Morten Frydenberg Biostatistik version dato:

Størrelse: px
Starte visningen fra side:

Download "Morten Frydenberg Biostatistik version dato:"

Transkript

1 Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder, aritet og kalenderår - Model - Tolkning af arameterne - Estimater - Antagelser Kommentarer til logistisk regression Tye og tye 2 fejl På trods af det ikke at forkaste en hyotese ikke betyder at man skal accetere den, så vil jeg i det følgende brug betegnelsen at accetere hyotesen for ikke at forkaste hyotesen. For en given statistiske hyotese er der således to muligheder: Den kan forkastes eller den kan acceteres. Man kan så begå to forskellige fejl: Tye : Tye 2: Forkaste hyotesen selv om den er sand. Accetere hyotesen selv om den er falsk. Det kan være interessant, i lanlægningsfasen, at kende sandsynligheden for at begå de to fejl. 2 Tye og tye 2 fejl Signifikansniveau: Den grænse man sætter for den største -værdi, der leder til, at man forkaster hyotesen. Som regel sættes signifikansniveauet til 5%. Dvs. hyotesen forkastes, hvis -værdien er mindre end 5%. Hvis hyotesen er sand: Sandsynligheden for tye fejl =sandsynligheden for at forkaste hyotese =signifikansniveauet Da -værdien jo beregnes under antagelsen om at hyotesen er sand. M.a.o. sandsynligheden for tye fejl er kendt og lig signifikansniveauet (ofte =5%). 3 Tye 2 fejl: At accetere hyotesen, selvom den er falsk. Hvad er sandsynligheden for tye 2 fejl? Afhænger af: Hvad der så er sandt! Informationsmængden! Sandheden langt fra hyotesen lille ss. for tye 2 fejl Sandheden tæt å hyotesen stor ss. for tye 2 fejl Meget information/data Lidt information/data Tye og tye 2 fejl lille ss. for tye 2 fejl stor ss. for tye 2 fejl Statistisk styrke = - sandsynlighed for tye 2 fejl (Power) = sandsynlighed for at forkaste den falske hyotese 4 Eidemiologi og Biostatistik: Uge 2 Mandag

2 Planlægning af et follow-u studie: Antagelser: Styrkeovervejelser i forbindelse med lanlægning af et studie KIP blandt ikke eksonerede = %. Sand relativ risiko = eksonerede og 500 ikke eksonerede. Når data er indsamlet vil man teste hyotese RR= og forkaste hvis -værdien er mindre end 5%. Man kan beregne sandsynligheden for at få data, der leder til accet af dette (Tye 2 fejl) = 39%, dvs. en styrke å 6%. Mao. lille chance for at få bekræftet, at der en sammenhæng. Studiet er ikke besværet værd! 5 Power Styrkeovervejelser i forbindelse med lanlægning af et studie Øges deltagerantallet til 2*3000 bliver chancen for tye 2 fejl reduceret til %, dvs. styrken er 89%. Styrken som funktion af gruestørrelsen : α = π = 0.00 π 2 = Samle Size er Grou 6 Afhænger af designet. Statistisk styrke Nogle kommentarer Afhænger af statistisk metode. Relevant i lanlægningsfasen. Når data er indsamlet er bredden af sikkerhedsintervaller udtryk for informationsmængden. Rygning og for tidlig (ræterm) fødsel 95%-CI n ræterm risk se low high All 0, % 0.9% 3.43% 4.6% Ikke ryger 7, % 0.20% 2.82% 3.6% Ryger 2, % 0.44% 4.62% 6.33% 95%-CI estimate low high RD 2.26%.32% 3.20% RR OR Vi vil her fokusere å associationsmålet OR. Vi vil også antage, at vi ønsker at estimere effekten af rygning korrigere for kvindens alder (kontinuert, 5 til 46 år) kalenderår (993,994,995) og om hvorvidt hun har født før (ja/nej). 7 8 Eidemiologi og Biostatistik: Uge 2 Mandag

3 Rygning og for tidlig (ræterm) fødsel korrektion for kalenderår Vi har tidligere set hvordan man kan korrigere for en kategorisk variabel ved en vægtet analyse:. Beregn OR, ln(or) og se(ln(or) indenfor hvert strata 2. Beregn det vægtede gennemsnit af ln(or) ved brug af vægtene /se(ln(or)) 2 3. Find se for ln(or) ved sqrt(sum af vægtene) 4. Transformere estimatet og CI tilbage vha ex: OR 95%-CI Year estimate low high ln(or) se(ln or) w=/se^2 w*ln(or) sum %-CI Adjusted estimate se low high estimate = ln(or) or se = Rygning og for tidlig (ræterm) fødsel korrektion for kalenderår, aritet og alder Betydning af rygning korrigeret for kalenderår: OR.76(.42;2.7) Men vi vil også korrigere for aritet og alder! Dette kunne vi i rinciet gøre ved at dele alder ind i nogle gruer fx 0, som sammen med kalenderår og aritet vil det så give os 3*0*2=60 strata i en stratificeret analyse. En anden mulighed er at korrigere vha. af en statistik model lignende de regressionsmodeller vi så å i sidste uge. Men denne gang er vores outcome dikotomt/binært, nemlig ræterm fødsels ja/nej. Regressionmodellerne fra sidste forudsatte normal fordelte afvigelser, så de kan ikke bruges her. Løsningen hedder her logistisk regression 0 Sandsynlighed, odds og oddsratio Hvis vi lader betegne sandsynligheder for event (her ræterm fødsel), så er odds givet ved : odds odds = = + odds Og hvis vi kan sammenligner odds for to forskellige kvinder, Anne og Birthe, ved hjæl af en oddsratio: OR odds Hvilket giver ligningerne: ( A ) ( ) A A Avs B = = oddsb B B ( odds ) = ( odds ) + ( OR ) ln ln ln odds = odds OR A B AvsB A B AvsB Rygning og for tidlig (ræterm) fødsel En model for log odds: (Ryger indikatorvariabel for ryger) For en ikke-ryger giver modellen: For en ryger giver modellen: dvs: ln ln ( odds) ( odds) = α 0 = α + α ( ORrygning ) = ( oddsryger ) ( oddsikke ryger ) ln ln ln = α Konklusion - tolkning af de to arametre: ( ORrygning ) α ln( oddsikke ryger ) α = ln = 0 OR rygning ( α ) odds ex( α ) = ex = ( ) α0 α ln odds ikke ryger 0 = + Ryger 0 2 Eidemiologi og Biostatistik: Uge 2 Mandag

4 Rygning og for tidlig (ræterm) fødsel ( ORrygning ) α ln( oddsikke ryger ) α = ln = 0 OR rygning ( ) α0 α ln odds = + Ryger ( α ) odds ex( α ) = ex = ikke ryger 0 (Fødtfør, År994 samt År995 er indikatorvariable) Dvs. vi kan finde OR for rygning vha. af ovenstående regressions model en simel logistisk regressionsmodel! Bemærk at estimation kan klares vha. af comuter! Ovenstående model kan udvides med alder, aritet og kalenderår. Det gør vi så!!! 3 Hvis vi tager eksonentiel funktion å begge sider får vi: Ryger ( ) ( Alder 30 ) ( ) odds = ex β ex β ex β ex β ex År994 ( β ) ex( β ) År995 De to ræsentationer af modellen er ækvivalente Nogle gange bliver modellen også beskrevet ved: = ( β0 + β Ryger+ β2 ( Alder ) + β3 Fødtfør+ β4 År + β5 År ) ( β0 β Ryger β2 ( Alder ) β3 Fødtfør β4 År β5 År ) ex ex Fødtfør 4 β 0 log odds for: Ikke ryger (Ryger = 0) 30 år (Alderyger-30 = 0) Førstegangsfødende (Fødtfør = 0) år =993 (År994 = 0 og År995 = 0) ex + ex ( β0 ) ( β ) ss for ræterm: Ikke ryger (Ryger = 0) 30 år (Alderyger-30 = 0) Førstegangsfødende (Fødtfør = 0) år =993 (År994 = 0 og År995 = 0) 0 5 Kvinde A: A A A ( odds) = β0 + β Ryger + β2 ( Alder ) ln 30 + β Fødtfør A A A 3 Kvinde B: ln 30 B B B ( odds) = β0 + β Ryger + β2 ( Alder ) + β Fødtfør B B B 3 A B ( ORA vs B ) = ( odds) ( odds) A B A B = β ( Ryger Ryger ) + β2 ( Alder Alder ) A B + β3 ( Fødtfør Fødtfør ) A B A B + β4 ( År994 År994) + β5 ( År995 År995) ln ln ln 6 Eidemiologi og Biostatistik: Uge 2 Mandag

5 β log OR ved sammenligning af en ryger og en ikke ryger, der: -har samme alder -føder samme år. log OR for rygning korrigeret for alder, aritet og fødselsår. ex( β ) OR for rygning korrigeret for alder, aritet og fødselsår. 7 β 2 log OR ved sammenligning af to kvinder med års aldersforskel, der: -føder samme år. log OR for års aldersforskel korrigeret for rygning, aritet og fødselsår. ex( β 2 ) OR for års aldersforskel korrigeret for rygning, aritet og fødselsår. 8 5 β 2 log OR ved sammenligning af to kvinder med 5 års aldersforskel, der: -føder samme år. log OR for års aldersforskel korrigeret for rygning, aritet og fødselsår. ex( β ) 5 2 OR for års aldersforskel korrigeret for rygning, aritet og fødselsår. 9 β 3 log OR ved sammenligning af en kvinde, der har født før med en førstegangsfødende, der: -har samme alder -føder samme år. log OR for født før korrigeret for rygning, alder og fødselsår. ex( β 3 ) OR for født før korrigeret for rygning, alder og fødselsår. 20 Eidemiologi og Biostatistik: Uge 2 Mandag

6 β 4 log OR ved sammenligning af en kvinder, der føder i 994 med en, der føder i 993 der: -har samme alder log OR for 994 versus 993 korrigeret for alder, rygning og aritet ex( β 4 ) β 5 log OR ved sammenligning af en kvinder, der føder i 995 med en, der føder i 993 der: -har samme alder log OR for 995 versus 993 korrigeret for alder, rygning og aritet ex( β 5 ) OR for 994 versus 993 korrigeret for alder, rygning og aritet 2 OR for 995 versus 993 korrigeret for alder, rygning og aritet 22 β β log OR ved sammenligning af en kvinder, der føder i 994 med en, der føder i 995 der: -har samme alder log OR for 994 versus 995 korrigeret for alder, rygning og aritet ex ex ( β ) ( β ) Estimater vha. comuter: Logistic regression Number of obs = 0509 reterm Coef. Std. Err. z P> z [95% Conf. Interval] _cons ryger alder multi aar 993 (base) OR for 994 versus 995 korrigeret for alder, rygning og De næste ar slides vil vi se å estimaterne ovenfor! aritet Eidemiologi og Biostatistik: Uge 2 Mandag

7 Logistic regression Number of obs = 0509 reterm Coef. Std. Err. z P> z [95% Conf. Interval] _cons Log odds for ræterm fødsel Ikke ryger,30 år, førstegangsfødende og år =993: -3.6(-3.37;-2.95) Sandsynlighed for ræterm fødsel Ikke ryger,30 år, førstegangsfødende og år =993: 4.08 (3.33; 4.98)% ex( 3.6) ex( 3.37) ex( 2.95) = = = ex( 3.6) + ex( 3.37) + ex( 2.95) 25 Estimater i form af oddsratioer vha. comuter: Logistic regression Number of obs = 0509 reterm Odds Ratio Std. Err. z P> z [95% Conf. Interval] ryger alder multi aar 993 (base) Sikkerhedsintervaller og test er lavet å log skala, så standard error of ORerne er ikke brugt. 26 Præsentation i artiklen: OR adjusted Smoker No Yes.79 (.45; 2.2) <0.00 Age Per year.0 (0.99;.04) 0.22 Parity Year First Multi 0.68 (0.55; 0.84) < (0.65;.07) (0.78;.26) 0.9 Rygning korrigeret for alder, aritet og kalenderår. Flergangsfødende korrigeret for alder, kalenderår og rygning. 27 OR adjusted Smoker No Yes.79 (.45; 2.2) <0.00 Age Per year.0 (0.99;.04) 0.22 Parity Year First Multi 0.68 (0.55; 0.84) < (0.65;.07) (0.78;.26) 0.9 Et års aldersforskel korrigeret for rygning, aritet og kalenderår. 994 vs 993 korrigeret for alder, aritet og rygning. 995 vs 993 korrigeret for alder, aritet og rygning. 28 Eidemiologi og Biostatistik: Uge 2 Mandag

8 -2. log odds Alder 993 -røg førstegang 993 +røg førstegang 993 -røg født før 993 +røg født før 994 -røg førstegang 994 +røg førstegang 994 -røg født før 994 +røg født før 995 -røg førstegang 995 +røg førstegang 995 -røg født før 995 +røg født før risk of reterm Alder 993 -røg førstegang 993 +røg førstegang 993 -røg født før 993 +røg født før 994 -røg førstegang 994 +røg førstegang 994 -røg født før 994 +røg født før 995 -røg førstegang 995 +røg førstegang 995 -røg født før 995 +røg født før Hvad er antagelserne bag modellen?. Additivitet bidrag for rygning, alder, aritet og kalenderår adderes. 2. Proortionalitet effekten af alder er roortional med alder 3. Ingen effektmodifikation effekt af en variabel afhænger ikke af niveauet af de andre. 4. Uafhængighed mellem kvinderne. Nøjagtig de samme som ved (normal) lineær regression, nu blot å log odds skalaen. 3 Validiteten af estimaterne/den statistiske analyse afhænger af hvorvidt antagelsen er (ca) ofyldt. Et eksemel: OR års aldersforskel.0(0.99;.04) =22%. Konklusion: alder har lille og muligvis ingen betydning for ræterm fødsel, når der er korrigeret rygning, aritet og fødselsår. MEN det er under antagelse af der en lineær sammenhæng mellem alder og log odds. Hvis dette ikke er en rimelig antagelse, så er vores konklusion forkert. 32 Eidemiologi og Biostatistik: Uge 2 Mandag

9 Alder ind som arabel: ( odds) = γ + γ Ryger + γ ( Alder ) + γ ( Alder ) 2 ln γ Fødtfør + γ År994 + γ År995 6 Logistic regression Number of obs = 0509 reterm Coef. Std. Err. z P> z [95% Conf. Interval] _cons ryger alder alder30^ multi aar 993 (base) log odds Alder 993 -røg førstegang 993 +røg førstegang 993 -røg født før 993 +røg født før 994 -røg førstegang 994 +røg førstegang 994 -røg født før 994 +røg født før 995 -røg førstegang 995 +røg førstegang 995 -røg født før 995 +røg født før Alder betyder noget!! Logistisk regression - kommentarer Modellerne har en del til fælles med lineær normal regression modeller. Men logistisk regression anvendes ved binært/dikotomt outcome. Der er ingen krav/antagelser angående fordeling af de forklarende variable (her rygning, alder aritet og kalenderår). Da stand errors og sikkerheds intervaller er aroksimative (som sædvanligt) kræves det at der mindst 5 events er arameter i modellen. Vi har set å en model med 6 arametre, dvs. der burde være mere end 6*5 =90 events (ræterme fødsler). Der var 399, så det er ok. Logistisk regression - kommentarer Logistisk regression kan anvendes i forbindelse med analyse af sandsynligheder/odds, dvs. ved tværsnitsstudier og followu studier, med fuldt follow u. I studier uden fuldt followu for alle kan de ikke anvendes, der anvender man tyisk Cox roortional hazard model eller Poisson regression, som vi ser å næste gang. Logistisk regression anvendes også ved analyse af umatchede case-control studier. Her har konstantledet ingen mening, men odds ratioerne kan tolkes som i et followu studie. Matched case-control studier bør analyseres vha. betinget (conditional) logistisk regression Eidemiologi og Biostatistik: Uge 2 Mandag

10 Logistisk regression - generelt Logistisk regression - generelt ln( odds) = ln β0 βi xi = + i= Antag at erson A har værdierne: A A A x, x2,, x Antag at erson B har værdierne: B B B x, x2,, x x x x 2 odds = ex β0 + βi xi = ex( β0 ) OR OR2 OR i= OR = ex( β ) i i Difference i log odds mellem A og B er A B β0 + βi xi β0 + βi xi i= i= A B ( ) = β x x = β x i i i i i i= i= x = x x A B i i i 37 Antag at erson A har værdierne: A A A x, x2,, x Antag at erson B har værdierne: B B B x, x2,, x Oddsratio ved sammenligning af A og B x x2 2 x OR = OR OR OR x = x x A B i i i 38 Logistisk regression - generelt ex β0 + βi xi i= = + ex β0 + βi xi i= A A A Antag at erson A har værdierne: x, x2,, x B B B Antag at erson B har værdierne: x, x2,, x Oddsratio ved sammenligning af A og B x x2 2 x OR = OR OR OR OR = ex( β ) i i x = x x A B i i i 39 Eidemiologi og Biostatistik: Uge 2 Mandag

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard

Læs mere

23. februar Epidemiologi og biostatistik. Uge 5, mandag 27. februar 2006 Michael Væth, Institut for Biostatistik.

23. februar Epidemiologi og biostatistik. Uge 5, mandag 27. februar 2006 Michael Væth, Institut for Biostatistik. ... februar 1 Eidemiologi og biostatistik. Uge, mandag. februar Michael Væth, Institut for Biostatistik. Ikke arametrisk statistiske test : Analyse af overlevelsesdata (ventetidsdata) Censurering (højre

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Korrelation Pearson korrelationen

Korrelation Pearson korrelationen -9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Morten Frydenberg 25. april 2006

Morten Frydenberg 25. april 2006 . gang: Introduktion til Logistisk Regression Morten Frydenberg 26 Afdeling for Biostatistik, Århus Universitet MPH. studieår specialmodul 4 Cand. San. uddannelsen. studieår Hvorfor logistisk regression

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes 25. april 2. gang: Introduktion til Logistisk Regression Morten Frydenberg 22 Institut for Biostatistik, Århus Universitet MPH. studieår specialmodul Cand. San. uddannelsen. studieår Hvorfor logistisk

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Morten Frydenberg Version: Thursday, 16 June 2011

Morten Frydenberg Version: Thursday, 16 June 2011 Morten Frydenberg Verson: Thursday, 6 June 20 Logstc regresson og andre regresonsmodeller Morten Frydenberg Deartt of Bostatscs, Aarhus Unv, Denmar Hvornår an man bruge logsts regresson. Ldt om odds og

Læs mere

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik ... september 1 Epidemiologi og biostatistik. Uge, mandag. september Michael Væth, Institut for Biostatistik. Ikke parametrisk statistiske test : Analyse af overlevelsesdata (ventetidsdata) Censurering

Læs mere

Mikro-kursus i statistik 2. del Mikrokursus i biostatistik 1

Mikro-kursus i statistik 2. del Mikrokursus i biostatistik 1 Mikro-kursus i statistik 2. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er hypotesetestning? I sundhedsvidenskab:! Hypotesetestning = Test af nulhypotesen Hypotese-testning anvendes til at vurdere,

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up

Læs mere

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp

Læs mere

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved

Læs mere

24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion

24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion . februar 00 Ikke parametrisk statistiske test : Ideen bag Epidemiologi og biostatistik. Uge, mandag. februar 00 Morten Frydenberg, Institut for Biostatistik. To grupper: Mann-Whitney / Wilcoxon testet

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 16. april 2015 l Dias nummer 1 Sidste gang

Læs mere

Analyse af binære responsvariable

Analyse af binære responsvariable Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Besvarelse af opgavesættet ved Reeksamen forår 2008

Besvarelse af opgavesættet ved Reeksamen forår 2008 Besvarelse af opgavesættet ved Reeksamen forår 2008 10. marts 2008 1. Angiv formål med undersøgelsen. Beskriv kort hvordan cases og kontroller er udvalgt. Vurder om kontrolgruppen i det aktuelle studie

Læs mere

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med

Læs mere

Faculty of Health Sciences. Miscellaneous: Styrkeberegninger Overlevelsesanalyse Analyse af matchede studier

Faculty of Health Sciences. Miscellaneous: Styrkeberegninger Overlevelsesanalyse Analyse af matchede studier Faculty of Health Sciences Miscellaneous: Styrkeberegninger Overlevelsesanalyse Analyse af matchede studier Forsøgsplanlægning Sammenligning af to grupper : Hvor mange personer skal vi bruge? Det kommer

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Eksamensopgave E05 Socialklasse og kronisk sygdom Data: Tværsnitsundersøgelse fra 1986 Datamaterialet indeholder: Køn, alder, Højest opnåede

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Opgave 1. Angiv studiets formål, design og hvilke associationsmål, der bruges. Beskriv hovedresultaterne

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Træningsaktiviteter dag 3

Træningsaktiviteter dag 3 Træningsaktiviteter dag 3 I træningsaktiviteterne skal I arbejde videre med Framingham data og risikoen for hjertesygdom. I skal dels lave MH-analyser som vi gjorde i timerne og dels lave en multipel logistisk

Læs mere

Effektmålsmodifikation

Effektmålsmodifikation Effektmålsmodifikation Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2015 l Dias nummer 1 Sidste gang Vi snakkede

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts Århus 19. marts 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts Epibasic er nu opdateret til version 2.04 med arkene Str any og weighted Alle tabeller og tegninger

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann. februar 00 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser. Traditionelt

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller. Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2016 l Dias nummer 1 Sidste gang

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

Postoperative komplikationer

Postoperative komplikationer Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.

Læs mere

Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30.

Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30. Hjemmeopgave Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30. oktober) En undersøgelse blandt fødende kvinder

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Logistisk regression

Logistisk regression Logistisk regression http://biostat.ku.dk/ kach/css2 Thomas A Gerds & Karl B Christensen 1 / 18 Logistisk regression I dag 1 Binær outcome variable død : i live syg : rask gravid : ikke gravid etc 1 prædiktor

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , ) Statistik for MPH: 7 29. oktober 2015 www.biostat.ku.dk/~pka/mph15 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

RE-EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

RE-EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N RE-EKSAMEN I EPIDEMIOLOGISKE METODER IT

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning 1 STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 7. undervisningsuge, mandag 1 Estimation og konfidensintervaller

Læs mere

Statistik for MPH: 7

Statistik for MPH: 7 Statistik for MPH: 7 3. november 2011 www.biostat.ku.dk/~pka/mph11 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Repetition af variansanalyse Overlevelsesanalyse Bestemmelse af stikprøvestørrelse Matchning 30. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003 Opgave 1 (mandag) Figuren nedenfor viser tilfælde af mononukleose i en lille population bestående af 20 personer. Start og slut på en sygdoms periode er angivet med. 20 15 person number 10 5 1 July 1970

Læs mere

Kursus i anvendt onkologisk statistik og forskningsmetodik Dag 2. Jon K. Bjerregaard

Kursus i anvendt onkologisk statistik og forskningsmetodik Dag 2. Jon K. Bjerregaard Kursus i anvendt onkologisk statistik og forskningsmetodik Dag 2 Jon K. Bjerregaard Dag 2 09.00 12.00 Opfriskning fra sidst Gennemgang af artikler Sammenligning af en eller flere grupper Overlevelsesanalyse

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Eksempler på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Eksempler på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann 6. februar 2006 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser.

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater.

Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater. Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater. 1 Sammenfatning Der er en statistisk signifikant positiv sammenhæng mellem opnåelse af et godt testresultat og elevernes oplevede

Læs mere

Program for Kursus 2 Mål: Ansvarlige: Kursus 2 Dag 1

Program for Kursus 2 Mål: Ansvarlige: Kursus 2 Dag 1 Program for Kursus 2 Mål: Kursisterne får kendskab til diverse redskaber, som er forberedende til deres egne projekter. Ansvarlige: Rikke Guldberg, AUH, delkursusleder og underviser Ulrik Schiøler Kesmodel,

Læs mere

Præcision og effektivitet (efficiency)?

Præcision og effektivitet (efficiency)? Case-kontrol studier PhD kursus i Epidemiologi Københavns Universitet 18 Sep 2012 Søren Friis Center for Kræftforskning, Kræftens Bekæmpelse Valg af design Problemstilling? Validitet? Præcision og effektivitet

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere