Venus relative størrelse og fase

Størrelse: px
Starte visningen fra side:

Download "Venus relative størrelse og fase"

Transkript

1 Venus relative størrelse og fase Steffen Grøndahl Planeten Venus er værd at studere i teleskop. Med blot en forstørrelse på gange, kan man se, at Venus ikke er punktformet og at den ligesom Månen gennemløber faser fra fuld til ny. Men samtidig ændrer den tilsyneladende størrelse af planeten sig, således at den er størst, når den er ny og mindst når den er fuld. Forklaringen er, at Venus ligesom Jorden kredser om Solen, men i en bane nærmere Solen. I denne artikel beregnes hvorledes Venus fase og relative størrelse ændrer sig med tiden. 1 Venus og Jordens kredsløb om Solen Både Venus og Jorden kredser om Solen i tilnærmelsesvis cirkelformede baner, med gennemsnitlige baneradier på r V = 0, 723 AU henholdsvis r J = 1 AU, hvor 1 AU = 149, km er den såkalde astronomiske enhed. Omløstiden er mindre for Venus end for Jorden, nemlig T V = 224, 70 d mod T J = 365, 25 d. Det betyder, at Venus engang imellem overhaler Jorden indenom. Når Venus overhaler Jorden indenom om dermed befinder sig mellem Jorden og Solen, siges Venus at være i indre konjunktion. Da Venus og Jordens baneplaner ikke er sammenfaldende vil det dog være sjældent, at Venus ligefrem går foran Solskiven. Men det skete blandt andet den 8. juni 2004 ved den såkaldte Venuspassage. (Noget tilsvarende gælder for Månen, som også placerer sig mellem Solen og Jorden ved nymåne, men kun sjældent går ind foran Solen og skaber solformørkelse, da Jordens og Månens baneplaner ikke er sammenfaldende.) 1.1 Venus synodiske omløbstid I det følgende antages at Venus overhaler Jorden indenom til tiden t = 0. Man kan forestille sig, at vi måler tiden på et stopur, som startes netop når Venus overhaler Jorden. Efter et stykke tid vil Venus have flyttet sig vinklen θ V = 2 π t T V (1)

2 mens Jorden har flyttes sig vinklen θ J = 2 π t T J (2) Se eventuelt figur 1 nedenfor. Den synodiske omløbsperiode for Venus, T, er tiden mellem to overhalinger (to følgende konjunktioner). Denne er givet ved, at Venus har nået et ekstra omløb, altså taget 2π mere end Jorden: Indsættes heri (1) og (2) følger θ V = θ J + 2 π 1 T = 1 T V 1 T J (3) eller T = T V T J T J T V Indsættes værdierne T V = 224, 70 d og T J = 365, 25 d fås T = 583, 9 d, altså knap 584 døgn eller lidt over halvandet år. Fig. 1: Til tiden t = 0 overhaler Venus Jorden indenom. Til et lidt senere tidspunkt (t) vil Venus have nået vinklen θ V rundt om Solen, mens Jorden kun har nået vinklen θ J. Vinklerne er givet ved planeternes omløbstider, (1) henholdsvis (2). Bemærk: Venus er den inderste planet og det er Solen i centrum :o) 2

3 2 Venus tilsyneladende størrelse Set fra Jorden vil den tilsyneladende størrelse af Venus, altså udstrækningen, ændre sig med tiden. I atronomisk sammenhæng benytter man som regel den vinkel, ω som diameteren af Venus måler (altså set fra Jorden). Af Figur 2 fremgår det, at den er givet ved ω = 2 ω 2 2 tan ω 2 = 2 RV r = 2 R V r hvor R V = 6052 km er Venus radius og r er afstanden fra Jorden til Venus på det givne tidspunkt. I udledningen er udnyttet, at tangens til en vinkel er tilnærmelsesvis lig med vinklen (målt i radianer), hvis vinklen er lille. (4) Fig. 2: Den relative størrelse af Venus (udstrækningen) er givet ved vinklen ω, der kan beregnes ud fra Venus radius R V og afstanden mellem Venus og Jorden r. 2.1 Afstanden mellem Jorden og Venus Fig. 3: Til et givent tidspunkt t vil vinklen mellem Venus og Jorden (set fra Solen) være θ V θ J. Afstanden mellem Venus og Jorden er da r, som kan beregnes ved hjæp af cosinusrelationen. 3

4 Af (1), (2) og (3) følger θ V θ J = 2 π t T V 2 π t T J = 2 π t T Af cosinusrelationerne (se Figur 3) følger r 2 = r 2 V + r 2 J 2 r V r J cos(θ V θ J ) og dermed at afstanden mellem Venus og Jorden er givet ved ( ) 2 π t r = rv 2 + r2 J 2 r V r J cos T (5) Specielt bemærkes at r = r J r V for t = 0 og t = T (altså når Venus er i indre konjunktion) og at r = r J + r V for t = T/2 (dette kaldes ydre konjunktion). 3 Venus fase Fig. 4: Vinklen mellem Solen og Jorden set fra Venus (ϕ) kan beregnes ud fra cosinusrelationer. Samtidig kan den benyttes til at beregne, hvor stor en del af den oplyste del af Venus, der kan ses Jorden. Vinklen ϕ (se Figur 4) kan bruges til at bestemme hvor meget af den oplyste del af Venus, der er synlig fra Jorden. Af cosinusrelationerne fås r 2 J = r 2 V + r 2 2 r V r cos(ϕ) 4

5 Fig. 5: Et zoom på Venus: Området ABF EA ligger hen i mørke, da det ikke rammes af Solens lys. Fra Jorden ses området ACDEF A, hvoraf en bid, AEF A ligger hen i mørke. Området ACDA i sig selv ville gøre, at Venus ville ses som halv fra Jorden. Men i dette tilælde hvor ϕ < π 2 og ϕ > 0 vil der være en ekstra del, ADEA, som er oplyst og dermed synlig fra Jorden. Størrelsen x beskriver denne ekstra del kvantitativt. og dermed cos(ϕ) = r2 V + r2 rj 2 (6) 2 r V r Figur 5 viser hvor meget af Venus, der er synligt set fra Jorden. Her i tilfældet hvor ϕ < π 2. Specielt størrelsen x er interessant. Den er givet ved: x = R V cos(ϕ) = R V cos(ϕ) (7) Af figur 6 ses hvorledes Venus ter sig ud set fra Jorden. Man ser at den ekstra synlige del er en halv ellipse med storakse 2 R V og lilleakse 2 x = 2 R cos(ϕ). I tilfældet hvor ϕ > π 2 vil det oplyste område være mindre end en halv; det der mangler i at Venus ses som være halv er igen en ellipse med den halve lilleakse givet ved x - se figur 7. x er her givet ved hvor og dermed x = R V cos(φ) φ = π ( 2 ϕ π ) = π ϕ 2 x = R V cos(φ) = R V cos(π ϕ) = R V cos(ϕ) = R V cos(ϕ) altså samme udtryk som ovenfor (7) 5

6 Fig. 6: Venus set fra Jorden. Området ADA EA udgør en halv ellipse med storakse 2 R V og lilleakse 2 x = 2 R V cos(ϕ). Punktet A er anti-pol til A. 4 Sammenfatning Der er her gjort rede for hvorledes Venus størrelse og fase ændrer sig med tiden. Et kort resume er som følger: 1. Afstanden mellem Jorden og Venus til et givet tidspunkt t er givet ved (5): ( ) 2 π t r = rv 2 + r2 J 2 r V r J cos T hvor T = 583, 9 d er den synodiske omløbsperiode, der er givet ved Jorden og Venus omløbsperiode jævnfør (3) og hvor r V = 0, , km og r J = 149, km. Her skal tiden t regnes i forhold til en given indre konjunktion, for eksempel tiden siden Venuspassagen 8. juni Den tilsyneladende størrelse af Venus er givet ved (4): hvor R V = 6052 km. ω 2 R V r 3. Venus fase afhænger af vinklen mellem Solen og Jorden set fra Venus, ϕ. Denne er givet ved (6) cos(ϕ) = r2 V + r2 r 2 J 2 r V r 6

7 Fig. 7: Et zoom på Venus i tilældet hvor ϕ > π 2 : Området ACDEF A ligger hen i mørke, da det ikke rammes af Solens lys. Fra Jorden ses området ABCDEA, hvoraf kun ABCA bliver oplyst. Specielt området ACDA er interessant, da det er det området, der gør, at Venus ikke ses som halv i dette tilfælde. Vinklen ϕ bestemmer fasen således: Når ϕ = 0 vil Venus ses som fuld. Når 0 < ϕ < π 2 vil Venus ses som over halv fuld. Den ekstra del er givet ved en halv ellipse, hvis halve lilleakse er givet ved R V cos(ϕ), jævnfør (7) og figur 6. Når ϕ = π 2 vil Venus ses som halv. Når π 2 < ϕ < π vil Venus ses mindre end halv fuld. Den del der mangler i at være halv fuld er en halv ellipse, hvis halve lilleakse er givet ved R V cos(ϕ), jævnfør (7). 7

Formelsamling i astronomi. November 2015.

Formelsamling i astronomi. November 2015. Formelsamling i astronomi. November 015. Formelsamlingen er ikke komplet det bliver den nok aldrig. Men måske kan alligevel være til en smule gavn. Sammenhæng mellem forskellige tidsenheder: Jordens sideriske

Læs mere

Solen og dens 8(9) planeter. Set fra et rundt havebord

Solen og dens 8(9) planeter. Set fra et rundt havebord En gennemgang af Størrelsesforhold i vort Solsystem Solen og dens 8(9) planeter Set fra et rundt havebord Poul Starch Sørensen Oktober / 2013 v.4 - - - samt meget mere!! Solen vores stjerne Masse: 1,99

Læs mere

Venuspassage - en astronomisk meterstok

Venuspassage - en astronomisk meterstok Downloaded from orbit.dtu.dk on: Dec 19, 2015 Venuspassage - en astronomisk meterstok Linden-Vørnle, Michael Published in: Aktuel Naturvidenskab Publication date: 2012 Document Version Forlagets endelige

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Teoretiske Øvelser Mandag den 31. august 2009

Teoretiske Øvelser Mandag den 31. august 2009 agpakke i Astronomi: Introduktion til Astronomi Hans Kjeldsen hans@phys.au.dk 3. august 009 Teoretiske Øvelser Mandag den 31. august 009 Øvelse nr. 1: Keplers og Newtons love Keplers 3. lov giver en sammenhæng

Læs mere

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009 Lysets hastighed Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.1.009 Indholdsfortegnelse 1. Opgaveanalyse... 3. Beregnelse af lysets hastighed... 4 3.

Læs mere

Trigonometri og afstandsbestemmelse i Solsystemet

Trigonometri og afstandsbestemmelse i Solsystemet Trigonometri og afstandsbestemmelse i Solsystemet RT1: fstandsberegning (Fra katederet) 5 RT2: Bold og Glob 6 OT1:Bestemmelse af Jordens radius 9 OT2:Modelafhængighed 11 OT3:fstanden til Månen 12 OT4:Månens

Læs mere

Keplers Love. Om Kinematik og Dynamik i Renæssancens Astronomi. Folkeuniversitetet 9. oktober 2007

Keplers Love. Om Kinematik og Dynamik i Renæssancens Astronomi. Folkeuniversitetet 9. oktober 2007 Keplers Love Om Kinematik og Dynamik i Renæssancens Astronomi Folkeuniversitetet 9. oktober 2007 Poul Hjorth Institut for Matematik Danmarke Tekniske Universitet Middelalderens astronomi var en fortsættelse

Læs mere

Solen og dens 8(9) planeter. Set fra et rundt havebord

Solen og dens 8(9) planeter. Set fra et rundt havebord En gennemgang af Størrelsesforhold i vort Solsystem Solen og dens 8(9) planeter Set fra et rundt havebord Poul Starch Sørensen September / 2012 Solen vores stjerne Masse: 1,99 x 10**30 kg Diameter: 1,4

Læs mere

Udledning af Keplers love

Udledning af Keplers love Udledning af Keplers love Kristian Jerslev 8. december 009 Resumé Her præsenteres en udledning af Keplers tre love ud fra Newtonsk tyngdekraft. Begyndende med en analyse af et to-legeme problem vil jeg

Læs mere

Exoplaneter fundet med Kepler og CoRoT

Exoplaneter fundet med Kepler og CoRoT Exoplaneter fundet med Kepler og CoRoT Analyse af data fra to forskningssatellitter Af Hans Kjeldsen, Institut for Fysik og Astronomi, Aarhus Universitet I denne artikel demonstreres det hvordan man kan

Læs mere

Kometer. Af Mie Ibsen & Marcus Guldager Nordsjællands Grundskole & Gymnasium. http://esamultimedia.esa.int/images/science/rosetta2.

Kometer. Af Mie Ibsen & Marcus Guldager Nordsjællands Grundskole & Gymnasium. http://esamultimedia.esa.int/images/science/rosetta2. Kometer Af Mie Ibsen & Marcus Guldager Nordsjællands Grundskole & Gymnasium http://esamultimedia.esa.int/images/science/rosetta2.jpg Indholdsfortegnelse side Introduktion... 2 Problemformulering... 2 Baggrund...

Læs mere

Den astronomiske enhed

Den astronomiske enhed Bestemmelse af Den astronomiske enhed Snapshot fra Stellarium Michael Andrew Dolan Møller Rosborg Gymnasium og Hf-kursus Juni 2012. (Redigeret maj 2015.) Bestemmelse af den astronomiske enhed. side 1/10

Læs mere

Keplers verdensbillede og de platoniske legemer (de regulære polyedre).

Keplers verdensbillede og de platoniske legemer (de regulære polyedre). Keplers verdensbillede og de platoniske legemer (de regulære polyedre). Johannes Kepler (1571-1630) var på mange måder en overgangsfigur i videnskabshistorien. Han ydede et stort bidrag til at matematisere

Læs mere

Projekt 6.5 Ellipser brændpunkter, brændstråler og praktisk anvendelse i en nyrestensknuser

Projekt 6.5 Ellipser brændpunkter, brændstråler og praktisk anvendelse i en nyrestensknuser Projekt 65 Ellipser brændpunkter brændstråler og praktisk anvendelse i en nyrestensknuser Ellipsens ligning undersgte vi kapitel i bog B I det flgende skal vi undersge ellipser som banekurver og vise hvorledes

Læs mere

Hvordan Kepler fandt sine love

Hvordan Kepler fandt sine love Hvordan Kepler fandt sine love stronomerne forstod ikke at overmande denne krigsgud (Mars). Men den fortræffelige hærfører Tycho har under 0 års nattevågen udforsket al hans krigslist; og jeg omgik ved

Læs mere

Hvad kan man se netop nu i Galileoscopet i august 2010?

Hvad kan man se netop nu i Galileoscopet i august 2010? Hvad kan man se netop nu i Galileoscopet i august 2010? Venus Planetarieprogrammet Starry Night viser øverst hvad man ser mod vest den 1.8 kl. 21.50 lige over horisonten. Til venstre for Venus ses Mars

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Forløbet Bevægelser i rummet er placeret i fysik-kemifokus.dk 7. klasse, men det er muligt at arbejde med forløbet både i 7. og 8. klasse.

Forløbet Bevægelser i rummet er placeret i fysik-kemifokus.dk 7. klasse, men det er muligt at arbejde med forløbet både i 7. og 8. klasse. Bevægelser i rummet Niveau: 7. klasse Varighed: 5 lektioner Præsentation: Forløbet Bevægelser i rummet er placeret i fysik-kemifokus.dk 7. klasse, men det er muligt at arbejde med forløbet både i 7. og

Læs mere

Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge.

Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge. Cykloider Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge Retningspunkt (repetition) Figur 1 viser enhedscirklen Det viste punkt P er anbragt sådan at den øverste af buerne

Læs mere

Keplers love og Epicykler

Keplers love og Epicykler Keplers love og Epicykler Jacob Nielsen Keplers love Johannes Kepler (57-60) blev i år 600 elev hos Tyge Brahe (546-60) i Pragh, og ved sidstnævntes død i 60 kejserlig astronom. Kepler stiftede således

Læs mere

Kapitel 10. B-felt fra en enkelt leder. B (t) = hvor: B(t) = Magnetfeltet (µt) I(t) = Strømmen i lederen (A) d = Afstanden mellem leder og punkt (m)

Kapitel 10. B-felt fra en enkelt leder. B (t) = hvor: B(t) = Magnetfeltet (µt) I(t) = Strømmen i lederen (A) d = Afstanden mellem leder og punkt (m) Kapitel 10 Beregning af magnetiske felter For at beregne det magnetiske felt fra højspændingsledninger/kabler, skal strømmene i alle ledere (fase-, jord- og eventuelle skærmledere) kendes. Den inducerede

Læs mere

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Planetatmosfærer. Hvorfor denne forskel?

Planetatmosfærer. Hvorfor denne forskel? Planetatmosfærer De indre planeter Venus og Jorden har tykke atmosfærer. Mars' atmosfære er kun 0,5% af Jordens. Månen har nærmest ingen atmosfære. De ydre planeter De har alle atmosfærer. Hvorfor denne

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Astronomernes værktøj

Astronomernes værktøj Astronomernes værktøj Teleskoper Spejlkikkerter Refraktorer Kikkertens fordele Den samler lys ind på et stort overfladeareal i forhold til øjet. Den kan opløse små detaljer bedre end øjet kan gøre. Den

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Marie Kruses Skole Stx Astronomi C Klaus

Læs mere

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Hvad kan man se netop nu i Galileoscopet i juni og juli 2012?

Hvad kan man se netop nu i Galileoscopet i juni og juli 2012? Hvad kan man se netop nu i Galileoscopet i juni og juli 2012? Venus Den 6. juni 2012 vil Venus bevæge sig helt ind foran Solen en time efter midnat dansk tid. Fra Danmark vil det kunne observeres fra solopgang

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

Nattehimlen april 2015

Nattehimlen april 2015 Nattehimlen april 2015 4. april. Fuldmåne 13.05 UT. I nogle lande kaldes den lyserød måne, æggemåned eller græsmåne. 4. april. En kort måneformørkelse indtræffer tæt på dagens fuldmåne blot to måneder

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Arbejdsopgaver i emnet bølger

Arbejdsopgaver i emnet bølger Arbejdsopgaver i emnet bølger I nedenstående opgaver kan det oplyses, at lydens hastighed er 340 m/s og lysets hastighed er 3,0 10 m/s 8. Opgave 1 a) Beskriv med ord, hvad bølgelængde og frekvens fortæller

Læs mere

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30.

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30. Opgaver Polære koordinater Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 15, 70, 60, 0. Opgave Bestem sin π Opgave. Et punkt p i xy-planen er givet ved de kartesiske koordinater,. Bestem p s polære

Læs mere

Hvad kan man se netop nu i Galileoscopet - Juni 2010?

Hvad kan man se netop nu i Galileoscopet - Juni 2010? Hvad kan man se netop nu i Galileoscopet - Juni 2010? Vesthimlen den 1.06.2010 kl. 23 vist med planetarieprogrammet Stellarium. Venus. Den 1.6. kl.22 vil den klare Venus kunne ses 16 grader over den vestlige

Læs mere

Matematisk modellering: Hvor tidligt står Venus op?

Matematisk modellering: Hvor tidligt står Venus op? Matematisk modellering: Hvor tidligt står Venus op? Kasper Bjering Søby Jensen, ph.d. studerende i matematikkens didaktik ved Roskilde Universitet I LMFK bladet 2/2012 bragtes artiklen Anvendelse og modellering

Læs mere

Modul 11-13: Afstande i Universet

Modul 11-13: Afstande i Universet Modul 11-13 Modul 11-13: Afstande i Universet Rumstationen ISS Billedet her viser Den Internationale Rumstation (ISS) i sin bane rundt om Jorden, idet den passerer Gibraltar-strædet med Spanien på højre

Læs mere

Nattehimlen marts 2015

Nattehimlen marts 2015 Nattehimlen marts 2015 Om ikke andet i denne måned, kommer foråret til de betrængte stjernekiggere i det østlige Nordamerika, som har udholdt endnu en absurd kold vinter. Denne måned kaldes Ormemåned,

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

User s guide til cosinus og sinusrelationen

User s guide til cosinus og sinusrelationen User s guide til cosinus og sinusrelationen Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Vores solsystem blev dannet af en stjernetåge, der kollapsede under sin egen tyngde for 4,56 milliarder år siden.

Vores solsystem blev dannet af en stjernetåge, der kollapsede under sin egen tyngde for 4,56 milliarder år siden. Vores solsystem blev dannet af en stjernetåge, der kollapsede under sin egen tyngde for 4,56 milliarder år siden. Denne stjernetåge blev til en skive af gas og støv, hvor Solen, der hovedsageligt består

Læs mere

Fysik A. Studentereksamen. Torsdag den 27. maj 2010 kl

Fysik A. Studentereksamen. Torsdag den 27. maj 2010 kl Fysik A Studentereksamen 1stx101-FYS/A-27052010 Torsdag den 27. maj 2010 kl. 9.00-14.00 Opgavesættet består af 7 opgaver med tilsammen 15 spørgsmål. Svarene på de stillede spørgsmål indgår med samme vægt

Læs mere

a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole

a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole 3.1.2. a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole Udført d. 15.04.08 Deltagere Kåre Stokvad Hansen Max Berg Michael Ole Olsen 1 Formål: Formålet med øvelsen er at måle/beregne

Læs mere

Hvad kan man se netop nu i Galileoscopet i februar 2012?

Hvad kan man se netop nu i Galileoscopet i februar 2012? Hvad kan man se netop nu i Galileoscopet i februar 2012? Jupiter Planeten Jupiter vil i februar stå nær Syd lige efter solnedgang. I løbet af aftenen vil Jupiter bevæge sig til Vest, hvor den vil gå ned

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Opgave 1 - Eksponentiel funktion/procent og renter

Opgave 1 - Eksponentiel funktion/procent og renter Alle beregninger er, hvis ikke andet angivet, udført med WordMat. Opgave 1 - Eksponentiel funktion/procent og renter Jeg vil nu finde ud af hvor stort et beløb der står på kontoen efter 1 år med en starts

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Månen Der er fuldmåne den Der er nymåne den 29. april og den 28. maj, og et par dage senere kan man iagttage en tiltagende Måne om aftenen

Månen Der er fuldmåne den Der er nymåne den 29. april og den 28. maj, og et par dage senere kan man iagttage en tiltagende Måne om aftenen Hvad kan man se netop nu i Galileoscopet i maj 2014? Månen Der er fuldmåne den 14.05.14. Der er nymåne den 29. april og den 28. maj, og et par dage senere kan man iagttage en tiltagende Måne om aftenen

Læs mere

Matlab script - placering af kran

Matlab script - placering af kran Matlab script - placering af kran 1 Til at beregne den ideelle placering af kranen hos MSK, er der gjort brug af et matlab script. Igennem dette kapitel vil opbygningen af dette script blive gennemgået.

Læs mere

Hvad kan man se netop nu i Galileoscopet i januar 2012?

Hvad kan man se netop nu i Galileoscopet i januar 2012? Hvad kan man se netop nu i Galileoscopet i januar 2012? Jupiter Planeten Jupiter vil i januar stå nær sydøst lige efter solnedgang. I løbet af aftenen og natten vil Jupiter bevæge sig hen over sydhimlen.

Læs mere

Trigonometri at beregne Trekanter

Trigonometri at beregne Trekanter Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )

Læs mere

Hvad kan man se netop nu i Galileoscopet i november 2012?

Hvad kan man se netop nu i Galileoscopet i november 2012? Hvad kan man se netop nu i Galileoscopet i november 2012? Det er nu vintertid så man kan se stjerner og planeter tidligt. Jupiter I begyndelsen af november vil planeten Jupiter stå op i NØ Nordøst - kl.

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

Vektorer i 3D. 1. Grundbegreber. 1. Koordinater. Enhedsvektorerne. Vektor OP. De ortogonale enhedsvektorer kaldes for: Hvis punkt p har koordinaterne:

Vektorer i 3D. 1. Grundbegreber. 1. Koordinater. Enhedsvektorerne. Vektor OP. De ortogonale enhedsvektorer kaldes for: Hvis punkt p har koordinaterne: Vektorer i 3D. Grundegreer. Koordinater z k P OP i 0 j x y Enhedsvektorerne De ortogonale enhedsvektorer kaldes for: i, j og k Vektor OP Hvis punkt p har koordinaterne: P ( a a a3 ) Så har vektor OP koordinaterne:

Læs mere

Et temanummer om astronomi og astronomiundervisning

Et temanummer om astronomi og astronomiundervisning NATUR 2008 Et temanummer om astronomi og astronomiundervisning i folkeskolen Udarbejdet af: Fagkonsulent for naturfag Lars Poort Inerisaavik 2008 NATUR 2008 Astronomi i folkeskolen Med evalueringsbekendtgørelse

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK NOVEMBER 008 MATEMATIK A-NIVEAU g Prøve november 008 1. delprøve: 1 time med formelsamling samt. delprøve: timer med alle hjælpemidler Alle delspørgsmål indenfor hver af

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

Solsystemet. Præsentation: Niveau: 7. klasse. Varighed: 4 lektioner

Solsystemet. Præsentation: Niveau: 7. klasse. Varighed: 4 lektioner Solsystemet Niveau: 7. klasse Varighed: 4 lektioner Præsentation: Forløbet Solsystemet ligger i fysik-kemifokus.dk 7. klasse, men det er muligt at arbejde med forløbet både i 7. og 8. klasse. Solsystemet

Læs mere

Fra Støv til Liv. Af Lektor Anja C. Andersen Dark Cosmology Center, Niels Bohr Institutet, Københavns Universitet

Fra Støv til Liv. Af Lektor Anja C. Andersen Dark Cosmology Center, Niels Bohr Institutet, Københavns Universitet Fra Støv til Liv Af Lektor Anja C. Andersen Dark Cosmology Center, Niels Bohr Institutet, Københavns Universitet Observationer af universet peger på, at det er i konstant forandring. Alle galakserne fjerner

Læs mere

HAF Sfærisk astronomi

HAF Sfærisk astronomi Forside1 Plane trekanter B Vinkelsum = 180 c a a 2 = b 2 + c 2 2 b c cos(a) b 2 = c 2 + a 2 2 a c cos(b) c 2 = a 2 + b 2 2 a b cos(c) A b C a sin(a) = b sin(b) = c sin(c) 1 Sfæriske trekanter N v Lillecirkel

Læs mere

Keplers ellipse. Perihel F' Aphel

Keplers ellipse. Perihel F' Aphel Keplers ellipse Keplers udgangspunkt er ellipsen opfattet som en fladtrykt cirkel. Han har selfølgelig stadigæk brug for brændpunkter mm. Konstruktionen af disse er simpel ud fra ellipsens omskrene rektangel.

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Vort solsystem Ny Prisma Fysik og kemi 8. Skole: Navn: Klasse:

Vort solsystem Ny Prisma Fysik og kemi 8. Skole: Navn: Klasse: Vort solsystem Ny Prisma Fysik og kemi 8 Skole: Navn: Klasse: Opgave 1 Hvilken måleenhed måles kræfter i? Der er 5 svarmuligheder. Sæt et kryds. joule newton pascal watt kilogram Opgave 2 Her er forskellige

Læs mere

Bacheloruddannelsen 1. år E15

Bacheloruddannelsen 1. år E15 Bacheloruddannelsen 1. år E15 2 v/jan Fugl 3 Projektionstegning Projek tion -en, -er (lat.pro jectio, til pro jicere-, kaste frem, af pro frem + jacere kaste; jf. Projekt, projektil, projektion) afbildning

Læs mere

Transit af XO-2b. Jonas Bregnhøj Nielsen. Lars Fogt Paulsen

Transit af XO-2b. Jonas Bregnhøj Nielsen. Lars Fogt Paulsen Transit af XO-2b Udarbejdet af: Kasper Lind Jensen Jonas Bregnhøj Nielsen Lars Fogt Paulsen Indholdsfortegnelse Baggrund... 3 XO-2b... 4 Beskrivelse af observationer... 4 Datareduktion... 5 Diskussion...

Læs mere

5. Kometer, asteroider og meteorer

5. Kometer, asteroider og meteorer 5. Kometer, asteroider og meteorer 102 1. Faktaboks 2. Solsystemet 3. Meteorer og meteoritter 4. Asteroider 5. Kometer 6. Kratere på jorden 7. Case A: Bedout nedslaget Case B: Tunguska nedslaget Case C:

Læs mere

Storcirkelsejlads. Nogle definitioner. Sejlads langs breddeparallel

Storcirkelsejlads. Nogle definitioner. Sejlads langs breddeparallel Storcirkelsejlads Denne note er et udvidet tillæg til kapitlet om sfærisk geometri i TRIPs atematik højniveau 1, ved Erik Vestergaard. Nogle definitioner I dette afsnit skal vi se på forskellige aspekter

Læs mere

Exoplanetdetektion ved lyskurvemåling. Michael A. D. Møller. November side 1/6

Exoplanetdetektion ved lyskurvemåling. Michael A. D. Møller. November side 1/6 Exoplanetdetektion ved lyskurvemåling. Michael A. D. Møller. November 2011. side 1/6 Exoplanetdetektion I denne øvelse skal du måle en lyskurve for en stjerne, når den krydses af en af sine planeter. Dataene

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål 1a sommeren 2009 (reviderede) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar renteformlen og forklar hvorledes hver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Erhvervsgymnasiet Grindsted Uddannelse Fag og niveau Lærer(e) Hold HTx Astronomi

Læs mere

Projekt Solen og Planet sti Bording 2012

Projekt Solen og Planet sti Bording 2012 Projekt Solen og Planet sti Bording 2012 Til forskønnelse af Bording by, samt for at åbne ud i landskabet omkring Bording by, har Natur og Fritidsudvalget under Bording Lokalråd udarbejdet dette projekt

Læs mere

AAU Landinspektøruddannelsen

AAU Landinspektøruddannelsen AAU Landinspektøruddannelsen Universal Mercator Projektion Mads Hvolby, Nellemann & Bjørnkjær 2003 UTM Projektion Indhold Forord Generelt UTM-Projektiionen UTM-Nettet Specifikationer for UTM-Projektionen

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen Matematik A 215 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen skal afleveres renskrevet, det er tilladt at skrive med blyant. Notatpapir

Læs mere

Ole Rømers planetarium

Ole Rømers planetarium Ole Rømers planetarium Meddelelser udgives af foreningen Ole Rømers Venner og udkommer hvert år med historiske artikler inden for foreningens virke. Forslag til emner modtages gerne. Hjemmeside: www.oleroemer.dk

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Månedens astronom februar 2006 side 1. 1: kosmologiens fødsel og problemer

Månedens astronom februar 2006 side 1. 1: kosmologiens fødsel og problemer Månedens astronom februar 2006 side 1 Verdensbilleder * Det geocentriske * Det geo-heliocentriske * Det heliocentriske 1: kosmologiens fødsel og problemer Astronomien er den ældste af alle videnskaber

Læs mere

Afstande Afstande i universet

Afstande Afstande i universet Side 1 Til læreren i universet Her får man en fornemmelse af rummeligheden i universet at stjernerne ikke, som antaget i Middelalderen, sidder på indersiden af en kugleflade, men i stedet er spredt i rummet

Læs mere

Oven over skyerne..! Få alt at vide om rumfart, rumstationer og raketter hér: http://www.geocities.ws/johnny97dk/rumfart/index.htm

Oven over skyerne..! Få alt at vide om rumfart, rumstationer og raketter hér: http://www.geocities.ws/johnny97dk/rumfart/index.htm Oven over skyerne..! Du skal lære mennesker, steder og ting ude i rummet og på jorden hvor du bor Du skal lære om stjernetegnene Du skal lave din egen planet-rap Du skal skrive et brev fra Månen Du skal

Læs mere

Vejledende løsning. Ib Michelsen. hfmac123

Vejledende løsning. Ib Michelsen. hfmac123 Vejledende løsning hfmac123 Side 1 Opgave 1 På en bankkonto indsættes 30.000 kr. til en rentesats på 2,125 % i 7 år. Beregning af indestående Jeg benytter formlen for kapitalfremskrivning: K n=k 0 (1+r

Læs mere

STJERNESKUDDET MEDLEMSBLAD FOR ØSTJYSKE AMATØR ASTRONOMER

STJERNESKUDDET MEDLEMSBLAD FOR ØSTJYSKE AMATØR ASTRONOMER STJERNESKUDDET MEDLEMSBLAD FOR ØSTJYSKE AMATØR ASTRONOMER Merkur - månedens objekt. Tidligere foto fra Mariner 10 http://www.astronomi2009.dk/nyhedsbrev/nyhedsbreve/nyhedsbrev Maj 2008 ØSTJYSKE AMATØR

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Opgaver i solens indstråling

Opgaver i solens indstråling Opgaver i solens indstråling I nedenstående opgaver skal vi kigge på nogle aspekter af Solens indstråling på Jorden. Solarkonstanten I 0 = 1373 W m angiver effekten af solindstrålingen på en flade med

Læs mere

Matematik temasæt Tema: Nordsøen Oceanarium

Matematik temasæt Tema: Nordsøen Oceanarium I din familie interesserer I jer meget for meget for naturen, og især vand og de dyr, der lever i vandet har jeres interesse. Derfor besøger I ofte akvarier med flotte samlinger af vandlevende dyr: fisk,

Læs mere

Undervisning i brugen af VØL

Undervisning i brugen af VØL Undervisning i brugen af VØL I denne lektion arbejder I med At læse for at lære Målet for denne lektion: Du lærer at bruge VØL modellen til at aktivere din forforståelse af emnet, og fokusere din læsning,

Læs mere

Matematik A eksamen 14. august Delprøve 1

Matematik A eksamen 14. august Delprøve 1 Matematik A eksamen 14. august 2014 www.matematikhfsvar.page.tl Delprøve 1 Info: I denne eksamensopgave anvendes der punktum som decimaltal istedet for komma. Eks. 3.14 istedet for 3,14 Opgave 1 - Andengradsligning

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Kapitel 1. Planintegraler

Kapitel 1. Planintegraler Kapitel Planintegraler Denne tekst er en omarbejdet version af kapitel 7 i Gunnar Mohrs noter til faget DiploMat 2, og opgaverne er et lille udpluk af opgaver fra Mogens Oddershede Larsens bog Matematik

Læs mere

Hvad sker der med Christan IV s skillingemønter under den store kroneudmøntning 1618-1622

Hvad sker der med Christan IV s skillingemønter under den store kroneudmøntning 1618-1622 numismatisk rapport 95 5 Hvad sker der med Christan IV s skillingemønter under den store kroneudmøntning 1618-1622 Der er ingen tvivl om, at den mest urolige periode i Christian IV s mønthistorie er årene

Læs mere

Nattehimlen september 2016

Nattehimlen september 2016 Nattehimlen september 2016 Zodiacal lys set fra La Silla, Chile (credit ESO). Jupiter forsvinder ud af syne i denne måned, men i vest efter solnedgang dukker den strålende Venus op. I begyndelsen af måneden

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere