og øvre kvartil (pga. 15 observationer) (Blå) 20,25,25, 27, 28,31,33, 34, 36,37,44, 50, 59,85,86 I WordMat kan man anvende tilføjelsen statistik. Inden den tegnes, indskrives også for de 10 kvinder, her er rækken 5,7,10,14,18,19,25,29,31,33 Medianen findes. (Pga. 10 observationer, udføres regneoperationen): Median = = 18.5 Dette er medianen. Så findes kvartilsættet på tilsvarende måde. Så kan det indtegnes. Nedre = = Øvre = = 30 2 Fortsættes næste side Side 2 ud af 19

4 10 kvindelige læger 15 læger Opgave Så her kan man se, at der er tydelig forskel på de 15 lægers kirurgiske indgreb og de 10 kvindelige lægers indgreb. Her er kvindernes øvre kvartil (75%) i mellem nedre (25%) og median (50%) for de 15 lægers indgreb, hvilket viser hvor meget kvinderne har lov til at anvende denne type operation. I Maple 2016 kan man regne på det (også pr. håndkraft). Først defineres oplysningerne. Fortsættes næste side Side 3 ud af 19

5 Opgave Det ses på grafen, at procentdelen der har en fart over 750m/s er 100%-95%=5% så det er kun 5% der har en fart på over 750m/s. Først defineres det hele. a) G Fortsættes næste side Side 4 ud af 19

6 Da P = < 0.05 (1.7098% < 5%) afvises nulhypotesen. Fortsættes næste side Side 5 ud af 19

7 b) Der gøres prøve igen med et signifikansniveau på 0.01 (1%). Så ved et signifikansniveau på 1% accepteres det. Den skjulte variable kan dog være, at operationen i sig selv er ret kompliceret at udføre og en anden faktor kan være menneskets individuelle helbred mm. Deraf kunne man sagtens have accepteret et signifikansniveau på 5% for forrige delopgave. Side 6 ud af 19

8 Opgave I en opinionsundersøgelse har man spurgt 500 personer om man er for eller imod de ændrede åbningstider i en svømmehal. a) De forventede værdier er regnet i Maple Mænd Kvinde Disse kunne også regnes pr. håndkraft. Først dem der er for. Mænd = sum antal Kvinder = sum Dem der er imod. Dem der ikke ved antal Mænd = sum antal Kvinder = sum antal 266 antal mænd = 236 = antal kvinder = 264 = antal mænd = 236 = antal kvinder = 264 = Mænd = sum 85 antal mænd = 236 = antal 500 Kvinder = sum 85 antal kvinder = 264 = antal 500 Således fandt man dem pr. håndkraft. Fortsættes næste side Side 7 ud af 19

9 b) Der udføres en χ 2 test med et signifikansniveau på 5%. Opgave Da P = < 0.05 (2.6376% < 5%) forkastes nulhypotesen om, at kønnet har samme indstilling. Nulhypotese: H 0 = Der er ikke nogen sammenhæng mellem medicinregisrering og patienters overlevelseschancer a) Først beregnes de forventede værdier. Her er tabellen over observerende værdier. Status efter 6 mdr. Gruppe A Gruppe B I alt Død Overlevende I alt De forventede værdier beregnes efter denne metode: i alt 83 Død = gruppe A = 25 = total 148 Død = i alt 65 gruppe B = total 148 i alt Overlevet = total Overlevet = 25 = gruppe A = 123 = i alt 65 gruppe B = 123 = total 148 Fortsættes næste side Side 8 ud af 19

10 Så man kan nu opstille en ny tabel over de forventede: Status efter 6 mdr. Gruppe A Gruppe B I alt Død Overlevende I alt b) Så udføres der χ 2 test med et signifikansniveau på 5%. Her anvendes formlen Værdierne indsættes. χ 2 = (O k F k ) 2 F k χ 2 (8 14)2 = 14 χ 2 = (17 11)2 (75 69)2 (48 54) Hermed har man sin teststørrelse. Desuden er der tale om et signifikansniveau på 5%, altså aflæser man den kritiske værdi. Her ses det, at den kritiske værdi er Kritiskværdi = 3.84, frihedsgrader = 1 Da teststørrelsen er større end den kritiske værdi, forkastes nulhypotesen. Medicinen har altså haft en effekt på den enkeltes overlevelseschance. Opgave Hjerte- og lungeoperationer kan medføre forstoppelse. Man vil gerne vide, om begge operationer kan skyldes dette. Nulhypotesen er H 0 = Har du efter operationen haft forstoppelse i en grad, der har påvirket dine daglige gøremål? Der er angivet en tabel over de observerende værdier. Operationstype / problemer Ja Nej Total Hjerteoperation Lungeoperation Total Og de forventede værdier: Operationstype / problemer Ja Nej Total Hjerteoperation Lungeoperation Total Fortsættes næste side Side 9 ud af 19

11 a) For at bestemme de forventede værdier, anvendes formlen: i alt 60 Hjerte = ja = 24 = total 111 i alt 51 Lunge = ja = 24 = total 111 i alt 60 Hjerte = nej = 87 = total 111 i alt 51 Lunge = nej = 87 = total 111 Således fandt man ud af de forventede værdier. Antagelserne er rigtige. b) Man bestemmer en χ 2 test på følgende måde: Her anvendes formlen Værdierne indsættes. χ 2 = (O k F k ) 2 F k χ 2 ( )2 = χ 2 = ( )2 ( )2 ( ) Hermed har man sin teststørrelse. Desuden er der tale om et signifikansniveau på 5%, altså aflæser man den kritiske værdi. Her ses det, at den kritiske værdi er Kritiskværdi = , frihedsgrader = 1 Da teststørrelsen er mindre end den kritiske værdi, accepteres nulhypotesen. Der er ingen signifikans forskel på begge operationer for den enkelte. I Maple finder man sin p værdi Her er p værdien 6.6%. Side 10 ud af 19

12 Opgave Der er taget en undersøgelse af elever på en skole. Nulhypotesen er, at: Kønnet er uafhængig om man ryger eller ej. Man undersøgte deres rygevaner og det fordeler sig således i en tabel: Skema 1: Forventet fordeling af elever på rygevaner og køn Ryger Ikke-ryger Piger 78 Drenge 101 Sum a) Så kan man bestemme de forventede tal. Pige = i alt ryger pige = = total 179 i alt 36 Dreng = dreng = 101 = total 179 i alt 143 Pige = pige = 78 = total 179 i alt 143 Dreng = dreng = 101 = total 179 Så tabellen over de forventede værdier er Skema 1: Forventet fordeling af elever på rygevaner og køn Ryger Ikke-ryger Piger Drenge Sum Der er nu givet en ny tabel. Skema 2: Stikprøvens fordeling af elever på rygevaner og køn Ryger Ikke-ryger Piger Drenge Sum b) Der udføres en χ 2 test. Dette gøres i Maple Fortsættes næste side Side 11 ud af 19

13 Det ses, at p værdien er % og teststørrelsen er c) Da man har lavet et lignende undersøgelse, kan man beregne p værdien udfra en frihedsgrader. Teststørrelsen er givet ved Opgave Det ses så, at p værdien er % så den er altså mindre end signifikansniveauet, hermed forkastes nulhypotesen. Der er altså ikke noget belæg i rygevaneren for de unge. -Man bør lave en chi-anden-test over en skole i Slagelse, Xclass- Opgaven løses via Maple a) saf Fortsættes næste side Side 12 ud af 19

14 Hermed kan man se, at teststørrelsen er mindre end den kritiske værdi, altså accepteres nulhypotesen. b) Folk mener, at kategorierne drikker ofte og drikker af og til er meget Sporadiske, altså laves en ny undersøgelse. Derved slås begge kategorier sammen, således man har drikker ofte og drikker ikke. Fortsættes næste side Side 13 ud af 19

15 Det ses, at p værdien er 0.76, så her accepteres nulhypotesen stadigvæk, på trods af, at dette i princippet er en ulovlig handling Side 14 ud af 19

16 Opgave Her er der tale om en goodness of fit test. Der beregnes de forventede observationer. Nulhypotese: Forsendelsen stammer fra storproduktionen. a) Tabellen viser de observerende - omregnet til tal. Forventede observationer Bolde Forventet Så har man de forventede værdier. Man har desuden nogle oplysninger, når varevognen standses i tolden. Observationer i tolden Obs Så man udfører χ 2 test. Her anvendes formlen Værdierne indsættes. χ 2 = (O k F k ) 2 F k χ 2 (28 20)2 ( )2 (12 10)2 = χ 2 = Hermed har man sin teststørrelse. Desuden er der tale om et signifikansniveau på 5%, altså aflæser man den kritiske værdi. Her ses det, at den kritiske værdi er Kritiskværdi = 5.99 Da teststørrelsen er mindre end den kritiske værdi, accepteres nulhypotesen. Boldene er fra storproducenten. Side 15 ud af 19

17 Opgave % = % = % = 0.25 a) Så kan man beregne de forventede værdier. rød = = 59 lyserød = = 118 hvid = = 59 Altså fordeler forventningen sig således: Eksperimentets forsøg Farve Rød lyserød hvid sum Forventet b) Så udføres der χ 2 test. Værdierne indsættes. χ 2 (66 59)2 ( )2 (55 59)2 = χ 2 = Hermed har man sin teststørrelse. Desuden er der tale om et signifikansniveau på 5%, altså aflæser man den kritiske værdi. Her ses det, at den kritiske værdi er Kritiskværdi = 5.99 Da teststørrelsen er mindre end den kritiske værdi, accepteres nulhypotesen. Eksempel på konklusion: Ud fra følgende test, er det påvist, at med krydsning af farverne, opnås hypotesen omkring, at farverne vil fordele sig som angivet. Derved er der ikke noget belæg for at skulle forkaste arvelighedslovene. Side 16 ud af 19

18 Opgave Det ses, at der er tale om en GOF-test. Et firma har taget notater for antal klager. Det fordeler sig således: Antal minutter < I alt Andel af det samlede antal klager 30% 40% 20% 10% 100% I en bestemt måned forløb det sig således: Klagebehandlingstid < I alt Observeret a) Der opstilles en nulhypotese: Antallet af samlede klager ændre sig ikke. Mønstret vil være det samme. De forventede værdier beregnes. Først omregnes procentværdierne 30% = = 36 40% = = 48 20% = = 24 10% = = 12 Så man har skemaet Klagebehandlingstid < I alt Observeret Forventet Der udføres en χ 2 test. Værdierne indsættes. χ 2 (37 36)2 (53 48)2 (25 24)2 (5 12)2 = χ 2 = Hermed har man sin teststørrelse. Desuden er der tale om et signifikansniveau på 5%, altså aflæser man den kritiske værdi. Her ses det, at den kritiske værdi er Kritiskværdi = 7.82 Da teststørrelsen er mindre end den kritiske værdi, accepteres nulhypotesen. Antallet af klager ændrer sig ikke, selvom en bestemt måned viser andre tal. Side 17 ud af 19

19 Opgave Der er givet to tabeller. a) Stikprøven er det der blev foretaget af Greens Analyseinstitut. De forventede og observerende værdier findes. Først omregnes procenttallene. Nulhypotesen er: Stemmefordelingen har ikke ændret sig Parti A B C SF DF V Ø LA KD Observeret Forventet b) Af alle partierne har man 8 frihedsgrader. Desuden udføres er en χ 2 test. χ 2 ( )2 (52 49)2 = ( ) (5 9)2 + 9 χ 2 = (93 101) ( )2 255 ( ) (20 21) (11 27) Hermed har man sin teststørrelse. Desuden er der tale om et signifikansniveau på 5%, altså aflæser man den kritiske værdi. Her ses det, at den kritiske værdi er Kritiskværdi = Da teststørrelsen er større end den kritiske værdi, forkastes nulhypotesen. Der har været ændringer i stemmefordelingen. c) Nu slås alle andre partier sammen, således SF er alene. Parti SF Øvrige partier Observeret Forventet Der udføres test igen på samme måde som før. Bemærk, at der kun er en frihedsgrad nu. χ 2 ( )2 ( )2 = + = Hermed har man sin teststørrelse. Desuden er der tale om et signifikansniveau på 5%, altså aflæser man den kritiske værdi. Her ses det, at den kritiske værdi er Kritiskværdi = 3.84 Da teststørrelsen er større end den kritiske værdi, forkastes nulhypotesen. Der har været ændringer i stemmefordelingen for partiet SF. Side 18 ud af 19

20 Tabellen over de kritiske værdier for en χ 2 test. Kilde: gher_eukaryotes/chisquare_test.php ( ) Slut på kapitel 4 - Statistik og sandsynlighedsregning Kapitel 5 handler om Funktioner og grafer, modellering af variabelsammenhænge fra bogen: Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Side 19 ud af 19

Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A)

Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A) Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A) Opgave 1 I nedenstående tabel ses resultaterne af samtlige hjerteklapoperationer i 007-08 ved Odense Universitetshospital (OUH) sammenlignet

Læs mere

Workshop i hypotesetest

Workshop i hypotesetest Workshop i hypotesetest Indholdsfortegnelse: Velkommen til TI-Nspire CAS version 3.2 Simple øvelser i chi2-test: Chi2-test I: Goodness-of-fit test side 1 Chi2-test II: Uafhængighedstest side 3 Vejledende

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

GL. MATEMATIK B-NIVEAU

GL. MATEMATIK B-NIVEAU GL. MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 29. maj 2013 2016 Opgave 1 Opgave 2 Opgave 3 Opgave 4 Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX

MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX Anders Jørgensen & Mark Kddafi 2016 matematikhfsvar.page.tl 8. august 2016 15. august 2016 Anders Jørgensen & Mark Kddafi MATEMATIK

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium Man kan nemt lave χ 2 -test i GeoGebra både goodness-of-fit-test og uafhængighedstest. Den følgende vejledning bygger på GeoGebra version

Læs mere

Flemmings Maplekursus 1. Løsning af ligninger

Flemmings Maplekursus 1. Løsning af ligninger Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode

Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode Man kan skifte mellem tekst- og matemamatikmode ved at trykke på F5. I øjeblikket er jeg i tekstmode.. 2. lektion.

Læs mere

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test.

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test. Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ -test og Goodness of Fit test. Anvendelser af statistik Statistik er et levende og fascinerende emne, men at læse om det er alt

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

for matematik pä B-niveau i hf

for matematik pä B-niveau i hf for matematik pä B-niveau i hf 75 50 5 016 Karsten Juul GRUPPEREDE DATA 1.1 Hvad er deskriptiv statistik?...1 1. Hvad er grupperede og ugrupperede data?...1 1.1 Eksempel pä ugrupperede data...1 1. Eksempel

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 5 Funktioner og grafer, modellering af variabelsammenhænge 2016 MATEMATIK A-NIVEAU Vejledende eksempler

Læs mere

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A Matematik A, STX. Anders Jørgensen & Mark Kddafi

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A Matematik A, STX. Anders Jørgensen & Mark Kddafi MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A-24052016 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014 Vejledning til udvalgte opgave fra Matematik B, sommer 2014 Opgave 7 Størrelsen og udbudsprisen på 100 fritidshuse på Rømø er indsamlet via boligsiden.dk. a) Grafisk præsentation, der beskriver fordelingen

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM FORMÅL - BEKENDTGØRELSEN STX MATEMATIK A Kompetencer anvende simple statistiske eller sandsynlighedsteoretiske modeller

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks:

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Til hvert af de gennemgåede værktøjer findes der 5 afsnit. De enkelte afsnit kan læses uafhængigt af hinanden. Der forudsættes et elementært kendskab

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår efterår 16, eksamen december 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016/2017, eksamen maj-juni 2017 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

3. Trekantsberegninger. Gør rede for cosinusrelationen i vilkårlige trekanter.

3. Trekantsberegninger. Gør rede for cosinusrelationen i vilkårlige trekanter. Matematik B, 2x - sommereksamen 2014 NB! Prøvespørgsmålene kan ændres på foranledning af censor 1. Trekantsberegninger Gør rede for en trekants vinkelsum og areal. Gør endvidere rede for ensvinklede trekanter.

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle.

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. Af E. Susanne Christensen. Lektor i statistik. Institut for Matematiske Fag. Aalborg Universitet. I mange tilfælde og

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2. juni 2014 Institution Kolding HF og VUC, Ålegården 2, 6000 Kolding (tovholder) VUC Vest, Stormgade 47,

Læs mere

Opgave 6. Opgave 7. Peter Harremoës Mat A eksamen med hjælpemidler 25. maj 2013. (x + a) 1 /2. dx = 42 løses ved hjælp af GeoGebra CAS: Ligningen 15

Opgave 6. Opgave 7. Peter Harremoës Mat A eksamen med hjælpemidler 25. maj 2013. (x + a) 1 /2. dx = 42 løses ved hjælp af GeoGebra CAS: Ligningen 15 Opgave 6 Ligningen 15 0 (x + 1 /2 dx = 42 løses ved hjælp af GeoGebra CAS: Løsningen er derfor a = 1. Se Bilag 2! Opgave 7 Et søjlediagram over hyppighed af lønsum er vist nedenfor. Gennemsnittet er 64.4

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

Vejledende løsninger kapitel 9 opgaver

Vejledende løsninger kapitel 9 opgaver KAPITEL 9 OPGAVE 1 a) Hypoteser H 0 : Der er uafhængighed (ingen sammenhæng) i kontingenstabellen H 1 : Der er afhængighed (sammenhæng) i kontingenstabellen Observerede værdier Ny metode Gammel metode

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution VUC Vest, Stormgade 47, 6700 Esbjerg Uddannelse HF net-undervisning, HFe Fag og niveau

Læs mere

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles

Læs mere

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Vi ønskede at planlægge og afprøve et undervisningsforløb, hvor anvendelse af

Læs mere

Matematik A. Højere handelseksamen. Vejledende opgave 2

Matematik A. Højere handelseksamen. Vejledende opgave 2 Matematik A Højere handelseksamen Vejledende opgave Efterår 01 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen af denne delprøve skal

Læs mere

Maple-oversigt til matematik B-niveau: Rungsted Gymnasium Definer en funktion og funktionsværdier. Tegn grafen for en funktion.

Maple-oversigt til matematik B-niveau: Rungsted Gymnasium Definer en funktion og funktionsværdier. Tegn grafen for en funktion. Maple-oversigt til matematik B-niveau: Rungsted Gymnasium 2011 Definer en funktion og funktionsværdier (1.1) 32 (1.2) (1.3) Tegn grafen for en funktion (2.1) 250 200 150 100 50 0 5 10 8 6 4 2 0 1 2 0 y

Læs mere

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Kursus 02402: Besvarelser til øvelsesopgaver i uge 9 Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Som model benyttes en binomialfordeling, som beskriver antallet, X, blandt

Læs mere

Matematik A eksamen 14. august Delprøve 1

Matematik A eksamen 14. august Delprøve 1 Matematik A eksamen 14. august 2014 www.matematikhfsvar.page.tl Delprøve 1 Info: I denne eksamensopgave anvendes der punktum som decimaltal istedet for komma. Eks. 3.14 istedet for 3,14 Opgave 1 - Andengradsligning

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx121-MATn/A-31052012 Torsdag den 31. maj 2012 kl. 09.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve

Læs mere

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)...

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... χ Indhold Formål med noten... Goodness of fit metoden (GOF)... 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... ) χ -fordelingerne (fordelingsfunktionernes egenskaber)... 6 3) χ -

Læs mere

Opgave 1 - Rentesregning. Opgave a)

Opgave 1 - Rentesregning. Opgave a) Matematik C, HF 7. december 2016 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Løsningerne nedenfor er løst

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2010. Denne beskrivelse dækker efteråret 2011 og foråret 2012. Institution Roskilde Handelsskole

Læs mere

Peter Harremoës Mat A eksamen med hjælpemidler 21. april 2014

Peter Harremoës Mat A eksamen med hjælpemidler 21. april 2014 Opgave 6 Ved hjælp af GeoGebra CAS ses at udtrykkes reduceres til noget som er forskelligt fra b 3 ab 2. Dette kan også ses ved f.eks. at indsætte a = 0 og b = 1. Se bilag 2! Opgave 7 Data er indlæst i

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Maple 11 - Chi-i-anden test

Maple 11 - Chi-i-anden test Maple 11 - Chi-i-anden test Erik Vestergaard 2014 Indledning I dette dokument skal vi se hvordan Maple kan bruges til at løse opgaver indenfor χ 2 tests: χ 2 - Goodness of fit test samt χ 2 -uafhængighedstest.

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer.

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer. Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Matematik B. Højere handelseksamen. Vejledende opgave 1

Matematik B. Højere handelseksamen. Vejledende opgave 1 Matematik B Højere handelseksamen Vejledende opgave 1 Efterår 011 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Matematik B. Højere handelseksamen. Mandag den 16. december 2013 kl hhx133-mat/b

Matematik B. Højere handelseksamen. Mandag den 16. december 2013 kl hhx133-mat/b Matematik B Højere handelseksamen hhx133-mat/b-161013 Mandag den 16. december 013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Test nr. 5 af centrale elementer 02402

Test nr. 5 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 5 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

a) For at bestemme a og b i y=ax+b defineres to lister med data fra opgaven År d 0, 1, 2, 3, 4, 5, 6 :

a) For at bestemme a og b i y=ax+b defineres to lister med data fra opgaven År d 0, 1, 2, 3, 4, 5, 6 : Eksemplarisk løsning af eksamensopgave Nedenstående opgaver er delprøven med hjælpemidler fra Matematik B eksamen d. 22 maj 2014 restart with Gym : Opgave 7 a) For at bestemme a og b i y=ax+b defineres

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Peter Harremoës Matematik B eksamen med hjælpemidler 25. maj 2016

Peter Harremoës Matematik B eksamen med hjælpemidler 25. maj 2016 Opgave 6 a) Skæringspunktet mellem linjerne med ligningerne l : 10x + 20y = 1000 og m : 90x 30y = 600 bestemmes. 10x + 20y = 1000 og 90x 30y = 600Ligningerne er skrevet op. y = 0.5x + 50 og y = 3x 20y

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx121-MATn/A-25052012 Fredag den 25. maj 2012 kl. 09.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Skolesektionen på www.ballerup.dk

Skolesektionen på www.ballerup.dk Skolesektionen på www.ballerup.dk Louise Callisen Dyhr (ldyh) Marie Louise Gottlieb Frederiksen (mgfr) Janus Askø Madsen (jaam) Nanna Petersen (nshy) Antal tegn: 28319 Afleveringsdato: 21. maj 2014 1 Indledning...

Læs mere

s ( Tid_Lektier; Hypotese: Gælder dette for alle unge tyskere? Vi deler op i to hypoteser H_0 og H_1.

s ( Tid_Lektier; Hypotese: Gælder dette for alle unge tyskere? Vi deler op i to hypoteser H_0 og H_1. Fritid delstat Tyskland Køn Alder Højde Vægt BMI Tid_TV Tid_Musik Tid_Comp Tid_Sport Tid_Lekt... Tid_Job Fritid delstat Tyskland 1 maennlich 17 1,88 70 19,8053 10 2 4 2 3 2 weiblich 14 0 35 0 4 3 weiblich

Læs mere

Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014

Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014 Matematik A Studentereksamen stx143-mat/a-05122014 Fredag den 5. december 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh141-mat/b-23052014 Fredag den 23. maj 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere