Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Størrelse: px
Starte visningen fra side:

Download "Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik"

Transkript

1 Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik

2 Indledning Jeg har i denne opgave fået følgende opstilling. Det er en karrusel hvor den store ring med centrum i orego, har en radius på m, og en omløbstid på sekunder. De små ringe er vognene og ligger med centrum på den store cirkelperiferi. De har hver en radius på 1m og en omløbstid på 1,5 sekunder. Jeg har punktet A der ligger yderst til højre på på den højre vogn. Altså i punktet (,0. Jeg har så fået til opgave at opstille en vektorfunktion hvis banekurve beskriver den bane punktet A følger når karrusellen er i gang i positiv omløbsretning. Positiv omløbsretning må være den retning man bruger i enhedscirklen når man snakker om sinus. Da sin(0 = 0 og sin(0,5π = 1 og sin(π = 0 kan jeg se at det er imod urets retning.

3 Opgaven For at finde udtrykket kigger jeg først på tegningen. Jeg kan se at der på tegningen er vektorfunktioner. 1 for hver cirkel (de 4 små cirkler er den samme cirkel gentagne gange. Jeg skal følge punktet A der ligger yderst til højre på den lille højre cirkel. Som man kan se på fig. 1 ligger de små cirklers centrum på den store cirkels cirkelperiferi. Som man også kan se, så ligger punktet A på det punkt sumvektoren peger på. Derfor må vektorfunktionen nødvendigvis være en sumvektor af de vektorfunktioner der beskriver de cirkler. Jeg skal derfor finde funktioner der beskriver de cirkler, og derefter summere dem. Vektorfunktionen for en cirkel har noget med sinus og cosinus at gøre. Faktisk er parameterfremstillingen for en cirkel: c(t = ( cos(t sin(t Dette vil lave en cirkel med radius = 1 (fig.. Først finder jeg den store cirkel. I karrusellen har den store cirkel en radius på. For at få det, ganger jeg blot x(t og y(t med, da det vil gøre cirklen dobbelt så stor. Det næste der skal kontrolleres er farten på karrusellen. Da cos(0 = cos(π ved jeg, at når t rammer værdien π har cirklen været en hel omgang rundt. Men da en omgang skal ske når t er = stiller jeg følgende ligning op: π = x t Når t er skal værdien inde i paranteserne for cosinus være lig π, da cirklen dermed vil blive sluttet. π = x x = π Dermed får jeg min nye vektorfunktion for den store cirkel. c 1 (t =(cos( π t sin( π Fig. Fig. 1 Fig. Som man kan se på fig. har den en radius på (den skær de akser ved og det er værd at bemærke, at til t =, er ringen tilbage til udgangspunktet.

4 For at finde den lille ring tager jeg samme udgangspunkt som i ovenstående. Den vigtigste ændring der er her, er farten. Farten er jo som beskrevet bestemt af det led der står inde under parenteserne på cosinus og sinus. Derfor bruger jeg samme udtryk som før, men her skal t blot være 1,5 da den lille cirkel er dobbelt så hurtig. π = x 1,5 x = π 1,5 = c (t =(cos( t sin ( t Som man igen kan se på fig. 4, så er punktet tilbage ved udgangspunktet når t er 1,5. Som et sidste step, summere jeg de vektorfunktioner ved at lægge de x funktioner sammen, og de y funktioner sammen. c(t =(cos( π t +cos( t sin ( π t,t [0 ;] t +sin( Jeg sætter definitionsmængden til [0;] da det er en enkelt omgang, og det er så meget sinus og cosinus er periodisk med i mit udtryk. Dvs. at hvis man fortsætter med at sætte t- værdier ind, der ligger uden for definitionsmængden vil man blot gentage bevægelsen. På fig. 5 ser man banekurven for punktet A. Jeg har indtegnet 4 punkter jeg kender med sikkerhed, nemlig når punktet er nået ¼, ½, ¾ gange rundt. Der ved jeg at punktet er nået halvejs og helt rundt på den lille cirkel, og at den lille cirkels centrum ligger på akserne. De 4 punkter er: (, 0, ( -1,, ( -1, 0, ( -1, - Fig. 4 Fig. 5

5 Hastighedsvektorer og accelerationsvektorer For at få et bedre overblik hvordan punktet A bevæger sig langs kurven tegner jeg et antal hastigheds- og accelerationsvektorer ind på banekurven. Hastigheds- og accelerationsvektorene bliver fundet ved at differentiere vektorfunktionen. Hastighedsvektoren er den første afledte og accelerationsvektoren er den anden afledte. c(t =(cos( π t +cos( t sin ( π t +sin( Først kigger jeg på om funktionen er differentiabel. For at kunne differentiere en vektorfunktion skal hver af koordinatfunktionerne være differentiable. x(t har led. Det ene led er et produkt hvor cosinus er det ene led. Inde i cosinus er der en lineær funktion. Det andet led er cosinus med en indre funktion der er lineær. Alle disse led er alle sammen differentiable i definitionsmængden. Det samme er tilfældet med y(t. Her er det blot sinus i stedet for cosinus. De forskellige regneregler der skal bruges er: ( f +g' = f ' (x+g ' (x Da der er en sum. (k f ' = k f ' ( x Da der er et produkt, men det ene led er en konstant. ( f o g' = f ' (g (x g' ( x Da der er sammensatte funktioner. Derudover kender jeg differentialkvotienten til nogle af leddene: (cos(x' = sin( x (sin( x' = cos(x (ax' = a c' (t =( ( sin( π t π +( sin ( t differentiere =( igen. π ( sin ( c' (t t+( sin ( 4 π t cos( π t+cos( 4 π t c' ' (t =( ( π cos( π t π +cos( Nu er det blot at bruge disse regneregler på udtrykket for A's banekurve. Jeg reducerer udtrykket før jeg Det var hastighedsvektoren. Accelerationsvektoren finder jeg ved differentiere igen. π ( cos( c' ' (t =( t π + ( cos( t 4 π π ( sin ( t π + ( sin ( t ( cos( π ( t+ ( cos( 4 π t ( π ( sin( π t+ ( t t ( sin( 4 π

6 x'(t = y'(t = Fig. 6 Her har jeg tegnet banekurven for den første afledte funktion. Den røde streg er den funktion jeg fandt frem til, og den grønne er den jeg fandt frem til ved hjælp af Microsoft Mathematics. Man kan se på kurven at farten på karrusellen på et tidspunkt er 0. Det kan man se fordi kurven går igennem orego. Når den gør det, er det fordi vektorfunktionen på et tidspunkt er lig nulvektoren.

7 x''(t = y''(t = Fig. 7 Her fandt jeg selv frem til den røde, mens den grønne er den jeg fandt frem til ved hjælp af Microsoft Mathematics. I modsætning til hastigheden, så bliver accelerationen aldrig 0. Grunden til at hastigheden gør det, er fordi når accelerationsvektoren peger i modsat retning af hastighedsvektoren, så er accelerationen negativ. Altså aftager farten. I det punkt hvor retningen vender og hastigheden altså er nul, der er der stadig en acceleration, da accelerationen fortæller om hvad farten er efter et tidsrum.

8 De første hastigheds- og accelerationsvektorer jeg vil finde, er der hvor banekurven for punktet A skærer x-aksen. For at kunne finde vektorene i de punkter skal jeg finde ud af hvilken værdi t har i de punkter. Jeg ved at 0 er en af værdierne, da punktet A starter i (, 0 til tiden 0. Derudover ved jeg at funktionen er periodisk med, da det er omgangstiden. Derfor er hastigheds- og accelerationsvektorene identiske uanset om tiden er 0,, 6.. Z*. Til sidst ved jeg at det også må være i punktet ( 1, 5, da den store karrusel er nået præcist en halv omgang, og den lille karrusel er nået præcist 1 omgang. For at finde hastighedsvektorene sætter jeg derfor først 0 ind i forskriften. c' (0 =( π ( sin( cos( π 0+cos( 0 0+( sin( 0 Så sætter jeg 1,5 ind for at vise at det giver nulvektoren. ( c' (1,5 = ( sin ( π cos( π = ( 0 8π 1,5+( sin( 1,5 1,5+cos( 1,5 = ( 0 0 Nu finder jeg så accelerationsvektorene i de punkter ved at sætte de samme værdier. Den eneste forskel er, at nu sætter jeg dem ind i forskriften for accelerationsvektoren. ( c' ' (0 = ( π ( π c' ' (0 = ( 8 π ( cos( π 0+ ( 4 π 0 Så sætter jeg 1,5 ind. c' ' (1,5 =( ( π ( π ( sin( π 0+ ( 4 π c' ' (1,5 = ( ( cos( π 1,5+ ( 4 π ( cos( 0 ( sin( ( sin( π 1,5+ ( 4 π ( cos( 1,5 ( sin (

9 Accelerationsvektorens y-koordinat til t = 1,5 er 0, da π 1,5 = π og 1,5 = π Derudover ved jeg at sin( π = 0 og ifølge nulreglen, så vil et produkt give nul hvis et af leddene giver nul. Fig. 8 Her er de af de 4 vektorer jeg fandt tegnet ind. Nulvektoren har jeg tegnet ind som punktet C. Den røde vektor er hastighedsvektoren, og den blå og den grønne er begge accelerationsvektorer. Hvis man kigger på den blå og den røde kan man se at de er ortogonale. Det kan man også se deres koordinater, hvor x- og y-koordinatet er byttet om. Det betyder, at i det punk vil A hverken accelerere eller decelerere.

10 De næste vektorer jeg vil finde, er der hvor bevægelsesretningen er parallel med x-aksen. Dvs. at jeg skal finde de hastighedsvektorer hvor y-koordinatet er nul. Jeg skal først finde tiden t, hvor bevægelsesretningen er parallel med x-aksen. Det gør jeg ved at løse ligningen y' (t = 0 0 = cos( π t+cos( t Jeg starter med at fjerne konstantleddene ved at dividere med dem. Det skal jeg gøre i hvert led i ligningen. 0 = cos( π t cos( 4 π + t 0 = cos( π 4 π t +cos( t Herefter kan jeg tage invers cosinus, fordi hvis man tager cosinus af et tal, får man et nyt tal. Hvis man tager invers cosinus på det tal, kommer man tilbage igen. cos 1 (0 = π t+ π t = 4 π t Da der er af de samme led kan jeg sætte dem sammen ved at gange det ene med og fjerne det andet. Til sidst deler jeg leddene på begge sider af lighedstegnet, med konstantleddet der står på højre side. cos 1 (0 4 π = t 4 π π 6 π = t t = π π t = 1 Som man kan se på fig. 9, så passer det meget godt med at vi har en vandret tangent når t = 0.5, men det ser ud som der er steder der er en vandret tangent. Her ved vi at en halv omgang sker på 1,5 sek. Da kurven er symmetrisk om x-aksen, så må det andet punkt være når der er gået sek 0,5 sek. Altså ved,5 sek. Dette tilfælde ses på fig. 10. Fig. 9

11 For så at finde de 4 vektorer, hastighedsvektorer og accelerationsvektorer, sætter jeg blot de værdier ind ligesom i forrige opgave. =( c' (0,5 0 =( c' (,5 0 =( 4 π c' ' (0,5 9 4 π ( c' ' (,5 = 9 4 π Fig. 10 Fig. 11 De røde er hastigheden og de blå er accelerationen.

12 Til sidst finder jeg der hvor accelerationen er højest, og der hvor den er lavest. For at vide hvor stor accelerationen er, så er man nødt til at kigge på længden af vektoren. Den korteste vektor er også den laveste acceleration og den længste er den største. For at finde længden, bruger jeg formlen for længden af en linje. a = x + y Da de koordinater i vektorfunktionen repræsenterer hver sit koordinat, kan jeg blot sætte x''(t og y''(t ind. a = x' ' (t + y' ' (t Dette give mig så længden af accelerationsvektoren som en funktion af t. Det giver mig en graf jeg kan tegne, og finde ekstremumspunkter på. Fig. 1 Der er ikke plads på papiret til at skrive hele formlen op. For så at finde ekstremumspunkterne, finder jeg der hvor tangenten i punktet har hældningskoefficienten 0. Da den afledte funktion angiver hældningen på tangenten i et punkt, er jeg derfor først nødt til at differentiere funktionen.

13 Funktionen består yderst af en kvadratrod. Det er samtidig en sammensat funktion. Derfor differentiere jeg den yderste først, og lader den inderste stå. ( x' ' (t + y' ' (t ' = 1 x ' ' (t + y' ' (t (x ' ' (t + y ' ' (t ' Det næste der skal differentieres er de andengradsled. De er en sum, derfor skal de differentieres hver for sig. Hver af dem er også sammensatte funktioner, hvor den yderste er et polynomium. Derfor differentiere jeg dem på samme måde som forrige. (x ' ' (t + y ' ' (t ' = x' ' (t (x ' ' (t'+ y ' ' (t ( y' ' (t' Til sidst er der hver af a koordinaterne der skal differentieres. De består af en konstant gange en sammensat funktion plus en sammensat funktion. Den yderste af de sammensatte er en trigonometrisk, og den inderste er en lineær funktion. Derfor skal den differentieres på samme måde jeg gjorde længere oppe. x ' ' ' (t = ( π y' ' ' (t = ( π sin( π t+ ( 4 π ( cos( π t+ ( sin ( 4 π t ( cos( t Fig. 1 Den røde er den jeg selv fandt. Den grønne er den jeg fandt med Microsoft Mathematics.

14 På grafen kan jeg se at den længste vektor ligger meget tæt på 0, eller. og den korteste ligger ca. i midten. Ved så at løse l ' (t=0 finder jeg der hvor hældningen er 0. Det er også der hvor der er ekstremumspunkter. Fig. 14 Fig. 15 På figur 14 og 15 ser man ekstremumspunkterne. Man ser også at de er lige ud for hvor den afledte funktion skærer x-aksen. Da den er længst nå x er så må den også være det når x er 0, da min funktion jo er periodisk med.

15 Konklusion Jeg synes at opgaven var meget lang, og jeg har da heller ikke tegnet nogen ekstra vektorer ind, selvom der stod det i opgaven, da jeg syntes det var for meget med at rode med lommeregneren og GeoGebra, end det at bruge sit hoved på at lave matematik. Der var lidt for meget robot-opgaver over det, da jeg synes man gjorde det samme igen og igen. Jeg fik dog fundet længste og korteste accelerationsvektorer. Der tror jeg godt at jeg kunne have løst ligningen selv, men da den var for lang til at være på papiret nøjedes jeg med at bruge lommeregneren.

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Vektorfunktioner. Frank Villa. 23. april 2013

Vektorfunktioner. Frank Villa. 23. april 2013 Vektorfunktioner Frank Villa 23. april 2013 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Parameterkurver. Et eksempel på en rapport

Parameterkurver. Et eksempel på en rapport x Parameterkurver Et eksempel på en rapport Parameterkurver 0x MA side af 7 Hypocykloiden A B Idet vi anvender startværdierne for A og B som angivet, er en generel parameterfremstilling for hypocykloiden

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Københavns

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30.

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30. Opgaver Polære koordinater Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 15, 70, 60, 0. Opgave Bestem sin π Opgave. Et punkt p i xy-planen er givet ved de kartesiske koordinater,. Bestem p s polære

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Differentialkvotient af cosinus og sinus

Differentialkvotient af cosinus og sinus Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises

Læs mere

Ugesedler til sommerkursus

Ugesedler til sommerkursus Aalborg Universitet - Adgangskursus Ugesedler til sommerkursus Matematik B til A Jens Friis 12 Adgangskursus Strandvejen 12 14 9000 Aalborg tlf. 99 40 97 70 ak.aau.dk sommer Matematik A 1. Lektion : Mandag

Læs mere

Matematik Aflevering - Æggebæger

Matematik Aflevering - Æggebæger Matematik Aflevering - Æggebæger Lavet af Morten Kvist i samarbejde med Benjamin Afleveret d. 17/3-2006 Afleveret til Kristine Htx 3.2 Side 1 af 6 Opgave 1 Delopgave A Først har jeg de to logaritme funktioner,

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Lidt om plane kurver og geometrisk kontinuitet

Lidt om plane kurver og geometrisk kontinuitet Lidt om plane kurver og geometrisk kontinuitet Jesper Møller og Rasmus P. Waagepetersen, Institut for Matematiske Fag, Aalborg Universitet September 3, 2003 1 Indledning Dette notesæt giver en oversigt

Læs mere

Matematikkens mysterier - på et højt niveau. Kenneth Hansen. 5. Kurver og keglesnit

Matematikkens mysterier - på et højt niveau. Kenneth Hansen. 5. Kurver og keglesnit Matematikkens mysterier - på et højt niveau af Kenneth Hansen 5. Kurver og keglesnit 5. Kurver og keglesnit 5.1 Kurver: Parameterfremstilling og ligning 5. Hastighed, acceleration og tangenter 7 5.3 Kurveundersøgelser

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011-juni 2014 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2010-juni 2013 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge.

Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge. Cykloider Vi begynder med at repetere noget af det tidligere gennemgåede som vi skal bruge Retningspunkt (repetition) Figur 1 viser enhedscirklen Det viste punkt P er anbragt sådan at den øverste af buerne

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå Polynomier Kort gennemgang af polynomier og deres asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Løsningsforslag MatB Jan 2011

Løsningsforslag MatB Jan 2011 Løsningsforslag MatB Jan 2011 Opgave 1 (5 %) Funktionen f er givet ved forskriften f (x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). Løsning: a) f (x) = ln(x 2) + x 2 Da den naturlige

Læs mere

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3 eks. Intro til differentialregning side 1 Opvarmningsopgaver 10. november 2012 12:58 Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3 Gang parentesen ud: Forkort brøken (x

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2011 HTX

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren:

Læs mere

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex ADGANGSKURSUS AALBORG UNIVERSITET Formelsamling Brush-up Flex 2016 Indholdsfortegnelse 1. Brøkregning... 2 2. Parenteser... 3 3. Kvadratsætningerne:... 3 4. Potensregneregler... 4 5. Andengradsligninger...

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Kapitel 2. Differentialregning A

Kapitel 2. Differentialregning A Kapitel 2. Differentialregning A Indhold 2.2 Differentiabilitet og tangenter til grafer... 2 2.3 Sammensat funktion, eksponential-, logaritme- og potensfunktioner... 7 2.4 Regneregler for differentiation

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 13/14 Institution Grenaa HTX Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B Bo Paivinen Ullersted

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Matematik A. Højere teknisk eksamen. 5 timers skriftlig prøve. Fredag den 17. december 2010 kl htx103-mat/a

Matematik A. Højere teknisk eksamen. 5 timers skriftlig prøve. Fredag den 17. december 2010 kl htx103-mat/a Matematik A Højere teknisk eksamen 5 timers skriftlig prøve htx103-mat/a-17122010 redag den 17. december 2010 kl. 9.00-14.00 Side 1 af 7 sider Matematik A 2010 Prøvens varighed er 5 timer. Alle hjælpemidler

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar 2014-maj 2017 Institution Uddannelse Fag og niveau Lærer(e) HTX Skjern Htx Matematik A Ole Egelund

Læs mere

Differentiation. Frank Nasser. 11. juli 2011

Differentiation. Frank Nasser. 11. juli 2011 Differentiation Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

M A T E M A T I K. # e z. # a. # e x. # e y A U E R B A C H M I K E. a z. a x

M A T E M A T I K. # e z. # a. # e x. # e y A U E R B A C H M I K E. a z. a x M A T E M A T I K B A M I K E A U E R B A C H WWW.MATHEMATICUS.DK z a z # e z # a a x # e x ay # e y y x Matematik B A. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes

Læs mere

1 Differentialkvotient

1 Differentialkvotient gudmandsen.net Ophavsret Kopiering, distribution og fremvisning af dette dokument eller dele deraf er tilladt i ikke-kommercielle sammenhænge, sålænge dette foregår med tydelig kildeangivelse. Al anden

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Løsning MatB - januar 2013

Løsning MatB - januar 2013 Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar 2011-maj 2013 Institution Uddannelse Fag og niveau Lærer(e) HTX Skjern Htx Matematik A Ole Egelund

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne 21 Matematik B Kurset svarer til det gymnasiale niveau B 21.2.2 Kernestof Kernestoffet er: regningsarternes hierarki, det udvidede

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2008-juni 2011 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2010-juni 2013 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas UVB Skoleår: 2013-2014 Institution: Fag og niveau: Lærer(e): Hold: Teknisk Gymnasium Skive Matematik A Claus Vestergaard og Franka Gallas 3. A Titel 1: Rep af 1. og 2. år + Gocart Titel 2: Vektorer i rummet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016/2017, eksamen maj-juni 2017 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

Differentiation af Trigonometriske Funktioner

Differentiation af Trigonometriske Funktioner Differentiation af Trigonometriske Funktioner Frank Villa 15. oktober 01 Dette dokument er en del af MatBog.dk 008-01. IT Teaching Tools. ISBN-13: 978-87-9775-00-9. Se yderligere betingelser for brug her.

Læs mere

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006 Den Naturvidenskabelige acheloreksamen Københavns Universitet Fysik 1-14. september 006 Første skriftlige evaluering 006 Opgavesættet består af 4 opgaver med i alt 9 spørgsmål. Skriv tydeligt navn og fødselsdato

Læs mere

Løsningsforslag MatB Juni 2013

Løsningsforslag MatB Juni 2013 Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Vektorfunktioner vha. CAS

Vektorfunktioner vha. CAS Vektorfunktioner vha. CAS 1 Forord Vi skal i de kommende uger arbejde med emnet Vektorfunktioner ved: 1) at I selv arbejder med siderne 3 10 som en opstart. Siderne baserer sig på CAS-programmet TI-Nspire.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2009-juni 2012 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion ISBN 978877664974 Projekter: Kapitel. Projekt. Omvendt funktion og differentiation af omvendt funktion Projekt. Omvendt funktion og differentiation af omvendt funktion Vi har i Bbogens kapitel 4 afsnit

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

Løsningsforslag MatB Juni 2012

Løsningsforslag MatB Juni 2012 Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

Kræfter og Arbejde. Frank Nasser. 21. april 2011

Kræfter og Arbejde. Frank Nasser. 21. april 2011 Kræfter og Arbejde Frank Nasser 21. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik A Angela

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2013/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen 7Ama1V13

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold December 2015 vinter VUC Vestegnen stx Mat A Gert Friis

Læs mere

Delmængder af Rummet

Delmængder af Rummet Delmængder af Rummet Frank Villa 15. maj 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

GUX Matematik Niveau B prøveform b Vejledende sæt 1

GUX Matematik Niveau B prøveform b Vejledende sæt 1 GUX-013 Matematik Niveau B prøveform b Vejledende sæt 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Eksempler på problemløsning med differentialregning

Eksempler på problemløsning med differentialregning Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014-2017 Institution Uddannelse Fag og niveau Lærer(e) Rybners HTX Esbjerg HTX Matematik A Henrik Lambæk

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

BEVISER TIL KAPITEL 3

BEVISER TIL KAPITEL 3 BEVISER TIL KAPITEL 3 Alle beviserne i dette afsnit bruger følgende algoritme fra side 88 i bogen. Algoritme: Fremgangsmåde til udledning af forskellige regneregler for differentiation af forskellige funktionstyper

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6. Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin august 2015 maj 2016 Institution Rybners Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik A Steffen Podlech 3F Oversigt over gennemførte undervisningsforløb Titel 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 08/09 Htx Sukkertoppen,

Læs mere

10. Differentialregning

10. Differentialregning 10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side

Læs mere

Vektorfunktioner vha. CAS

Vektorfunktioner vha. CAS Vektorfunktioner vha. CAS 1 Forord Vi skal i de kommende uger arbejde med emnet Vektorfunktioner ved: 1) at I selv arbejder med siderne 3 10 som en opstart. Siderne baserer sig på CAS-programmet TI-Nspire.

Læs mere

Undervisningsbeskrivelse Valghold 2011 2012 Matematik A

Undervisningsbeskrivelse Valghold 2011 2012 Matematik A Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2011-2012 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik A Valghold Henrik Pedersen HtxmatA311

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2017 Institution HANSENBERG Gymnasium Uddannelse Fag og niveau Lærer(e) Hold htx Matematik A Irina Kristensen

Læs mere

Enhedscirklen og de trigonometriske Funktioner

Enhedscirklen og de trigonometriske Funktioner Enhedscirklen og de trigonometriske Funktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere