t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

Størrelse: px
Starte visningen fra side:

Download "t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25"

Transkript

1 Slide 1/25

2 Indhold Slide 2/25

3 Om undervisningen Hvorfor er vi her? Slide 3/25

4 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling. Slide 3/25

5 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling. Hvad tager vi med herfra? Slide 3/25

6 Hvad er matematik? Hvad er matematik ifølge dig? 1) Hvad er de mest grundlæggende elementer i matematik? 2) Kan man diskutere om = 4? Og hvordan? 3) Er alt hvad matematikken siger sandt? Og hvis ja, hvorfor? Slide 4/25

7 Hvad er matematik? - fortsat Lad os se på definitionen af de naturlige tal N: 0 := har 0 elementer 1 := { } har 1 elementer 2 := {, { }} har 2 elementer 3 := {, { }, {, { }}} har 3 elementer 4 := {, { }, {, { }}, {, { }, {, { }}}} har 4 elementer.. Slide 5/25

8 Hvad er matematik? - fortsat Lad os se på definitionen af de naturlige tal N: 0 := har 0 elementer 1 := { } har 1 elementer 2 := {, { }} har 2 elementer 3 := {, { }, {, { }}} har 3 elementer 4 := {, { }, {, { }}, {, { }, {, { }}}} har 4 elementer.. Definér efterfølgerfunktionen S : N N ved S(x) = x {x} Slide 5/25

9 Hvad er matematik? - fortsat Lad os se på definitionen af de naturlige tal N: 0 := har 0 elementer 1 := { } har 1 elementer 2 := {, { }} har 2 elementer 3 := {, { }, {, { }}} har 3 elementer 4 := {, { }, {, { }}, {, { }, {, { }}}} har 4 elementer.. Definér efterfølgerfunktionen S : N N ved Definér nu addition + : N N N ved S(x) = x {x} n + 0 = n for alle n N n + (m + 1) = (n + m) + 1 for alle n, m N Slide 5/25

10 Opvarmning Hvornår bruger vi tal, og hvornår bruger vi bogstaver? Slide 6/25

11 Opvarmning Hvornår bruger vi tal, og hvornår bruger vi bogstaver? Geometrisk bevis for Pythagoras læresætning: I enhver retvinklet trekant gælder, at summen af kvadraterne på kateterne er lig kvadratet på hypotnusen. Med andre ord a 2 + b 2 = c 2 Slide 6/25

12 Lad os først definere begrebet mængde: Slide 7/25

13 Lad os først definere begrebet mængde: Definition: En mængde A er en samling af objekter. Et objekt a, som findes i A, kaldes et element i A og vi skriver a A (læs: a tilhører A). Slide 7/25

14 Lad os først definere begrebet mængde: Definition: En mængde A er en samling af objekter. Et objekt a, som findes i A, kaldes et element i A og vi skriver a A (læs: a tilhører A). Vi betragter dernæst specielt talmængderne: Slide 7/25

15 Lad os først definere begrebet mængde: Definition: En mængde A er en samling af objekter. Et objekt a, som findes i A, kaldes et element i A og vi skriver a A (læs: a tilhører A). Vi betragter dernæst specielt talmængderne: De naturlige tal N = {1, 2, 3, 4, 5,...} Slide 7/25

16 Lad os først definere begrebet mængde: Definition: En mængde A er en samling af objekter. Et objekt a, som findes i A, kaldes et element i A og vi skriver a A (læs: a tilhører A). Vi betragter dernæst specielt talmængderne: De naturlige tal De hele tal N = {1, 2, 3, 4, 5,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...} Slide 7/25

17 Lad os først definere begrebet mængde: Definition: En mængde A er en samling af objekter. Et objekt a, som findes i A, kaldes et element i A og vi skriver a A (læs: a tilhører A). Vi betragter dernæst specielt talmængderne: De naturlige tal De hele tal De rationale tal N = {1, 2, 3, 4, 5,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...} { a Q = b } a Z, b N To rationale tal a 1 b 1 og a 2 b 2 er ens, hvis der findes n Z så a 1 = n a 2 og b 1 = n b 2. Slide 7/25

18 Lad os først definere begrebet mængde: Definition: En mængde A er en samling af objekter. Et objekt a, som findes i A, kaldes et element i A og vi skriver a A (læs: a tilhører A). Vi betragter dernæst specielt talmængderne: De naturlige tal De hele tal De rationale tal N = {1, 2, 3, 4, 5,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...} { a Q = b } a Z, b N To rationale tal a 1 b 1 og a 2 b 2 er ens, hvis der findes n Z så a 1 = n a 2 og b 1 = n b 2. Findes der tal, som ikke kan skrives som brøker..? Slide 7/25

19 Lad os først definere begrebet mængde: Definition: En mængde A er en samling af objekter. Et objekt a, som findes i A, kaldes et element i A og vi skriver a A (læs: a tilhører A). Vi betragter dernæst specielt talmængderne: De naturlige tal De hele tal De rationale tal N = {1, 2, 3, 4, 5,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...} { a Q = b } a Z, b N To rationale tal a 1 b 1 og a 2 b 2 er ens, hvis der findes n Z så a 1 = n a 2 og b 1 = n b 2. Findes der tal, som ikke kan skrives som brøker..? rationalt tal! Vi viser, at 2 ikke er et Slide 7/25

20 Lad os først definere begrebet mængde: Definition: En mængde A er en samling af objekter. Et objekt a, som findes i A, kaldes et element i A og vi skriver a A (læs: a tilhører A). Vi betragter dernæst specielt talmængderne: De naturlige tal De hele tal De rationale tal N = {1, 2, 3, 4, 5,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...} { a Q = b } a Z, b N To rationale tal a 1 b 1 og a 2 b 2 er ens, hvis der findes n Z så a 1 = n a 2 og b 1 = n b 2. Findes der tal, som ikke kan skrives som brøker..? Vi viser, at 2 ikke er et rationalt tal! De reelle tal R er alle tal, der kan tilnærmes vilkårligt ved en følge af rationale tal. Slide 7/25

21 En brøk er en anvendelig måde at håndtere divisionsstykker på. Lad a, b R med b 0, da skrives en brøk a b Slide 8/25

22 En brøk er en anvendelig måde at håndtere divisionsstykker på. Lad a, b R med b 0, da skrives en brøk a b Vi undersøger først, hvordan addition (+) og subtraktion ( ) udføres i de rationale tal Q. Slide 8/25

23 En brøk er en anvendelig måde at håndtere divisionsstykker på. Lad a, b R med b 0, da skrives en brøk a b Vi undersøger først, hvordan addition (+) og subtraktion ( ) udføres i de rationale tal Q. Eksempel: Betragt følgende eksempel Slide 8/25

24 En brøk er en anvendelig måde at håndtere divisionsstykker på. Lad a, b R med b 0, da skrives en brøk a b Vi undersøger først, hvordan addition (+) og subtraktion ( ) udføres i de rationale tal Q. Eksempel: Betragt følgende eksempel = Slide 8/25

25 En brøk er en anvendelig måde at håndtere divisionsstykker på. Lad a, b R med b 0, da skrives en brøk a b Vi undersøger først, hvordan addition (+) og subtraktion ( ) udføres i de rationale tal Q. Eksempel: Betragt følgende eksempel = = Slide 8/25

26 En brøk er en anvendelig måde at håndtere divisionsstykker på. Lad a, b R med b 0, da skrives en brøk a b Vi undersøger først, hvordan addition (+) og subtraktion ( ) udføres i de rationale tal Q. Eksempel: Betragt følgende eksempel = = = 5 8 Slide 8/25

27 En brøk er en anvendelig måde at håndtere divisionsstykker på. Lad a, b R med b 0, da skrives en brøk a b Vi undersøger først, hvordan addition (+) og subtraktion ( ) udføres i de rationale tal Q. Eksempel: Betragt følgende eksempel = = = 5 8 Eksempel: Betragt følgende eksempel Slide 8/25

28 En brøk er en anvendelig måde at håndtere divisionsstykker på. Lad a, b R med b 0, da skrives en brøk a b Vi undersøger først, hvordan addition (+) og subtraktion ( ) udføres i de rationale tal Q. Eksempel: Betragt følgende eksempel = = = 5 8 Eksempel: Betragt følgende eksempel = Slide 8/25

29 En brøk er en anvendelig måde at håndtere divisionsstykker på. Lad a, b R med b 0, da skrives en brøk a b Vi undersøger først, hvordan addition (+) og subtraktion ( ) udføres i de rationale tal Q. Eksempel: Betragt følgende eksempel = = = 5 8 Eksempel: Betragt følgende eksempel = = Slide 8/25

30 En brøk er en anvendelig måde at håndtere divisionsstykker på. Lad a, b R med b 0, da skrives en brøk a b Vi undersøger først, hvordan addition (+) og subtraktion ( ) udføres i de rationale tal Q. Eksempel: Betragt følgende eksempel = = = 5 8 Eksempel: Betragt følgende eksempel = = = 2 21 Slide 8/25

31 - regneregler Generelt får vi følgende regler for addition (+) og subtraktion ( ) af brøker a b + c ad + bc = d bd hvor a, b, c, d R med b, d 0. og a b c ad bc = d bd Slide 9/25

32 - regneregler Generelt får vi følgende regler for addition (+) og subtraktion ( ) af brøker a b + c ad + bc = d bd hvor a, b, c, d R med b, d 0. Generelt får vi følgende regel for multiplikation ( ) af brøker og a b c ad bc = d bd hvor a, b, c, d R med b, d 0. a b c d = a c b d Slide 9/25

33 - regneregler Generelt får vi følgende regler for addition (+) og subtraktion ( ) af brøker a b + c ad + bc = d bd hvor a, b, c, d R med b, d 0. Generelt får vi følgende regel for multiplikation ( ) af brøker og a b c ad bc = d bd hvor a, b, c, d R med b, d 0. a b c d = a c b d Generelt får vi følgende regel for division (/) af brøker a b c d = a b d c = a d b c hvor a, b, c, d R med b, c, d 0. Slide 9/25

34 - gæt en formel Afgør hvilke af følgende formler er korrekte, og hvilke er falske. I tilfælde af korrekthed skal der argumenteres ud fra de kendte regneregler; i tilfælde af falskhed skal der angives et modeksempel. Lad a, b, c, d R være valgt, så der på intet tidspunkt deles med 0 i det følgende. a) b) c) d) a b c = a c b c a + b + c a + b + d = a a + b b + c d a b c = ac b a b c b c = a e) f) g) h) a b c ad bc = d bd a b c + d = a c b d. a b c = a c b c. a b c + d = a c + b d. Slide 10/25

35 - Opsummering Addition og subtraktion af brøker: Lad a, b, c, d R med b, d 0. Da haves a b + c ad + bc = d bd og a b c ad bc = d bd Slide 11/25

36 - Opsummering Addition og subtraktion af brøker: Lad a, b, c, d R med b, d 0. Da haves a b + c ad + bc = d bd og a b c ad bc = d bd Multiplikation af brøker: Lad a, b, c, d R med b, d 0. Da haves a b c d = a c b d Slide 11/25

37 - Opsummering Addition og subtraktion af brøker: Lad a, b, c, d R med b, d 0. Da haves a b + c ad + bc = d bd og a b c ad bc = d bd Multiplikation af brøker: Lad a, b, c, d R med b, d 0. Da haves a b c d = a c b d Division af brøker: Lad a, b, c, d R med b, c, d 0. Da haves a b c d = a b d c = a d b c Slide 11/25

38 - Opsummering Addition og subtraktion af brøker: Lad a, b, c, d R med b, d 0. Da haves a b + c ad + bc = d bd og a b c ad bc = d bd Multiplikation af brøker: Lad a, b, c, d R med b, d 0. Da haves a b c d = a c b d Division af brøker: Lad a, b, c, d R med b, c, d 0. Da haves a b c d = a b d c = a d b c Pas på med at finde på dine egne regneregler! Alle opgaver kan løses ud fra de 4 ovenstående! Slide 11/25

39 Lad n N være et naturligt tal, mens a R er reel. Vi definerer da n gange { }} { a n = a a... a, a 0 = 1, a n 1 = a a... a } {{ } n gange Slide 12/25

40 - regneregler Lad i det følgende a, b R, mens m, n N. Slide 13/25

41 - regneregler Lad i det følgende a, b R, mens m, n N. Regel 1: Produktet af to potensudtryk med samme grundtal er bestemt ved a n a m = a n+m Slide 13/25

42 - regneregler Lad i det følgende a, b R, mens m, n N. Regel 1: Produktet af to potensudtryk med samme grundtal er bestemt ved n gange m gange n+m gange { }} {{ }} {{ }} { a n a m = a a... a a a... a = a a... a = a n+m Slide 13/25

43 - regneregler Lad i det følgende a, b R, mens m, n N. Regel 1: Produktet af to potensudtryk med samme grundtal er bestemt ved n gange m gange n+m gange { }} {{ }} {{ }} { a n a m = a a... a a a... a = a a... a = a n+m Regel 2: Division af to potensudtryk med samme grundtal er bestemt ved a n a m = an m Slide 13/25

44 - regneregler Lad i det følgende a, b R, mens m, n N. Regel 1: Produktet af to potensudtryk med samme grundtal er bestemt ved n gange m gange n+m gange { }} {{ }} {{ }} { a n a m = a a... a a a... a = a a... a = a n+m Regel 2: Division af to potensudtryk med samme grundtal er bestemt ved n gange { }} { a n n-m gange a m = a a... a { }} { = a a... a = a n m a a... a } {{ } m gange Slide 13/25

45 - regneregler Lad i det følgende a, b R, mens m, n N. Regel 1: Produktet af to potensudtryk med samme grundtal er bestemt ved n gange m gange n+m gange { }} {{ }} {{ }} { a n a m = a a... a a a... a = a a... a = a n+m Regel 2: Division af to potensudtryk med samme grundtal er bestemt ved n gange { }} { a n n-m gange a m = a a... a { }} { = a a... a = a n m a a... a } {{ } m gange Regel 3: Produktet af to potensudtryk med forskellige grundtal, men samme eksponent, er bestemt ved a n b n = (a b) n Slide 13/25

46 - regneregler Lad i det følgende a, b R, mens m, n N. Regel 1: Produktet af to potensudtryk med samme grundtal er bestemt ved n gange m gange n+m gange { }} {{ }} {{ }} { a n a m = a a... a a a... a = a a... a = a n+m Regel 2: Division af to potensudtryk med samme grundtal er bestemt ved n gange { }} { a n n-m gange a m = a a... a { }} { = a a... a = a n m a a... a } {{ } m gange Regel 3: Produktet af to potensudtryk med forskellige grundtal, men samme eksponent, er bestemt ved n gange n gange n gange { }} {{ }} {{ }} { a n b n = a a... a b b... b = (a b) (a b)... (a b) = (a b) n Slide 13/25

47 - regneregler fort. Lad i det følgende a, b R, mens m, n N. Slide 14/25

48 - regneregler fort. Lad i det følgende a, b R, mens m, n N. Regel 4: Division af to potensudtryk med forskellige grundtal, men samme eksponent, er bestemt ved a n ( a ) n b n = b Slide 14/25

49 - regneregler fort. Lad i det følgende a, b R, mens m, n N. Regel 4: Division af to potensudtryk med forskellige grundtal, men samme eksponent, er bestemt ved n gange n gange { }} {{ }} { a n b n = a a... a a = b b... b b a b... a ( a ) n b = b } {{ } n gange Slide 14/25

50 - regneregler fort. Lad i det følgende a, b R, mens m, n N. Regel 4: Division af to potensudtryk med forskellige grundtal, men samme eksponent, er bestemt ved n gange n gange { }} {{ }} { a n b n = a a... a a = b b... b b a b... a ( a ) n b = b } {{ } n gange Regel 5: En potens af et potensudtryk er bestemt ved (a n ) m = a mn Slide 14/25

51 - regneregler fort. Lad i det følgende a, b R, mens m, n N. Regel 4: Division af to potensudtryk med forskellige grundtal, men samme eksponent, er bestemt ved n gange n gange { }} {{ }} { a n b n = a a... a a = b b... b b a b... a ( a ) n b = b } {{ } n gange Regel 5: En potens af et potensudtryk er bestemt ved n gange (a n ) m { }} { = a a... a mn gange m { }} { = a a... a = a mn m gange { }} { n gange n gange n gange { }} {{ }} {{ }} { = a a... a a a... a... a a... a Slide 14/25

52 - regneregler fort. Lad i det følgende a R +, mens m, n N. Slide 15/25

53 - regneregler fort. Lad i det følgende a R +, mens m, n N. Definition: Vi definerer eksponenter med rationale eksponenter som følger a m/n = n a m Ovenstående regler for heltalige eksponenter gælder ligeledes for rationale (og reelle) eksponenter. Slide 15/25

54 - regneregler fort. Lad i det følgende a R +, mens m, n N. Definition: Vi definerer eksponenter med rationale eksponenter som følger a m/n = n a m Ovenstående regler for heltalige eksponenter gælder ligeledes for rationale (og reelle) eksponenter. Regel 5 (for rationale eksponenter): Lad os vise regel 5 for rationale eksponenter p, q Q. Vi bemærker først, at der findes r, s, t Z, så p = r/s og q = s/t. Da fås (a p ) q = a p q Slide 15/25

55 - regneregler fort. Lad i det følgende a R +, mens m, n N. Definition: Vi definerer eksponenter med rationale eksponenter som følger a m/n = n a m Ovenstående regler for heltalige eksponenter gælder ligeledes for rationale (og reelle) eksponenter. Regel 5 (for rationale eksponenter): Lad os vise regel 5 for rationale eksponenter p, q Q. Vi bemærker først, at der findes r, s, t Z, så p = r/s og q = s/t. Da fås (a p ) q = ( a r/s) s/t ( = ) t s s a r t = a r = a r/t = a s r st = a p q Slide 15/25

56 - gæt en formel Afgør hvilke af følgende formler er korrekte, og hvilke er falske. I tilfælde af korrekthed skal der argumenteres ud fra de kendte regneregler; i tilfælde af falskhed skal der angives et modeksempel. Lad a, b R + og lad m, n N. a) a n + b m = (a + b) m b) a n a m = a m n a n b m c) a n = b m e) ( a m/n) n/k = k a m f) a n a n = 1. g) a n = a n. d) 1 = an a n h) n a 2n = a 2. Slide 16/25

57 - opsummering Lad i det følgende a, b R +, mens m, n N. Vi definerer da n gange { }} { a n = a a... a, a 0 = 1, a n 1 = a a... a } {{ } n gange Slide 17/25

58 - opsummering Lad i det følgende a, b R +, mens m, n N. Vi definerer da n gange { }} { a n = a a... a, a 0 = 1, a n 1 = a a... a } {{ } n gange Regel 1: Produktet af to potensudtryk med samme grundtal a n a m = a n+m Slide 17/25

59 - opsummering Lad i det følgende a, b R +, mens m, n N. Vi definerer da n gange { }} { a n = a a... a, a 0 = 1, a n 1 = a a... a } {{ } n gange Regel 1: Produktet af to potensudtryk med samme grundtal a n a m = a n+m Regel 2: Division af to potensudtryk med samme grundtal a n a m = an m Slide 17/25

60 - opsummering Lad i det følgende a, b R +, mens m, n N. Vi definerer da n gange { }} { a n = a a... a, a 0 = 1, a n 1 = a a... a } {{ } n gange Regel 1: Produktet af to potensudtryk med samme grundtal a n a m = a n+m Regel 2: Division af to potensudtryk med samme grundtal a n a m = an m Regel 3: Produktet af to potensudtryk med forskellige grundtal, men samme eksponent a n b n = (a b) n Slide 17/25

61 - opsummering Lad i det følgende a, b R +, mens m, n N. Vi definerer da n gange { }} { a n = a a... a, a 0 = 1, a n 1 = a a... a } {{ } n gange Regel 1: Produktet af to potensudtryk med samme grundtal a n a m = a n+m Regel 2: Division af to potensudtryk med samme grundtal a n a m = an m Regel 3: Produktet af to potensudtryk med forskellige grundtal, men samme eksponent a n b n = (a b) n Regel 4: Division af to potensudtryk med forskellige grundtal, men samme eksponent a n ( a ) n b n = b Slide 17/25

62 - opsummering Lad i det følgende a, b R +, mens m, n N. Vi definerer da n gange { }} { a n = a a... a, a 0 = 1, a n 1 = a a... a } {{ } n gange Regel 1: Produktet af to potensudtryk med samme grundtal a n a m = a n+m Regel 2: Division af to potensudtryk med samme grundtal a n a m = an m Regel 3: Produktet af to potensudtryk med forskellige grundtal, men samme eksponent a n b n = (a b) n Regel 4: Division af to potensudtryk med forskellige grundtal, men samme eksponent a n ( a ) n b n = b Regel 5: En potens af et potensudtryk (a n ) m = a m n Slide 17/25

63 - opsummering Lad i det følgende a, b R +, mens m, n N. Vi definerer da n gange { }} { a n = a a... a, a 0 = 1, a n 1 = a a... a } {{ } n gange Regel 1: Produktet af to potensudtryk med samme grundtal a n a m = a n+m Regel 2: Division af to potensudtryk med samme grundtal a n a m = an m Regel 3: Produktet af to potensudtryk med forskellige grundtal, men samme eksponent a n b n = (a b) n Regel 4: Division af to potensudtryk med forskellige grundtal, men samme eksponent a n ( a ) n b n = b Regel 5: En potens af et potensudtryk (a n ) m = a m n Definition: Vi definerer potensudtryk med rationale eksponenter som følger Slide 17/25 a m/n = n a m

64 Lad a, b R være givet. Slide 18/25

65 Lad a, b R være givet. Første kvadratsætning: (a + b) 2 = a 2 + 2ab + b 2 Slide 18/25

66 Lad a, b R være givet. Første kvadratsætning: Anden kvadratsætning: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 Slide 18/25

67 Lad a, b R være givet. Første kvadratsætning: Anden kvadratsætning: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 Tredje kvadratsætning: (a + b)(a b) = a 2 b 2 Slide 18/25

68 Lad a, b R være givet. Første kvadratsætning: (a + b) 2 = a 2 + 2ab + b 2 Anden kvadratsætning: (a b) 2 = a 2 2ab + b 2 Tredje kvadratsætning: (a + b)(a b) = a 2 b 2 Bemærk den trivielle betragtning, at kvadratet på et vilkårligt reelt tal er ikke-negativt. Vi kan bruge dette til at vise a + b ab 2 for alle positive tal a, b R +. Slide 18/25

69 En ligning er et prædikat med én eller flere frie variable (typisk x, y, z,...) Slide 19/25

70 En ligning er et prædikat med én eller flere frie variable (typisk x, y, z,...) Målet med ligningsløsning er at bestemme konkrete værdier af de frie variable, så ligningen er opfyldt ved indsættelse af netop disse værdier. Slide 19/25

71 En ligning er et prædikat med én eller flere frie variable (typisk x, y, z,...) Målet med ligningsløsning er at bestemme konkrete værdier af de frie variable, så ligningen er opfyldt ved indsættelse af netop disse værdier. Vi taler om grundmængden; hvilke værdier må x antage i følgende ligninger 1 x = x og x + 5 x + 2 = 6 2x + 4 Slide 19/25

72 En ligning er et prædikat med én eller flere frie variable (typisk x, y, z,...) Målet med ligningsløsning er at bestemme konkrete værdier af de frie variable, så ligningen er opfyldt ved indsættelse af netop disse værdier. Vi taler om grundmængden; hvilke værdier må x antage i følgende ligninger 1 x = x og x + 5 x + 2 = 6 2x + 4 Den grundlæggende teknik er identiske omskrivninger på begge sider af lighedstegnet. Slide 19/25

73 En ligning er et prædikat med én eller flere frie variable (typisk x, y, z,...) Målet med ligningsløsning er at bestemme konkrete værdier af de frie variable, så ligningen er opfyldt ved indsættelse af netop disse værdier. Vi taler om grundmængden; hvilke værdier må x antage i følgende ligninger 1 x = x og x + 5 x + 2 = 6 2x + 4 Den grundlæggende teknik er identiske omskrivninger på begge sider af lighedstegnet. Lidt flere eksempler: a) Betragt ligningen b) Betragt ligningen c) Bestem a, b, c, d R, så x = x = 4 x + 2 ax + b = cx + d har én løsning, ingen løsning og uendeligt mange løsninger. Slide 19/25

74 - et eksempel Vi betragter et mere avanceret eksempel. Slide 20/25

75 - et eksempel Vi betragter et mere avanceret eksempel. Eksempel: Betragt ligningen x 4x 1 = 1 2 Slide 20/25

76 - et eksempel Vi betragter et mere avanceret eksempel. Eksempel: Betragt ligningen Hvilke værdier kan x antage? x 4x 1 = 1 2 Slide 20/25

77 - et eksempel Vi betragter et mere avanceret eksempel. Eksempel: Betragt ligningen Hvilke værdier kan x antage? x 4x 1 = 1 2 4x 1 > 0 x > 1 4 Slide 20/25

78 - et eksempel Vi betragter et mere avanceret eksempel. Eksempel: Betragt ligningen Hvilke værdier kan x antage? x 4x 1 = 1 2 Vi får følgende omskrivninger 4x 1 > 0 x > 1 4 x 4x 1 = 1 2 x2 4x 1 = 1 4 x2 = 1 (4x 1) 4 4x 2 = 4x 1 4x 2 4x + 1 = 0 (2x 1) 2 = 0 2x 1 = 0 2x = 1 x = 1 2 Slide 20/25

79 - et eksempel Vi betragter et mere avanceret eksempel. Eksempel: Betragt ligningen Hvilke værdier kan x antage? x 4x 1 = 1 2 Vi får følgende omskrivninger 4x 1 > 0 x > 1 4 x 4x 1 = 1 2 x2 4x 1 = 1 4 x2 = 1 (4x 1) 4 4x 2 = 4x 1 4x 2 4x + 1 = 0 (2x 1) 2 = 0 2x 1 = 0 2x = 1 x = 1 2 Vi bemærker, at x = 1 2 > 1 4, hvorfor vi kan acceptere løsningen. Slide 20/25

80 kan betragtes som resktriktioner af de frie variable x, y, z,... Betragt følgende to ligninger y = 2x + 3 og y = 3 2 x + 2 Vi har to metoder til at bestemme værdier af de frie variable, så ligningerne er opfyldt. Slide 21/25

81 kan betragtes som resktriktioner af de frie variable x, y, z,... Betragt følgende to ligninger y = 2x + 3 og y = 3 2 x + 2 Vi har to metoder til at bestemme værdier af de frie variable, så ligningerne er opfyldt. Vi skal se nærmere på to løsningsstrategier; grafisk løsning og substitutionsmetoden. Slide 21/25

82 kan betragtes som resktriktioner af de frie variable x, y, z,... Betragt følgende to ligninger y = 2x + 3 og y = 3 2 x + 2 Vi har to metoder til at bestemme værdier af de frie variable, så ligningerne er opfyldt. Vi skal se nærmere på to løsningsstrategier; grafisk løsning og substitutionsmetoden. Vi undersøger flere eksempler a) Betragt ligningssystemet 4y x 1 = 10 2x + 2y = 18 b) Betragt ligningssystemet 2x 3 y = 1 3 3x y 3 = 2y Slide 21/25

83 En andengradsligning er en ligning på formen ax 2 + bx + c = 0, a 0 Vi søger en generel metode til at bestemme en værdi for x, så ligningen er opfyldt. Slide 22/25

84 En andengradsligning er en ligning på formen ax 2 + bx + c = 0, a 0 Vi søger en generel metode til at bestemme en værdi for x, så ligningen er opfyldt. Vi husker at ligningen havde løsningen x = x 2 4x + 1 = 0 Slide 22/25

85 En andengradsligning er en ligning på formen ax 2 + bx + c = 0, a 0 Vi søger en generel metode til at bestemme en værdi for x, så ligningen er opfyldt. Vi husker at ligningen havde løsningen x = x 2 4x + 1 = 0 Sætning (light-udgaven): Betragt ligningen ax 2 + bx = 0, a 0 Da har vi løsningerne x = 0 og x = b a Slide 22/25

86 Bevis for andengradsligningers løsningsformel Sætning: Betragt ligningen ax 2 + bx + c = 0, a 0 Da har vi løsningerne såfremt b 2 4ac 0. x = b + b 2 4ac 2a og x = b b 2 4ac 2a Slide 23/25

87 Bevis for andengradsligningers løsningsformel Sætning: Betragt ligningen ax 2 + bx + c = 0, a 0 Da har vi løsningerne såfremt b 2 4ac 0. x = b + b 2 4ac 2a og x = b b 2 4ac 2a Bevis: Antag b 2 4ac 0. Vi får da følgende omskrivninger ax 2 + bx + c = 0 4a 2 x 2 + 4abx + 4ac = 0 4a 2 x 2 + 4abx + b 2 = b 2 4ac (2ax) ax b + b 2 = b 2 4ac (2ax + b) 2 = b 2 4ac Slide 23/25

88 Bevis for andengradsligningers løsningsformel Sætning: Betragt ligningen ax 2 + bx + c = 0, a 0 Da har vi løsningerne såfremt b 2 4ac 0. x = b + b 2 4ac 2a og x = b b 2 4ac 2a Bevis: Antag b 2 4ac 0. Vi får da følgende omskrivninger ax 2 + bx + c = 0 4a 2 x 2 + 4abx + 4ac = 0 4a 2 x 2 + 4abx + b 2 = b 2 4ac (2ax) ax b + b 2 = b 2 4ac (2ax + b) 2 = b 2 4ac 2ax + b = ± b 2 4ac x = b ± b 2 4ac 2a Slide 23/25

89 Teoretisk eksempel: Betragt ligningen k 2 x 2 + 2(k + 1)x + 4 = 0 Bestem k, så ligningen har hhv. 0, 1 og 2 løsninger. Slide 24/25

90 Teoretisk eksempel: Betragt ligningen k 2 x 2 + 2(k + 1)x + 4 = 0 Bestem k, så ligningen har hhv. 0, 1 og 2 løsninger. a) Betragt ligningen b) Betragt ligningen c) Betragt ligningen 2x 2 + 8x + 6 = 0 x 2 + 2x 3 = 0 4x 2 = x 2 Slide 24/25

91 - substitution Somme tider kan et problem omarrangeres, så det ligner en almindelig andengradsligning - vi benævner dette princip substitution. Slide 25/25

92 - substitution Somme tider kan et problem omarrangeres, så det ligner en almindelig andengradsligning - vi benævner dette princip substitution. Betragt ligningerne x 4 x 2 12 = 0, og 2x 4 5x = 0 Slide 25/25

93 - substitution Somme tider kan et problem omarrangeres, så det ligner en almindelig andengradsligning - vi benævner dette princip substitution. Betragt ligningerne Betragt ligningerne x 4 x 2 12 = 0, og 2x 4 5x = 0 x + 5 x 36 = 0, og 2x x + 2 = 0 Slide 25/25

94 - substitution Somme tider kan et problem omarrangeres, så det ligner en almindelig andengradsligning - vi benævner dette princip substitution. Betragt ligningerne Betragt ligningerne x 4 x 2 12 = 0, og 2x 4 5x = 0 x + 5 x 36 = 0, og 2x x + 2 = 0 Betragt ligningen 2x 2 22x = 0 Slide 25/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Algebra med Bea Bea Kaae Smit nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende regler 7 3.1 Tal..........................

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Diskriminantformlen. Frank Nasser. 11. juli 2011

Diskriminantformlen. Frank Nasser. 11. juli 2011 Diskriminantformlen Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 13. november 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3

Læs mere

TALTEORI Ligninger og det der ligner.

TALTEORI Ligninger og det der ligner. Ligninger og det der ligner, december 006, Kirsten Rosenkilde 1 TALTEORI Ligninger og det der ligner. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne Terps og Peter

Læs mere

Løsning til aflevering uge 11

Løsning til aflevering uge 11 Løsning til aflevering uge 11 100011/nm Opg.1 Beregninger på Foucaults pendul. Først en skitse A B c l a b l d C l c l E h d D 0.m Vandrette udsving a m a) Længden af pendulet kan beregnes ved at isolere

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Grundlæggende regneteknik

Grundlæggende regneteknik Grundlæggende regneteknik Anne Ryelund, Mads Friis og Anders Friis 14. oktober 2014 Indhold Forord Indledning iii iv 1 Regning med brøker 1 1.1 Faktorisering i primtal.............................. 3 1.2

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Henrik S. Hansen, Sct. Knuds Gymnasium Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Grundlæggende matematiske begreber del 2 Algebraiske udtryk Ligninger Løsning af ligninger med én variabel

Grundlæggende matematiske begreber del 2 Algebraiske udtryk Ligninger Løsning af ligninger med én variabel Grundlæggende matematiske begreber del Algebraiske udtryk Ligninger Løsning af ligninger med én variabel x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse ALGEBRAISKE UDTRYK... 3 Regnearternes

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere

Rettevejledning til Georg Mohr-Konkurrencen runde

Rettevejledning til Georg Mohr-Konkurrencen runde Rettevejledning til Georg Mohr-Konkurrencen 2006 2. runde Det som skal vurderes i bedømmelsen af en opgave, er om deltageren har formået at analysere problemstillingen, kombinere de givne oplysninger til

Læs mere

Analytisk plangeometri 1

Analytisk plangeometri 1 1 Analytisk plangeometri 1 Kære 1. x, Vi begynder dag vores forløb om analytisk plangeometri. Dette bliver en udvidelse af ting i allerede kender til, så noget ved I i forvejen, mens andet bliver helt

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Komplekse tal og algebraens fundamentalsætning.

Komplekse tal og algebraens fundamentalsætning. Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes

Læs mere

Oversigt over undervisningen i matematik 1y 07/08

Oversigt over undervisningen i matematik 1y 07/08 Oversigt over undervisningen i matematik 1y 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 37, 2010 Produceret af Hans J. Munkholm 2009 bearbejdet af Jessica Carter 2010 1 Hvad er et komplekst tal? Hvordan regner man med komplekse tal? Man kan betragte udvidelsen

Læs mere

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring Matematik - et grundlæggende kursus Dennis Cordsen Pipenbring 22. april 2006 2 Indhold I Matematik C 9 1 Grundlæggende algebra 11 1.1 Sprog................................ 11 1.2 Tal.................................

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå Polynomier Kort gennemgang af polynomier og deres asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Matematiske metoder - Opgaver

Matematiske metoder - Opgaver Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Her er der en kort introduktion til forskellige teknikker efterfulgt af opgaver hvor man kan

Læs mere

SCT. KNUDS GYMNASIUM KOMPLEKSE TAL. Henrik S. Hansen, version 1.5

SCT. KNUDS GYMNASIUM KOMPLEKSE TAL. Henrik S. Hansen, version 1.5 SCT. KNUDS GYMNASIUM KOMPLEKSE TAL Henrik S. Hansen, version 1.5 Indhold Tallenes udvikling... 2 De naturlige tal... 2 De hele tal... 2 De rationale tal... 3 De reelle tal... 3 De komplekse tal... 4 Indledning...

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til. Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Omskrivningsregler. Frank Nasser. 10. december 2011

Omskrivningsregler. Frank Nasser. 10. december 2011 Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt brikkerne til regning & matematik tal og algebra F+E+D preben bernitt 1 brikkerne. Tal og algebra E+D 2. udgave som E-bog ISBN: 978-87-92488-35-0 2010 by bernitt-matematik.dk Kopiering af denne bog er

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2011 Københavns

Læs mere

Formelsamling C-niveau

Formelsamling C-niveau Formelsamling C-niveau Maj 2017 Indhold C-niveau 1 Tal og Regnearter 3 1.1 Regnearternes hierarki................................... 3 1.1.1 Regneregler..................................... 3 1.2 Parenteser..........................................

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste at mestre for at kunne begå sig i (samt

Læs mere

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36 Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er

Læs mere

Andengradsligninger. Frank Nasser. 11. juli 2011

Andengradsligninger. Frank Nasser. 11. juli 2011 Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Oversigt over undervisningen i matematik 1m 07/08

Oversigt over undervisningen i matematik 1m 07/08 Oversigt over undervisningen i matematik 1m 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side1 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns Tekniske Skole, HTX Vibenhus Uddannelse

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Matematik B Klasse 1.4 Hjemmeopaver

Matematik B Klasse 1.4 Hjemmeopaver Matematik B Klasse 1.4 Hjemmeopaver 1) opgave 336, side 23 Opgaven går ud på at jeg skal finde ud af hvor gamle børnene højst kan være, når forældrene tilsammen er 65 år og de skal være 40 år ældre end

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

Matricer og Matrixalgebra

Matricer og Matrixalgebra enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,

Læs mere

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Komplekse tal. enote 29. 29.1 Indledning

Komplekse tal. enote 29. 29.1 Indledning enote 29 1 enote 29 Komplekse tal I denne enote introduceres og undersøges talmængden C, de komplekse tal. Da C betragtes som en udvidelse af R forudsætter enoten almindeligt kendskab til de reelle tal,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Termin hvori undervisningen afsluttes: maj-juni 2013 Københavns Tekniske Skole, HTX Vibenhus Uddannelse

Læs mere

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Opgave A Sæt de overstående symboler ind i en matematisk sammenhæng der gør dem forståelige. Det kan være som en sætning eller med tal og bogstaver

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

Ligningsløsning som det at løse gåder

Ligningsløsning som det at løse gåder Ligningsløsning som det at løse gåder Nedenstående er et skærmklip fra en TI-Nspirefil. Vi ser at tre kræmmerhuse og fem bolsjer balancerer med to kræmmerhuse og 10 bolsjer. Spørgsmålet er hvor mange bolsjer,

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Komplekse tal og rækker

Komplekse tal og rækker Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

tal og algebra F+E+D brikkerne til regning & matematik preben bernitt

tal og algebra F+E+D brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik tal og algebra F+E+D preben bernitt brikkerne til regning & matematik tal og algebra E+D ISBN: 978-87-92488-35-0 2. udgave som E-bog 2012 by bernitt-matematik.dk Denne

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 stx MAT A1 stx 005-007 Jens Carstensen, Jesper Frandsen, Jens Studsgaard og Systime A/S Kopiering fra denne bog må kun finde sted i overensstemmelse

Læs mere

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Oversigt [S] App. I, App. H.1 Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Test komplekse tal Komplekse rødder Kompleks eksponentialfunktion

Læs mere

Undervisningsplan for matematik

Undervisningsplan for matematik Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33 Indhold Bind 1 del I: Eksperimenterende geometri og måling 1 Eksperimentel geometri 3 Hvorfor eksperimenterende undersøgelse? 4 Eksperimentel undersøgelse: På opdagelse med sømbrættet 6 Geometriske konstruktioner

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin hvori undervisningen afsluttes: maj-juni 2013

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin hvori undervisningen afsluttes: maj-juni 2013 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Termin hvori undervisningen afsluttes: maj-juni 2013 Marie Kruses Skole Uddannelse Fag og niveau

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Lærervejledning Matematik 1-2-3 på Smartboard

Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning Matematik 1-2-3 på Smartboard Lærervejledning til Matematik 1-2-3 på Smartboard Materialet består af 33 færdige undervisningsforløb til brug i matematikundervisningen i overbygningen. Undervisningsforløbene

Læs mere