Brugsvejledning for Frit fald udstyr

Størrelse: px
Starte visningen fra side:

Download "Brugsvejledning for Frit fald udstyr"

Transkript

1 Brugsvejledning for Frit fald udstyr Aa Udløser 2. Tilslutningsbøsninger for prøveledninger 3. Trykknap for udløser 4. Kontaktplader 5. Udfræsning for placering af kugle 6. Magnetisk kugleholder for reservekugle Beskrivelse af udstyret Dette udstyr er designet til at bestemme faldtiden for en frit faldende stålkugle ved tilslutning til en elektronisk tæller. Ud fra faldtiden, og faldlængden kan tyngdeaccelerationen, g, beregnes, idet der gælder følgende sammenhæng: s =1/2 g t 2, hvor s er faldlængden. Udstyret består af en udløserenhed, der samtidig fungerer som startkontakt, en faldplade der samtidig fungerer som stopkontakt, samt to forgyldte stålkugler, Ø12 mm, to forgyldte stålkugler, Ø16 mm og en bortennisbold der er tareret så den vejer det samme som en stålkugle Ø12 mm. Udløserenheden består af 2 kontaktplader (4), der kortsluttes ved hjælp af den stålkugle man vil måle faldtiden for. Stålkuglen fastholdes ved hjælp af en fjederbelastet neodymiummagnet. For at skabe så god kontakt som muligt er såvel kontaktplader som stålkugler forgyldte, og skal holdes absolut rene. Evt kan de aftørres med rense benzin. Neodymiummagneten kan ved hjælp af den fjederbelastede udløser (1) fjernes meget hurtigt fra stålkuglen. Stålkuglen fastholdes således ikke længere på kontaktpladerne (4)og begynder et frit fald. Samtidig med at kuglen slipper kontaktpladerne (4) startes tælleren. Når kuglen rammer faldpladen sluttes kontakten og tælleren stopper. Udløserenheden er forsynet med tilslutningsbøsninger (2) for sikkerhedskabler, samt Ø10 mm opspændingsstang for montering i stativ. Faldpladen er forsynet med tilslutningsbøsninger (2) for sikkerhedskabler. A/S Søren Frederiksen, Ølgod Tel Viaduktvej 35 DK-6870 Ølgod Fax

2 Nødvendigt tilbehør: 1 stk. Elektronisk stopur stk. prøveledninger. 1 stk. A-fod stk. Stativstang stk. stativmuffe Reservedele: Sæt med kugler til frit fald. Betjening: Opstillingen samles som vist på figur 2. Udløserenheden klargøres ved at spænde udløseren (1). Stålkuglen placeres i udfræsningen (5) mellem kontaktpladerne (4) på udløserenheden. Ved hjælp af trykknappen (3), udløses stålkuglen, og samtidig startes tælleren. Når stålkuglen rammer faldpladen, der naturligvis er placeret lodret nedenfor udløserenheden, stoppes tælleren. Faldhøjden s måles ved hjælp af en lineal, som afstanden fra undersiden af kuglen (når denne er placeret i udløserenheden) til oversiden af faldpladen. Ved hjælp af det medfølgende spejl kan parallaksefejl undgås, som illustreret på figur 2. Reklamationsret Der er to års reklamationsret, regnet fra fakturadato. Reklamationsretten dækker materiale- og produktionsfejl. Reklamationsretten dækker ikke udstyr, der er blevet mishandlet, dårligt vedligeholdt eller fejlmonteret, ligesom udstyr, der ikke er repareret på vort værksted, ikke dækkes af garantien. Returnering af defekt udstyr som garantireparation sker for kundens regning og risiko og kan kun foretages efter aftale med Frederiksen. Med mindre andet er aftalt med Frederiksen, skal fragtbeløbet forudbetales. Udstyret skal emballeres forsvarligt. Enhver skade på udstyret, der skyldes forsendelsen, dækkes ikke af garantien. Frederiksen betaler for returnering af udstyret efter garantireparationer. A/S Søren Frederiksen, Ølgod Denne brugsvejledning må kopieres til intern brug på den adresse hvortil det tilhørende apparat er købt. Vejledningen kan også hentes på vores hjemmeside VIGTIGT! For at skabe så god kontakt som muligt er såvel kontaktplader som stålkugler forgyldte, og skal holdes absolut rene. Evt kan de aftørres med rense benzin. Der kan være personer der har svedige fingre og derfor har vanskeligheder med at få kontakten til at fungere. Dette kan evt. afhjælpes ved at bruge tynde bomuldshandsker. Vedligeholdelse: Ved opbevaring bør udløseren, af hensyn til fjederen ikke være spændt. Husk at aftørre kugler og kontaktplader. 2

3 Tabel til kopiering: Faldlængde, s =. Masse af kugle, m = Faldtid/ms g=(2s)/t Udregn gennemsnit af g:. Udregn afvigelse fra teoretisk værdi for g: 3

4 FRIT FALDENDE LEGEMER TEORI Vejledning FORMÅL Øvelsens formål er at undersøge faldtider for frit faldende legemer i jordens tyngdefelt. Der undersøges legemer med stor massefylde, hvor man kan se bort fra luftmodstand. Desuden undersøges legemer, hvor luftmodstanden spiller en væsentlig rolle for resultatet. Frederiksen A/S nye faldforsøgapparat ( ) anvendes til at undersøge sammenhængen mellem teori og praksis. UDSTYR Opstillingen: Figuren ovenfor viser et legeme, der falder under påvirkningen af jordens tyngdefelt, hvor tyngdeaccelerationen g = 9,82 m/s 2. Når legemets fart tiltager, øges modstandskraften på grund af luftmodstanden. Det antages her, at modstandskraften er proportional med legemets fart i anden potens: F = k v 2. 1 stk. Elektronisk stopur stk. prøveledninger. 1 stk. A-fod stk. Stativstang stk. stativmuffe Den resulterende kraft F RES på legemet er givet ved: F RES = m g - k v 2 idet vi går ud fra, at den positive retning er nedad. INGEN LUFTMODSTAND Vi går i første omgang ud fra, at k = 0, altså at modstandskraften er uden betydning. Hermed fås F RES = m g = m dv/dt hvor vi gør brug af Newtons 2. lov: F = m a = m dv/dt. Hermed følger: dv/dt = g der har den fuldstændige løsning v(t) = g t + c hvor c er en vilkårlig konstant. Betragter man begyndelsesøjeblikket t = 0, ser man, at konstanten c svarer til begyndelseshastigheden v 0 : v(t) = g t + v 0 Bemærk, at v = g t, når starthastigheden v 0 = 0. Fordi hastigheden v = ds/dt, har vi i almindelighed ds/dt = g t + v 0 der har løsningen s(t) = 1 /2 g t 2 + v 0 t + s 0 4 idet integrationskontanten s 0 i dette tilfælde svarer til begyndelsespositionen.

5 Går man ud fra, at legemet er i hvile (v 0 = 0) i begyndelsespunktet (s 0 = 0) til klokken t = 0, fås følgende resultat: s = 1 /2 g t 2 <=> Kraftligningen er en ligning i de to variabler: hastigheden v og tiden t. De kan adskilles: ØVELSE Mål sammenhørende værdier af faldvejen s og faldtiden t. Undersøg, ved at lave et grafisk billede af s som funktion af t 2, om denne model er en god beskrivelse af denne bevægelse. Grafens hældning bør svare til 1 /2 g, hvor g er jordens tyngdeaccelerationen. Ligningen kan løses ved at integrere begge sider, idet hastigheden integreres fra begyndelsesværdien v 0 = 0, og tiden integreres fra t = 0 til tidspunktet t. Ved integration fås: s/m t/s Der ganges over kors og reduceres: Tag så den eksponentielle funktion exp på begge sider: Denne ligning kan nu løses for hastigheden v som funktion af tiden t: som er det søgte resultat for v(t). Ved hjælp af et regneark, kan s(t) så findes ved at gøre bruge af differensligningen s 1 = s 0 + v(t 1 ) Δt. Et tidsinterval Δt på 0,05 s vil normalt være passende, når data fra frit fald apparat skal analyseres. FALDBEVÆGELSEN MED LUFTMODSTAND For legemer af lavere massefylde (f.eks. bordtennisbolden) spiller luftmodstanden en væsentlig rolle, således at man ikke længere kan gå ud fra, at k = 0. I så fald bliver kraftligningen følgende: F RES = m g - k v 2 = m dv/dt hvor vi igen gør brug af Newtons 2. lov. Bemærk, at konstanten i leddet, der beskriver modstandskraften, er afhængig af tværsnitsarealet A af det faldende legeme, mediets (luftens) densitet D samt det faldende legemes form og overflade, der beskrives med modstandskoefficienten C W : k = 1 /2 D A C W. OVERGANGEN TIL LAV LUFTMODSTAND Man kan nu vise, at for lave værdier af modstandskoefficienten k, bliver denne formel identisk med ligningen v(t) = g t for bevægelse uden luftmodstand. Dette kan gøres ved at udskifte eksponentialfunktionerne med de to første led af Taylor-udviklingen (e X (1 + X)). For små værdier af k er eksponenten tæt på nul, således at man kan omskrive hastighedsligningen: hvor vi har benyttet, at nævneren går mod 1 for små værdier af k. Hermed ser man, at det eksakte udtryk reduceres netop til resultatet v = g t, når k går mod nul. 5

6 ØVELSE Lav et regneark med det eksakte udtryk for v(t) og s(t) ved hjælp af differensligningen s 1 = s 0 + v(t 1 ) Δt, og sammenhold resultatet med tilsvarende udtryk uden modstandskraft. Sammenlign (t,v) og (t,s) grafer for forskellige værdier af k = 1 /2 D A Cw Man kan sammenholde teorien med rigtige data målt ved hjælp af Frederiksens faldudstyr. Da luftens densitet D = 1,293 kg/m 3 og prøvelegemets tværsnitsareal A er kendte størrelser, kan man bestemme en målt værdi for modstandskoefficienten C W. Dette gøres lettest ved at undersøge hvilken værdi for C W i udtrykket for v(t) der giver den bedste overensstemmelse med de målte data, når man i et regneark beregner s(t) med differensligningen. ØVELSE Har man kendskab til C W, kan man beregne terminalhastigheden for et faldende legeme, idet m g - k v 2 = 0: Dette ses jo også af grænseværdien for v(t) for t. Lav et forsøg ved at lade bolden falde fra en større højde. A/S Søren Frederiksen, Ølgod Tel Viaduktvej 35 DK-6870 Ølgod Fax

7 7

8 A/S Søren Frederiksen, Ølgod Tel Viaduktvej 35 DK-6870 Ølgod Fax

Ohms lov. Formål. Princip. Apparatur. Brug af multimetre. Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd.

Ohms lov. Formål. Princip. Apparatur. Brug af multimetre. Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd. Ohms lov Nummer 136050 Emne Ellære Version 2017-02-14 / HS Type Elevøvelse Foreslås til 7-8, (gymc) p. 1/5 Formål Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd. Princip Et stykke

Læs mere

Vejledning til Betastrålers afbøjning

Vejledning til Betastrålers afbøjning Vejledning til Betastrålers afbøjning 11.01.11 Aa 5141.05 Figur 1 Drej kildeholderen til 90 og tæl eller lyt igen. Den kollimerede stråle af betapartikler rammer ikke længere GM-røret, og tællehastigheden

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Newtons love - bevægelsesligninger - øvelser. John V Petersen

Newtons love - bevægelsesligninger - øvelser. John V Petersen Newtons love - bevægelsesligninger - øvelser John V Petersen Newtons love 2016 John V Petersen art-science-soul Indhold 1. Indledning og Newtons love... 4 2. Integration af Newtons 2. lov og bevægelsesligningerne...

Læs mere

Vi undersøger et fysisk pendul, dvs. et sammensat, stift legeme og sammenholder målte og beregnede værdier for inertimomenter.

Vi undersøger et fysisk pendul, dvs. et sammensat, stift legeme og sammenholder målte og beregnede værdier for inertimomenter. Fysisk pendul Nummer 135610 Emne Mekanik, stive legemer Version 2016.06.03 / HS Type Elevøvelse Foreslås til gyma p. 1/5 Formål Vi undersøger et fysisk pendul, dvs. et sammensat, stift legeme og sammenholder

Læs mere

Vejledning til Fysisk pendul / Bessel-pendul

Vejledning til Fysisk pendul / Bessel-pendul Vejledning til Fysisk pendul / Bessel-pendul 180413 218100 AA Beskrivelse Apparatet består af en stålstang med en række huller, som dels anvendes som pendulets leje, dels bruges til fastgørelse af lodder

Læs mere

Kinematik. Lad os betragte en cyklist der kører hen ad en cykelsti. Vi kan beskrive cyklistens køretur ved hjælp af en (t,s)-tabel, som her:

Kinematik. Lad os betragte en cyklist der kører hen ad en cykelsti. Vi kan beskrive cyklistens køretur ved hjælp af en (t,s)-tabel, som her: K Kinematik Den del af fysikken, der handler om at beskrive bevægelser hedder kinematik. Vi kan se på tid, position, hastighed og acceleration, men disse ting må altid angives i forhold til noget. Fysikere

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål.

Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål. a. Buens opbygning Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål. Buen påvirker pilen med en varierende kraft, der afhænger meget af buens opbygning. For det

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

Bevægelse op ad skråplan med ultralydssonde.

Bevægelse op ad skråplan med ultralydssonde. Bevægelse op ad skråplan med ultralydssonde. Formål: a) At finde en formel for accelerationen i en bevægelse op ad et skråplan, og at prøve at eftervise denne formel, ud fra en lille vinkel og vægtskål

Læs mere

Opdrift i vand og luft

Opdrift i vand og luft Fysikøvelse Erik Vestergaard www.matematikfysik.dk Opdrift i vand og luft Formål I denne øvelse skal vi studere begrebet opdrift, som har en version i både en væske og i en gas. Vi skal lave et lille forsøg,

Læs mere

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter.

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. Kræfter og Energi Jacob Nielsen 1 Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. kraften i x-aksens retning hænger sammen med den

Læs mere

Frederiksen. Brugsvejledning for GM-tæller 5135.3X. 23.09.03 Aa 5135.3X

Frederiksen. Brugsvejledning for GM-tæller 5135.3X. 23.09.03 Aa 5135.3X Brugsvejledning for GM-tæller 5135.3X 23.09.03 Aa 5135.3X Disse to tællere er beregnet til at registrere antallet af pulser fra GM-rør. Tælleren kan indstilles til et antal faste tidsintervaller, eller

Læs mere

Opdrift og modstand på et vingeprofil

Opdrift og modstand på et vingeprofil Opdrift og modstand på et vingeprofil Thor Paulli Andersen Ingeniørhøjskolen Aarhus Universitet 1 Vingens anatomi Et vingeprofil er karakteriseret ved følgende bestanddele: forkant, bagkant, korde, krumning

Læs mere

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006 Den Naturvidenskabelige acheloreksamen Københavns Universitet Fysik 1-14. september 006 Første skriftlige evaluering 006 Opgavesættet består af 4 opgaver med i alt 9 spørgsmål. Skriv tydeligt navn og fødselsdato

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, lørdag den 13. december, 2014 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle tilladte hjælpemidler på

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

1. Kræfter. 2. Gravitationskræfter

1. Kræfter. 2. Gravitationskræfter 1 M1 Isaac Newton 1. Kræfter Vi vil starte med at se på kræfter. Vi ved fra vores hverdag, at der i mange daglige situationer optræder kræfter. Skal man fx. cykle op ad en bakke, bliver man nødt til at

Læs mere

Dansk Naturvidenskabsfestival Faldskærm i fart!

Dansk Naturvidenskabsfestival Faldskærm i fart! Dansk Naturvidenskabsfestival Faldskærm i fart! Mads Clausen Instituttet Sønderborg - 1 - Dette hæfte kan anvendes på en række forskellige måder: Som den første introduktion til fysik i gymnasiet/htx.

Læs mere

Theory Danish (Denmark)

Theory Danish (Denmark) Q1-1 To mekanikopgaver (10 points) Læs venligst den generelle vejledning i en anden konvolut inden du går i gang. Del A. Den skjulte metalskive (3.5 points) Vi betragter et sammensat legeme bestående af

Læs mere

Forsøgsvejledning - Hoppehøjde

Forsøgsvejledning - Hoppehøjde Forsøgsvejledning - Hoppehøjde Indledning: Indenfor idrættens verden er det ofte af stor vigtighed at man kan hoppe højt. Det være sig selvsagt i højdespring, hvor det er målet i sig selv, men også fx

Læs mere

Kuglers bevægelse i væske

Kuglers bevægelse i væske Kuglers bevægelse i væske Øvelsens formål er - at eftervise v 2 -loven for bevægelse i væsker: For et legeme der bevæger sig i vand. - at se at legemet i vores forsøg er så stort, at vi ikke har laminar

Læs mere

Impuls og kinetisk energi

Impuls og kinetisk energi Impuls og kinetisk energi Peter Hoberg, Anton Bundgård, and Peter Kongstad Hold Mix 1 (Dated: 7. oktober 2015) 201405192@post.au.dk 201407987@post.au.dk 201407911@post.au.dk 2 I. INDLEDNING I denne øvelse

Læs mere

Lysets hastighed. Opstilling med et lidt ældre digitaloscilloskop. Reflektorpladen er placeret udenfor billedet.

Lysets hastighed. Opstilling med et lidt ældre digitaloscilloskop. Reflektorpladen er placeret udenfor billedet. Lysets hastighed Eksperiment nummer 133890 Emne Lys; kinematik; fundamentale konstanter Version 2017-08-25 / HS Type Elevøvelse Foreslås til gymab p. 1/4 Opstilling med et lidt ældre digitaloscilloskop.

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Skriftlig eksamen 25. januar 2008 Tillae hjælpemidler: Medbragt litteratur, noter og lommeregner

Læs mere

En verden af fluider bevægelse omkring en kugle

En verden af fluider bevægelse omkring en kugle En verden af fluider bevægelse omkring en kugle Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 29. marts 2012 Indhold

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Bevægelse i to dimensioner

Bevægelse i to dimensioner Side af 7 Bevægelse i to dimensioner Når man beskriver bevægelse i to dimensioner, som funktion af tiden, ser man bevægelsen som var den i et almindeligt koordinatsystem (med x- og y-akse). Ud fra dette

Læs mere

I Indledning. I Indledning Side 1. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.

I Indledning. I Indledning Side 1. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. Side 1 0101 Beregn uden hjælpemidler: a) 2 9 4 6+5 3 b) 24:6+4 7 2 13 c) 5 12:4+39:13 d) (1+4 32) 2 55:5 0102 Beregn uden hjælpemidler: a) 3 6+11 2+2½ 10 b) 49:7+8 11 3 12 c) 4 7:2+51:17 d) (5+3 2) 3 120:4

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 10 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Dæmpet harmonisk oscillator

Dæmpet harmonisk oscillator FY01 Obligatorisk laboratorieøvelse Dæmpet harmonisk oscillator Hold E: Hold: D1 Jacob Christiansen Afleveringsdato: 4. april 003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Hårde nanokrystallinske materialer

Hårde nanokrystallinske materialer Hårde nanokrystallinske materialer SMÅ FORSØG OG OPGAVER Side 54-59 i hæftet Tegnestift 1 En tegnestift er som bekendt flad i den ene ende, hvor man presser, og spids i den anden, hvor stiften skal presses

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Harmonisk oscillator. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47

Harmonisk oscillator. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47 Harmonisk oscillator Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47 28. november 2007 Indhold 1 Formål 2 2 Teori 2 3 Fremgangsmåde 3 4 Resultatbehandling

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik B 2013 Indhold 1. Galileis faldlov... 3 2. Pendulbevægelse... 5 3. Batteri som spændingskilde... 10 4. Wheatstones bro og temperaturkoefficient...

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Vejledende eksamensopgaver 16. januar 2008 Tilladte hjælpemidler: Medbragt litteratur, noter

Læs mere

Det skrå kåst. Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse

Det skrå kåst. Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse Det skrå kåst Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse 19/12-2012 Matematik Opstil stedfunktionen s x (t) og s y (t) for den lodrette og den vandrette bevægelse, som funktion af

Læs mere

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold Bernoulli s lov Med eksempler fra Indhold 1. Indledning...1 2. Strømning i væsker...1 3. Bernoulli s lov...2 4. Tømning af en beholder via en hane i bunden...4 Ole Witt-Hansen Køge Gymnasium 2008 Bernoulli

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indhold Længdebølger og tværbølger... 2 Forsøg med frembringelse af lyd... 3 Måling af lydens hastighed... 4 Resonans... 5 Ørets følsomhed over for lydfrekvenser.... 6 Stående tværbølger på en snor....

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus RANDERS HF & VUC Øvelsesvejledninger til laboratoriekursus Fysik B 2013 Indhold 1. Galileis faldlov... 3 2. Pendulbevægelse... 5 3. Batteri som spændingskilde... 10 4. Joules lov... 13 5. Lydens fart...

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Kræfter og Arbejde. Frank Nasser. 21. april 2011

Kræfter og Arbejde. Frank Nasser. 21. april 2011 Kræfter og Arbejde Frank Nasser 21. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Simulering I. Don t panic! * Morten Dam Jørgensen. * Large friendly letters

Simulering I. Don t panic! * Morten Dam Jørgensen. * Large friendly letters Simulering I Don t panic! * Morten Dam Jørgensen * Large friendly letters Oversigt Hvad I skal tage med fra denne forelæsning Hvad er simulering Fra model til simulering Numerisk løsning af differentialligninger

Læs mere

FORSØGSVEJLEDNING. Kasteparablen

FORSØGSVEJLEDNING. Kasteparablen Fysik i idræt - Idræt i fysik 006 FORSØGSVEJLEDNING Kasteparablen Formål: At bestemme kastelængden (x-positionen) for kast ed forskellige afleeringsinkler: o Ca. 30 o. o Ca. 45 o. o Ca. 60 o. og ed brug

Læs mere

Tyngdepunkt og Masse Midtpunkt.

Tyngdepunkt og Masse Midtpunkt. C.C.Tscherning, Niels Bohr Instituttet Tyngdepunkt og Masse Midtpunkt.. Masse-midtpunkt: Definitioner: Ligevægtspunkt for summen af alle masse-dele Tyngdepunkt: Punkt, hvor drejningsmomentet er nul (ligevægt

Læs mere

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51

Skråplan. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen. 8. januar Hold 4, gruppe n + 1, n {3}, uge 50-51 Skråplan Dan Elkvist Albrechtsen, Edin Ikanović, Joachi Mortensen Hold 4, gruppe n + 1, n {3}, uge 50-51 8. januar 2008 Figurer Sider ialt: 5 Indhold 1 Forål 3 2 Teori 3 3 Fregangsåde 4 4 Resultatbehandling

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 8. august 2013 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 8. august 2013 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 8. august 2013 kl. 9 00 13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Årsprøve i matematik 1y juni 2007

Årsprøve i matematik 1y juni 2007 Opgave 1 Årsprøve i matematik 1y juni 2007 Figuren viser to ensvinklede trekanter PQR og P 1 Q 1 R 1 a) Bestem længden af siden P 1 Q 1 Skalafaktoren beregnes : k = 30/24 P 1 Q 1 = 20 30/24 P 1 Q 1 = 25

Læs mere

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål.

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. Labøvelse 2, fysik 2 Uge 47, Kalle, Max og Henriette Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. 1. Vi har to forskellige størrelser: a: en skive

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Nb: der kan komme mindre justeringer af denne plan.

Nb: der kan komme mindre justeringer af denne plan. Efterårets øvelser, blok 2 Fysik2 Introduktion Fysik 2 øvelser består af 3 øvelser hvori der indgår måling af de fundamentale størrelser: længde, tid og masse. Alle øvelserne handler på en eller anden

Læs mere

Det skrå kast uden luftmodstand

Det skrå kast uden luftmodstand Det skrå kast uden luftmodstand I dette lille tillæg skal i smart benytte ektorer til at udlede udtryk for stedfunktionen og hastigheden i det skrå kast uden luftmodstand. Vi il gøre brug af de fundamentale

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik B 2013 Indhold 1. Galileis faldlov... 3 2. Pendulbevægelse... 5 3. Batteri som spændingskilde... 10 4. Wheatstones bro og temperaturkoefficient...

Læs mere

brikkerne til regning & matematik funktioner preben bernitt

brikkerne til regning & matematik funktioner preben bernitt brikkerne til regning & matematik funktioner 2+ preben bernitt brikkerne til regning & matematik funktioner 2+ beta udgave som E-bog ISBN: 978-87-92488-32-9 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Brydningsindeks af vand

Brydningsindeks af vand Brydningsindeks af vand Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 15. marts 2012 Indhold 1 Indledning 2 2 Formål

Læs mere

1. Bevægelse... 3 2. Det frie fald... 6 3. Kræfter... 8 4. Newtons love... 9 5. Gnidningskræfter... 12 6. Arbejde... 13 7. Mekanisk energi...

1. Bevægelse... 3 2. Det frie fald... 6 3. Kræfter... 8 4. Newtons love... 9 5. Gnidningskræfter... 12 6. Arbejde... 13 7. Mekanisk energi... Indholdsfortegnelse 1. Bevægelse... 3. Det frie fald... 6 3. Kræfter... 8 4. Newtons love... 9 5. Gnidningskræfter... 1 6. Arbejde... 13 7. Mekanisk energi... 19 Opgaver... 5 1. Bevægelse En vigtig del

Læs mere

I fysik er der forskellige skriftlige discipliner, som du kan læse mere om på denne og de følgende sider.

I fysik er der forskellige skriftlige discipliner, som du kan læse mere om på denne og de følgende sider. Side 1 af 7 Indhold Rapportering rapportskrivning... 1 Løsning af fysikfaglige problemer opgaveregning.... 2 Formidling af fysikfaglig indsigt i form at tekster, præsentationer og lignende... 4 Projektrapporter...

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

Variable. 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0

Variable. 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0 Variable 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0 2 a x = 5 b x = 1 c x = 1 d y = 1 e z = 0 f Ingen løsning. 3

Læs mere

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning.

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning. E2 Elektrodynamik 1. Strømstyrke Det meste af vores moderne teknologi bygger på virkningerne af elektriske ladninger, som bevæger sig. Elektriske ladninger i bevægelse kalder vi elektrisk strøm. Når enderne

Læs mere

Hastighedsprofiler og forskydningsspænding

Hastighedsprofiler og forskydningsspænding Hastighedsprofiler og forskydningsspænding Formål Formålet med de gennemførte forsøg er at anvende og sammenligne 3 metoder til bestemmelse af bndforskydningsspændingen i strømningsrenden. Desden er formålet,

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 27. maj 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Bringing Mathematics to Earth... using many languages 155

Bringing Mathematics to Earth... using many languages 155 Bringing Mathematics to Earth... using many languages 155 Rumrejser med 1 g acceleration Ján Beňačka 1 Introduktion Inden for en overskuelig fremtid vil civilisationer som vores være nødt til at fremskaffe

Læs mere

Det er ikke personligt

Det er ikke personligt Det er ikke personligt Hans Harhoff Andersen 18. september 2013 Forudsætninger for dette kursus Forudsætninger for dette kursus Forudsætninger for dette kursus Fysik Forudsætninger for dette kursus Fysik

Læs mere

DET GYLDNE TÅRN. Men i Danmark er vi tøsedrenge sammenlignet med udlandet. Her er vores bud på en Top 6 (2010) over verdens vildeste forlystelser:

DET GYLDNE TÅRN. Men i Danmark er vi tøsedrenge sammenlignet med udlandet. Her er vores bud på en Top 6 (2010) over verdens vildeste forlystelser: DET GYLDNE TÅRN En forlystelse, der er så høj som Det gyldne Tårn, er meget grænseoverskridende for mange mennesker. Det handler ikke kun om den kraft man udsættes for, og hvad den gør ved kroppen. Det

Læs mere

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Opgaverne er udregnet i samarbejde med Thomas Salling, s110579 og Mikkel Seibæk, s112987. 11/12-2012

Læs mere

Kinematik. Ole Witt-Hansen 1975 (2015) Indhold. Kinematik 1

Kinematik. Ole Witt-Hansen 1975 (2015) Indhold. Kinematik 1 Kinematik Kinematik Indhold. Retlinet beægelse.... Jæn retlinet beægelse...3 3. Ujæn beægelse...4 4. Konstant accelereret beægelse...5 5. Tilbagelagt ej ed en konstant accelereret beægelse...8 6. Frit

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Mundtlig eksamen Maj-Juni 2014 Institution VUF Uddannelse Fag og niveau stx (Studenterkursus) Matematik C

Læs mere

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?:

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: Angiv de variable: Check din forventning ved at hælde lige store mængder vand i to glas med henholdsvis store og små kugler. Hvor

Læs mere

Bølgekar nr Aa

Bølgekar nr Aa Bølgekar nr. 2211.00 20.01.12 Aa 2211.00 A/S Søren Frederiksen, Ølgod Tel. +45 7524 4966 info@frederiksen.eu Viaduktvej 35 DK-6870 Ølgod Fax +45 7524 6282 www.frederiksen.eu Udstyret består af følgende

Læs mere

LCR-opstilling

LCR-opstilling LCR-opstilling 4206.00 2013-09-18 AA4206.00 Beskrivelse Udstyret består af Resistorer (modstande): 24,9 kω / 3,3 kω / 1,0 kω / 1,0 kω (1 %) Induktorer (spoler): 4,7 mh / 1,8 mh (5 %) Kapacitorer (kondensatorer):

Læs mere

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator øvelse Formål Øvelse med oscillator, hvor frekvensen bestemmes, for den frie og dæmpede svingning. Vi vil tilnærme data fra

Læs mere

Indre modstand og energiindhold i et batteri

Indre modstand og energiindhold i et batteri Indre modstand og energiindhold i et batteri Side 1 af 10 Indre modstand og energiindhold i et batteri... 1 Formål... 3 Teori... 3 Ohms lov... 3 Forsøgsopstilling... 5 Batteriets indre modstand... 5 Afladning

Læs mere

RKS Yanis E. Bouras 21. december 2010

RKS Yanis E. Bouras 21. december 2010 Indhold 0.1 Indledning.................................... 1 0.2 Løsning af 2. ordens linære differentialligninger................ 2 0.2.1 Sætning 0.2............................... 2 0.2.2 Bevis af sætning

Læs mere

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion ISBN 978877664974 Projekter: Kapitel. Projekt. Omvendt funktion og differentiation af omvendt funktion Projekt. Omvendt funktion og differentiation af omvendt funktion Vi har i Bbogens kapitel 4 afsnit

Læs mere

Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist.

Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist. Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist. Forudsætninger: funktioner (matematik) og primære vindsystemer

Læs mere

Jævn cirkelbevægelse udført med udstyr fra Vernier

Jævn cirkelbevægelse udført med udstyr fra Vernier Fysikøvelse - Erik Vestergaard www.matematikfysik.dk 1 Jævn cirkelbevægelse udført med udstyr fra Vernier Formål Formålet med denne øvelse er at eftervise følgende formel for centripetalkraften på et legeme,

Læs mere

GAS KOGEPLADER BRUGS OG INSTALLATIONS- VEJLEDNING

GAS KOGEPLADER BRUGS OG INSTALLATIONS- VEJLEDNING GAS KOGEPLADER BRUGS OG INSTALLATIONS- VEJLEDNING 1 Indhold Indhold 2 General information 2 Garanti bestemmelser 3 Vigtin information vedrørende sikkerhed. 3 Sådan bruges apparatet 4 Rengøring og vedligeholdelse

Læs mere

Nogle opgaver om fart og kraft

Nogle opgaver om fart og kraft &HQWHUIRU1DWXUIDJHQHV'LGDNWLN 'HWQDWXUYLGHQVNDEHOLJH)DNXOWHW $DUKXV8QLYHUVLWHW &HQWUHIRU6WXGLHVLQ6FLHQFH(GXFDWLRQ)DFXOW\RI6FLHQFH8QLYHUVLW\RI$DUKXV Nogle opgaver om fart og kraft Opgavesættet er oversat

Læs mere

Information fra Serviceafdelingen.

Information fra Serviceafdelingen. Information fra Serviceafdelingen. Kære kunde. Serviceafdelingen hos Egedesø A/S og Intercycle A/S har i løbet af den seneste tid gennemgået en del ændringer. Blandt andet er der nu to mand fuld tid til

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium s.1/5 For at kunne bestemme cansatsondens højde må vi se på, hvorledes tryk og højde hænger sammen, når vi bevæger os opad i vores atmosfære. I flere fysikbøger kan man læse om den Barometriske højdeformel,

Læs mere

6. Regression. Hayati Balo,AAMS. 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1

6. Regression. Hayati Balo,AAMS. 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1 6. Regression Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1 6.0 Indledning til funktioner eller matematiske modeller Mange gange kan

Læs mere

PARTIELT MOLÆRT VOLUMEN

PARTIELT MOLÆRT VOLUMEN KemiF1 laboratorieøvelser 2008 ØvelseF1-2 PARTIELT MOLÆRT VOLUMEN Indledning I en binær blanding vil blandingens masse være summen af komponenternes masse; men blandingens volumen vil ikke være summen

Læs mere

Øvelsesvejledninger til laboratoriekursus

Øvelsesvejledninger til laboratoriekursus VUC AARHUS Øvelsesvejledninger til laboratoriekursus Fysik C-B 2014 Indhold Rapporter og journaler... 3 1 Rilleafstande... 5 2 Stående bølger på en streng... 9 3 Spektrum for ukendt grundstof... 12 4 Bestemmelse

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Salt 2. ovenfor. x = Tid (minutter) y = gram salt i vandet

Salt 2. ovenfor. x = Tid (minutter) y = gram salt i vandet Projekt om medicindosering Fra http://www.ruc.dk/imfufa/matematik/deltidsudd_mat/sidefagssupplering_mat/rap_medicinering.pdf/ Lav mindst side 1-4 t.o.m. Med 7 Ar b ejd ssed d el 0 Salt 1 Forestil Jer at

Læs mere