HOT (i matematik-fysik)

Størrelse: px
Starte visningen fra side:

Download "HOT (i matematik-fysik)"

Transkript

1 HOT (i matematik-fysik) Af Peter Limkilde, HOT (Højere Ordens Tænkning) bygger på en ide om, at evnen til at tænke abstrakt udvikles med alderen, og at man kan fremme den naturlige udvikling gennem målrettet undervisning i at tænke/ræsonnere. Schweizeren Jean Piaget gennemførte i perioden løbende en række observationer og interviews af børn i alderen 0-16 år med henblik på at studere udviklingen i deres tænkemåder. Ifølge Piaget 1 fører barnets udvikling til, at børn i alderen 7-12 år mestrer, hvad han kalder konkrete operationer, dvs. at gruppere tanker om ting, der findes i den fysiske verden omkring os, mens børn i alderen fra 11 år- voksen udvikler en evne til at udføre formelle operationer, dvs. at opbygge teorier med abstrakte begreber om noget, som (til dels) kun findes i en tankeverden, lege med forskellige hypotetiske antagelser og gennemtænke deres mulige følgevirkninger osv. Engelske erfaringer I en stor engelsk undersøgelse, hvor man testede elever (45 skoler) i alderen år, viste det sig overraskende, at kun et mindretal af eleverne selv i 16 års alderen mestrede formel operationel tænkning fuldt ud. 2 I 11 års alderen var andelen så lille som 5%. Det var altså ikke alle børn, som automatisk udviklede tænkekompetencer i samme takt som forudsagt af Piaget. Samtidig viste en analyse af sværhedsgraden af pensum i naturfag (science), at store dele af det for at kunne forstås til bunds, forudsatte tænkning på et så højt niveau, at en del elever ikke ville kunne følge med. 2 Tænkeniveauer: 1 Præoperationel tænkning 2A Tidlig konkret operationel tænkning 2B Sen konkret operationel tænkning 2A/3B Overgangs niveau, nogle gange betegnet 2B* 3A Tidlig formel operationel tænkning 3A/3B Overgangs niveau 3B Sen formel operationel tænkning Kendetegn, der karakteriser de enkelte niveauer, er udførligt beskrevet af Shayer og Adey 2 og er i et kortfattet udvalg vist i bilag 1. De niveauer, der er interessante i forbindelse med gymnasieelever, er niveauerne 2A til 3B. Som konsekvens af undersøgelsesresultaterne blev der i England på forsøgsbasis iværksat et to-årigt indsatsprogram CASE (Cognitive Acceleration through Science Education) for årige elever på en række skoler i årene En del af undervisningen (25%) i faget science blev erstattet af lektioner i tænketræning. Det viste sig, at ikke alene var det muligt at forbedre elevernes tænkning, men de elever, der deltog, fik også bedre karakterer ved afgangsprøven to år senere i fagene science (naturfag), matematik og engelsk 3 1

2 Danske erfaringer De opmuntrende resultater i England, har i Danmark givet anledning til flere projekter f.eks. TA FAT (Træning Af Folkeskoleelevers Abstrakte Tankegang, sigter mod årige lavet i samarbejde mellem fysik/kemi-lærergruppen på Aalborg Seminarium og Center for Naturfagenes Didaktik Århus Universitet), KUF 4 (Kognitiv Udvikling gennem Fysikundervisningen sigter mod årige) og senere HOT mat-fys. 5 De to sidste iværksat af Center for Naturfagenes didaktik (Jens Dybkjær Holbech & Poul V. Thomsen) indebar også efteruddannelseskurser for gymnasielærere i årene Inspireret af et foredrag af Poul V. Thomsen testede jeg i et mindre projekt ( ) sammen med Bjarne Hansen og Anita Lauridsen 194 elever fordelt på otte forskelle matematikhold på handelsgymnasierne i Ringkøbing og Skjern. Der deltog elever fra alle tre årgange. Den anvendte test var en oversat udgave af en af de engelske test og fulgte den samme niveauinddeling, som blev anvendt i de engelske studier. Resultaterne fra hhx, der ses i figur 1, afviger ikke væsentlig fra tilsvarende tal for det almene gymnasium 6 1,2 1 Y-akse 0,8 0,6 0,4 1.år HHX 2. år HHX 3. år HHX 0,2 0 2B 2B* 3A 3A/3B 3B X-akse Figur 1. Figuren angiver andelen af elever, der mestrer de enkelte tænkeniveauer fordelt på tre årgange i hhx. Alle elever mestrer niveau 2B, mens kun 5% mestrer niveau 3B. Et slående træk ved graferne i figur 1, er den store lighed mellem de tre årgange. Med andre ord kunne noget tyde på, at de ældre elever ikke i større grad får udviklet mere abstrakt tankegang gennem den almindelige undervisning. Derfor var det oplagt at forsøge at undervise direkte i tænkning. Selvom de engelske erfaringer alene drejede sig om folkeskoleelever, var det nærliggende at forsøge at overføre tænkeundervisningen til gymnasieniveau. I Ringkøbing-Skjern projektet blev klasserne delt op i to grupper: Interventionsklasser og kontrolklasser. Interventionsklasserne fik en del af deres 2

3 matematiktimer erstattet af aktiviteter, der skulle træne tænkningen, mens kontrolklasserne fik almindelig undervisning. Resultaterne af test ved årets afslutning viste, at forholdet mellem antallet af elever på niveau 2B* og 3A ændrede sig i interventionsklasserne, mens en tilsvarende ændring ikke kunne påvises i kontrolklasserne. Et stort studie ledet af Jens Holbech med mange klasser i det almene gymnasium er under bearbejdelse og vil muligvis give mere detaljerede resultater. CASE undervisningsmodellen Det engelske CASE projekt udviklede en undervisningsmodel til træning af formel operationel tænkning. I modellen deles undervisningslektionerne op 3 faser: 1. En indledende fase, hvor problemstillingen bliver præsenteret, og man beskæftiger sig med problemstillingen udelukkende i en konkret tankegang, som alle elever kan være med på. 2. Dernæst flytter læreren opmærksomheden hen på omhyggeligt udvalgte spørgsmål, der kun kan besvares korrekt, hvis eleverne forstår at anvende formel operationel tænkning, en tænkning eleverne måske netop ikke endnu kan mestre (kognitiv konflikt). 3. En fase, hvor lærer og elever sammen diskuterer, hvordan det kunne være, at den forkerte tankegang ikke slog til, hvilke tilsvarende tilfælde med samme type tankegang eleverne allerede har mødt i andre sammenhænge osv. (metakognition, brobygning). Denne undervisningsmodel er også inspireret af Lev Vygotskys udviklingsteorier, eleverne skal arbejde med problemer, der ligger i elevernes nærmeste udviklingszone. Problemstillingerne blev hentet fra områderne variabelkontrol og udelukkelse af irrelevante variabler forhold og proportionalitet kompensation og ligevægt sandsynlighed og korrelation brugen af abstrakte modeller til forklaring og forudsigelse Det hele forudsætter naturligvis, at læreren kan se en ide med både udviklingsmodellen og indsatsen. En skematisk udførelse af undervisningen efter en fastlagt fremgangsmåde vil sandsynligvis ikke give noget resultat. Det er også bedst, at tænketræningen integreres i den daglig undervisning og også medtænkes i differentierede tilbagemeldinger og rådgivning til den enkelte elev svarende til elevens behov. Sammenhæng med fagene På havde jeg en 1.g. klasse i både matematik og fysik og en anden klasse i fysik. På begge hold arbejdede jeg med tænketræning og ved årets slutning blev elevernes tænkeniveau testet en måned før den afsluttende årsprøve i matematik. Hvis man opdeler eleverne efter deres tænkeniveau, viser der sig en mulig sammenhæng mellem gruppen gennemsnitlig karakter og tænkeniveauet. Jo mere formelt operationelt niveauet er, jo bedre er gennemsnitskarakteren. Det er vigtigt at understrege, at der er store individuelle forskelle. Det er alene på gennemsnitskarakteren at tendensen viser sig. 3

4 1.g. forår 2002, N=34 Karaktergennemsnit Matematik B- 2B 2B* 3A 3A/3B 3B Tænkeniveau i Pendultest forår 2002 Figur 2. Karaktergennemsnit ved mundtlig årsprøve i matematik for elevgrupper med forskelligt tænkeniveau på. Litteratur henvisninger/noter: 1 Piaget. J. (2002), The Psychology of Intelligence, Routlegde London and New York 2 Shayer M. og Adey P. (1981), Towards a Science of Science Teaching, Heinemann educational books 3 Adey P. og Shayer M. (1997), Really raising Standards, Routlegde London Holbech J. Resultater fra pretest, privat korrespondance (2000) 4

5 Bilag 1 Peter Limkilde April Problemområde 2A Tidlig konkret 2B Sen Konkret 3A Tidlig formel 3B Sen formel Matematiske operationer Hastighed og acceleration Kategorisering Sandsynlighed Talbegreb: tal er forstået som noget i sig selv adskilt fra størrelse, form etc. på det, som tælles Intuitiv fornemmelse af hastighed, men sammenblander hastighed og det at være forrest Elementær klassifikation. Der klassificeres efter en enkelt egenskab ad gangen, senere også flerdoblet klassifikation f.eks. Store røde firkanter, små røde firkanter Intet sandsynlighedsbegreb Kan beregne resultater i entydige (lukkede) regnestykker men ikke løse åbne udsagn, dvs, udregne 5+4=x men ikke?-7=7-3 eller?-7=5:4 Hastighed som et forhold mellem vejlængde og tid, hastigheder sammenlignes som længder kørt på samme tid. Intuitiv forståelse af acceleration. Delmængder og hierakier. Klasser ikke knyttet alene til en enkelt egenskab og kan være delvist ordnede: 1) Dyr - 2) dyr, der kan flyve - 3) husdyr, der kan flyve. To-delte klassifikationer Syre-base Tre røde og 3 hvide kugler blandet i skål giver 50/50 chance for at trække en hvid Kan arbejde med relationen V=hlb, men kun skridtvis ved at bruge regneregler for konkrete tal. Kan løse?-7=7-3 ved hjælp af en serie operationer udført på hver side af ligningen. Acceleration forstået som mål for hastighedsændring per tidsenhed. Kan benytte en andengrads ligning med konstant acceleration, men kun som en lærergiven algoritme (S=vt+½at 2 ) Generalisering. Klassifikation benyttes til at give mening til mange forskellige fænomener. En formel som V=hlb kan benyttes som instruktion til at udregne rumfang. Som næste trin i serien Etna-Vulkan-...vælges Bjerg Tæller antal af en given type (n) og antal af alle objekter (N) udtrykker sandsynlighed som n N Forstår begrebet variabel. Kan begynde at arbejde med eksplicitte regler gældende indenfor et system og derudfra udvikle bevis-strategier. Acceleration forstås som grænseværdien af v t Abstraktion: som næste trin i serien Etna-Vulkan-...vælges geologisk betegnelse Dette tillader også udforskning af ikke bjerge I formlen V=hlb indses den måde h og b varierer i forhold til hinanden når V og l er konstant 5

6 Bilag 1 Peter Limkilde April Problemområde 2A Tidlig konkret 2B Sen Konkret 3A Tidlig formel 3B Sen formel Anvendelse af modeller Konkret modellering består i at organisering af virkeligheden i rækkefølger eller 1:1 korrespondancer. Kun simple sammenligninger Dette i modsætning til dette (andet) Kilde: M. Shayer and P. Adey: Towards a science of science teaching, Heinemann, London 1981 Rækkefølger med vilkårlig lineær skala. Model er nu en leksikal definition for 1:1 korrespondance model Kan overveje muligheden af flere årsager til en bestemt virkning og omvendt flere virkninger af en bestemt årsag. Modellen bliver opfattet som absolut sandhed, og ikke som en hypotese, derfor er kritisk sammenligning af forskellige modeller ikke mulig. Kan aktivt lede efter en forklaringsmodel, udvide en given model og sammenligne alternative modeller for at se hvilken, der bedst gør rede for samme data. Kan formulere kvantitative deduktioner ud fra modellen og reflektere over sammenhængen mellem indgående variable. 6

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Appendiks 6: Universet som en matematisk struktur

Appendiks 6: Universet som en matematisk struktur Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Matematik i AT (til elever)

Matematik i AT (til elever) 1 Matematik i AT (til elever) Matematik i AT (til elever) INDHOLD 1. MATEMATIK I AT 2 2. METODER I MATEMATIK OG MATEMATIKKENS VIDENSKABSTEORI 2 3. AFSLUTTENDE AT-EKSAMEN 3 4. SYNOPSIS MED MATEMATIK 4 5.

Læs mere

Års- og aktivitetsplan i matematik hold 4 2014/2015

Års- og aktivitetsplan i matematik hold 4 2014/2015 Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

At udvikle og evaluere praktisk arbejde i naturfag

At udvikle og evaluere praktisk arbejde i naturfag Kapitel 5 At udvikle og evaluere praktisk arbejde i naturfag Robin Millar Praktisk arbejde er en væsentlig del af undervisningen i naturfag. I naturfag forsøger vi at udvikle elevernes kendskab til naturen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2015 VUC

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC

Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Komrapporten Kompetencer og matematiklæring. Ideer og inspiration til udvikling af matematikundervisningen

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Mat C Trine Eliasen

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

ICC Europe Howzat Text Danish Version

ICC Europe Howzat Text Danish Version ICC Europe Howzat Text Danish Version Velkommen til Howzat! ECB Coach Education, i samarbejde med ICC Europa, er forpligtet til at yde ressourcer i verdensklasse; Howzat! er designet til at spille en vigtig

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011 juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau Lærer(e)

Læs mere

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen)

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Bog: Vi bruger grundbogssystemet Format, som er et fleksibelt matematiksystem, der tager udgangspunkt i læringsstile.

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Matematik. Læseplan og formål:

Matematik. Læseplan og formål: Matematik Læseplan og formål: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011 juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau Lærer(e)

Læs mere

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Nye Fælles Mål og årsplanen Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Interview Find en makker, som du ikke kender i forvejen Stil spørgsmål, så du kan fortælle os andre om vedkommende ift.:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold HFe Mat C-B Henrik Jessen

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Fag- og indholdsplan 9. kl.:

Fag- og indholdsplan 9. kl.: Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og

Læs mere

Matematik B stx, maj 2010

Matematik B stx, maj 2010 Bilag 36 Matematik B stx, maj 2010 1. Identitet og formål 1.1. Identitet Matematik bygger på abstraktion og logisk tænkning og omfatter en lang række metoder til modellering og problembehandling. Matematik

Læs mere

Naturvidenskabeligt grundforløb 2014-15

Naturvidenskabeligt grundforløb 2014-15 Naturvidenskabeligt grundforløb 2014-15 Naturvidenskabeligt grundforløb strækker sig over hele grundforløbet for alle 1.g-klasser. NV-forløbet er et samarbejde mellem de naturvidenskabelige fag sat sammen

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Afsluttende: Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Favrskov Gymnasium Stx Matematik

Læs mere

Emne Tema Materialer

Emne Tema Materialer 32 36 Uge 35 Fag: Matematik Hold: 20 Lærer: Trine Koustrup Undervisningsmål 9. klasse Læringsmål Faglige aktiviteter Emne Tema Materialer Målsætningen med undervisningen er at eleverne udvikler deres kunnen,opnår

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

brikkerne til regning & matematik formler og ligninger trin 1 preben bernitt

brikkerne til regning & matematik formler og ligninger trin 1 preben bernitt brikkerne til regning & matematik formler og ligninger trin 1 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 1 ISBN: 978-87-92488-08-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Trine Eliasen

Læs mere

formler og ligninger trin 1 brikkerne til regning & matematik preben bernitt

formler og ligninger trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik formler og ligninger trin 1 preben bernitt brikkerne til regning & matematik formler og ligninger, trin 1 ISBN: 978-87-92488-08-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Mundtlig eksamen Maj-Juni 2014 Institution VUF Uddannelse Fag og niveau stx (Studenterkursus) Matematik C

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Repetition og eksamensforberedelse.

Repetition og eksamensforberedelse. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) maj-juni 2014 skoleår 13/14 Herning HF og VUC Hf Matematik C

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Beskrivelse af undervisningsmodellen Faglig læring pa Den Kreative Platform Søren Hansen, Aalborg universitet

Beskrivelse af undervisningsmodellen Faglig læring pa Den Kreative Platform Søren Hansen, Aalborg universitet Beskrivelse af undervisningsmodellen Faglig læring pa Den Kreative Platform Søren Hansen, Aalborg universitet I en ny pædagogisk model fra Aalborg universitet tilrettelægges den faglige undervisning som

Læs mere

IMADAs Fagråd. Evalueringsrapport. Matematik & Datalogi. 2. juni 2011. Kontaktpersoner

IMADAs Fagråd. Evalueringsrapport. Matematik & Datalogi. 2. juni 2011. Kontaktpersoner Evalueringsrapport Matematik & Datalogi 2. juni 2011 Kontaktpersoner Christian Kudahl - chkud08@student.sdu.dk Maria Buhl Hansen - marih09@student.sdu.dk Indhold Indhold 2 1 Indledning 4 1.1 Matematik-økonomi.......................

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Italien spørgeskema til sproglærere dataanalyse

Italien spørgeskema til sproglærere dataanalyse Italien spørgeskema til sproglærere dataanalyse Dig selv 1. 32 sproglærere har besvaret spørgeskemaet, 15 underviser på mellemtrinnet, 17 på ældste trin. 2. 23 underviser i engelsk, 6 i fransk, 3 i tysk,

Læs mere

Ny lærebog om matematikkens. naturfagenes. didaktik. Litteratur

Ny lærebog om matematikkens. naturfagenes. didaktik. Litteratur 98 MONA 2006 3 Ny lærebog om matematikkens og naturfagenes didaktik Anmeldelse: Carl Winsløw: Didaktiske Elementer. En indføring i matematikkens og naturfagenes didaktik. 1. udgave. Biofolia, 2006. 252

Læs mere

De sociale klasser i folkeskolen i 2012

De sociale klasser i folkeskolen i 2012 De sociale klasser i folkeskolen i 12 Denne analyse er den del af baggrundsanalyserne til bogen Klassekamp fra oven. I analysen er der fokus på den sociale klasse for folkeskoleelever og deres klassekammerater.

Læs mere

Kvantitative metoder, teori og praksis

Kvantitative metoder, teori og praksis Kvantitative metoder, teori og praksis Kvantitative metoder Målet med de kvantitative metoder Forskellige typer kvantitative metoder Styrker og svagheder Repræsentativitet og udtræksperioder Det gode spørgeskema

Læs mere

Guide til lektielæsning

Guide til lektielæsning Guide til lektielæsning Gefions lærere har udarbejdet denne guide om lektielæsning. Den henvender sig til alle Gefions elever og er relevant for alle fag. Faglig læsning (=lektielæsning) 5- trinsmodellen

Læs mere

Resultatet af den kommunale test i matematik

Resultatet af den kommunale test i matematik Resultatet af den kommunale test i matematik Egedal Kommune 2012 Udarbejdet af Merete Hersløv Brodersen Pædagogisk medarbejder i matematik Indholdsfortegnelse: Indledning... 3 Resultaterne for hele Egedal

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Forår 2015 414 Københavns VUC Hf Matematik C Pia Hald ph@kvuc.dk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Der skal være en hensigt med teksten - om tilrettelæggelse og evaluering af elevers skriveproces

Der skal være en hensigt med teksten - om tilrettelæggelse og evaluering af elevers skriveproces Der skal være en hensigt med teksten - om tilrettelæggelse og evaluering af elevers skriveproces Af Bodil Nielsen, Lektor, ph.d., UCC Det er vigtigt at kunne skrive, så man bliver forstået også af læsere,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj- juni, 14-15 Horsens HF & VUC HF 2- årigt Matematik

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Vi har behov for en diagnose

Vi har behov for en diagnose Vi har behov for en diagnose Henrik Skovhus, konsulent ved Nordjysk Læse og Matematik Center hen@vuc.nordjylland.dk I artiklen beskrives et udviklingsprojekt i region Nordjylland, og der argumenteres for

Læs mere

Numeriske metoder. Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn. Side 1 af 15

Numeriske metoder. Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn. Side 1 af 15 Numeriske metoder Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn Side 1 af 15 Indholdsfortegnelse Matematik forklaring... 3 Lineær regression... 3 Numerisk differentiation...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Lyngby Hf Matematik C Ashuak Jakob France

Læs mere

Årsplan matematik 6.klasse - skoleår 13/14- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 6.klasse - skoleår 13/14- Ida Skov Andersen Med ret til ændringer og justeringer BASIS: Klassen består af 22 elever og der er afsat 5 ugentlige timer til faget. Grundbog: Vi vil arbejde ud fra Matematrix 6, arbejds- og grundbog, tilhørende kopisider + CD-rom, REMA og andre relevante

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Handelsskolen Silkeborg Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik B Frede

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

Lærervejledning. Matematik i Hasle Bakker 4.-6. klasse

Lærervejledning. Matematik i Hasle Bakker 4.-6. klasse Lærervejledning Matematik i Hasle Bakker 4.-6. klasse Lærervejledning I Matematik for 4.-6. klasse sendes eleverne gruppevis ud i for at løse matematikopgaver med direkte afsæt i både natur og menneskeskabte

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin maj-juni 10/11 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold stx Matematik C Trille Hertz Quist 1.c mac Oversigt over gennemførte undervisningsforløb

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Introduktion til IBSE-didaktikken

Introduktion til IBSE-didaktikken Introduktion til IBSE-didaktikken Martin Krabbe Sillasen, Læreruddannelsen i Silkeborg, VIA UC IBSE-didaktikken tager afsæt i den opfattelse, at eleverne skal forstå, hvad det er de lærer, og ikke bare

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Niels Just Mikkelsen mac3 Oversigt over gennemførte undervisningsforløb Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 5. 6. semester efterår 2013-forår 2014 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e)

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted Mini SRP Afkøling Klasse 2.4 Navn: Jacob Pihlkjær Lærere: Jørn Christian Bendtsen og Karl G Bjarnason Roskilde Tekniske Gymnasium SO Matematik A og Informations teknologi B Dato 31/3/2014 Forord Under

Læs mere

1gma_tændstikopgave.docx

1gma_tændstikopgave.docx ulbh 1gma_tændstikopgave.docx En lille simpel opgave med tændstikker Læg 10 tændstikker op på en række som vist Du skal nu danne 5 krydser med de 10 tændstikker, men du skal overholde 3 regler: 1) når

Læs mere

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling Om brugen af matematiske tegn og objekter i en god matematisk fremstilling af Petur Birgir Petersen Et særpræg ved matematik som videnskab er den udstrakte brug af symboler. Det er vigtigt at symbolerne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015. Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Benny Jørgen

Læs mere

Oversigt over gennemførte undervisningsforløb

Oversigt over gennemførte undervisningsforløb Undervisningsbeskrivelse Termin Maj/juni 2015 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer(e) Hold stx Matematik B Janne Skjøth Winde 2.s mab Oversigt over gennemførte undervisningsforløb

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

Kapitel 2: Evaluering af elevernes udbytte af undervisningen

Kapitel 2: Evaluering af elevernes udbytte af undervisningen Kapitel 2: Evaluering af elevernes udbytte af undervisningen På Hindholm Privatskole er evaluering en naturlig del af undervisningen. Den foregår dels løbende og i forskellig form - dels på fastlagte tidspunkter

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik C Michael

Læs mere