Løsning MatB - januar 2013
|
|
- Magnus Laursen
- 2 år siden
- Visninger:
Transkript
1 Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =] 2; [ 1
2 Opgave 2 (5%) En funktion f er givet ved: f (x) = 2x 2 x. a) Bestem en ligning for tangenten til grafen for f i punktet P(1, f (1)). a) Tangentligningen har følgende forskrift: y f (x 0 ) = f (x 0 )(x x 0 ) Vi bestemmer først f (1) og f (x 0 ) f (1) = 2 1 = 1 f (x 0 ) = 4x 1 Vi indsætter x 0 = 1 for at finde hældningen i punktet x 0 = 1. f (1) = = 3 Indsættes disse i forskriften fas; y 1 = 3(x 1) y = 3x y = 3x 2 2
3 Opgave 3 (5%) Grafen for den lineære funktion f (x) = 3x + k, hvor k er et reelt tal, indeholder punktet P( 2, 4). a) Bestem tallet k. a) Indsættes punktet P( 2, 4) i funktionen 4 = 3 ( 2) + k k = 2 Opgave 4 (5%) En funktion f er givet ved: f (x) = e 2x 4x. a) Løs ligningen f (x) = 2. a) Vi differentierer funktionen f (x) = e 2x 4x f (x) = 2 e 2x 4 Denne sidste sættes til at være 2 2 e 2x 4 = 2 e 2x = 1 3
4 Vi tager logaritmen på begge sider af ligningen: Løsningsmængden bliver: ln(e 2x ) = ln(1) 2x ln(e) = ln(1) 2x = ln(1) 2 ln(e) = 0 L = {0} Opgave 5 (5%) I en trekant ABC er følgende størrelser givet: C = 90 0, A = 30 0 og a = 6. a) Beregn længden af siden c. a) Vi starter med at skitsere treekanten vha. GeoGebra. sin(30 0 ) = a c a c = sin(30 0 ) = = 12 4
5 Opgave 6 (25%) En funktion f er givet ved : f (x) = x 1 + x 2. a) Bestem definitionsmængden for funktionen f og skitsér dens graf. b) Bestem monotoniforholdene for funktionen. c) Bestem koordinaterne til de punkter på funktionens graf, hvor der er lokale ekstremumspunkter. Grafen for funktionen har en tangent, der er parallel med linjen med ligningen: y = x 1. d) bestem en ligning for denne tangent. Bestem værdimængden for funktionen f. a) Da nævneren ikke må være nul kan vi jo bare skrive: 1 + x 2 0 Og denne sætning kan aldrig bliver falsk, dvs. den er altid sand altså forskellig fra nul for alle x-værdier. Det betyder at definitionsmængden bliver: Dm f = R Vi kan skitsere funktionen vha. GeoGebra. 5
6 b) Monotoniforholdene bestemmes Vi starter med at differentiere funktionen og sætter den differentierede til nul. f (x) = x 1 + x 2 f (x) = 1 (1 + x2 ) 2x x (1 + x 2 ) 2 = 1 + x2 2x 2 (1 + x x ) 2 = 1 x2 (1 + x 2 ) 2 f (x) = 0 1 x 2 (1 + x 2 ) 2 = 0 1 x 2 = 0 x = ±1 6
7 Vi kan konkludere følgende: f (x) aftager i intervallet ] ; 1] og [1; [ f (x) vokser i intervallet [ 1;1] Lokale extremum har koordinaterne: lok. min. ( 1, 1 2 ) og lok. max. (1, 1 2 ). De lokale extremum er samtidig globale da de opfylder følgende betingelser: Globalt minimum hvis f (x 0 ) f (x) for alle x Dm f Globalt maximum hvis f (x 0 ) f (x) for alle x Dm f Vi kan lige prøve at indsætte x = 2 og x = 2 se om det passer på følgende måde, da f (x 0 ) = 1 for min. og f (x 0 ) = 1 for max. f ( 2) = ( 2) 2 = 2 5 Dvs. f ( 2) = 2 5 f ( 1) = 1 2 f (2) = = 2 3 Dvs. f (2) = 5 25 f (1) = 1 2 c) Lokale extremumspunkter er beregnet som Lokale extremum har koordinaterne: lok. min. ( 1, 1 2 ) og lok. max. (1, 1 2 ). d) Bestem en ligning for en tangent til funktionen der parallel med ligningen y = x 1 Det betyder jo at tangententens hældning bliver f (x 0 ) = 1 1 x 2 (1 + x 2 ) 2 = 1 (1 x 2 ) = 81 + x 2 ) 2 1 x 2 = 1 + x 4 + 2x 2 7
8 3x 2 + x 4 = 0 x 2 (3 + x 2 ) = 0 Nulreglen bruges x 2 = 0 (3 + x 2 ) = 0 x 2 = 0 x = 0 Ø bliver Dvs. x 0 = 0 der hvor tangentligningen har hældningen 1. Tangentligningen y f (x 0 ) = f (x 0 )(x x 0 ) f (x 0 ) = f (0) = 0 f (x 0 ) = f (0) = 0 y 0 = 1(x 0) y = x e) Værdimængden aflæses til V m f = [ 1 2, 1 2 ] 8
9 Opgave 7 (15%) I en trekant ABC, hvor A er spids, er følgende størrelser givet: b = 9,5 og højden fra C på siden c er h c = 4. a) Skitsér trekanten, og beregn vinkel A. I en anden trekant DEF er D = 25 0, f = 7 og e = 9,5. b) Beregn længden af siden d. c) Beregn vinklerne E og F. Vi startere med at skitsere trekanten vha. GeoGebra. a) Beregning af vinkel A kan gøres på forskellige måder. Vi kan f.eks. længden AD ud fra trekanten ABD vha. pythagoras og dernæst bruge cosinusrelation. AD = AD =
10 cosa = AD 2 + b = AD 9, A = Trekanten DEF skitseres som følger. b) Længden af siden d bestemmes vha. cosisusrelation på følgende måde: d 2 = e 2 + f 2 2 e f cos(d) d 2 = cos(25 0 ) d = 4.3 c) Beregning af vinklerne E og F beregnes vha. cosinusrelationerne E = cos 1 ( d2 + f 2 e 2 2 d f ) = cos 1 ( ) F = ( )
11 Opgave 8 (5%) En eksponentiel udvikling f (x) = b a x har fordoblingskonstanten T 2 = 3. Det oplyses, at f (2) = 16. a) Bestem f (5) a) Da vi kender fordoblingskonstanten kan vi hurtigt opstille følgende ligning: T 2 = ln(2) ln(a) = 3 Vi kender også funktionsværdien når vi indsætter x = 2 i den originale eksponentiel udvikling. Vi kan derefter opstille følgende ligning: f (2) = b a 2 = 16 giver Nu har vi altså to ligninger og vi kan hurtigt konstatere at den første ligning ln(a) = ln(2) 3 = 0.23 Vi tager logaritmen på begge sider af lighedstegnet e ln(a) = e 0.23 a = 1.26 Denne indsættes b a 2 = 16 11
12 b (1.26) 2 = 16 b = 16 (1.26) 2 = Indsættes disse værdier i den originale funktionsforskrift fås: f (x) = b a x f (x) = x For at finde f (5) skal vi blot indsætte x = 5 i den opstillede eksponentielfunktion. f (5) = = 32 Opgave 9 (10 %) En funktion f er givet ved: f (x) = x, en funktion g er givet ved: g(x) = x 2 +x 2 og en funktion h er givet ved: h(x) = ln(2x + 1). a) Bestem definitionsmængden for den sammensatte funktion f (g(x)) = ( f g)(x). b) Bestem regneforskriften for den omvendte (inverse) funktion til funktionen h. a) Inden definitionsmængden skal vi bestemme den sammensatte funktion på følgende måde: f (g(x)) = ( f g)(x) 12
13 f (g(x)) = ( f g)(x) = x 2 + x 2 Vi må kræve at indmaden af kvadratroden ikke bliver negativ for at finde definitionsmængden af den sammensatte funktion. x 2 + x 2 0 Faktoriseres denne fås: (x + 2)(x 1) 0 Regel 6 på side 91 i Bog1 anvendes: a b > 0 (a > 0 b > 0) (a < 0 b < 0) (x + 2) 0 (x 1) 0 (x + 2) 0 (x 1) 0 (x 2 x 1) (x 2 x 1) x 1 x 2 Definitionsmængden af den sammensatte funktion bliver løsningsmængden. Dm( f g)(x) =] ; 2] [1; [ Og kan også ses af GeoGebraløsningen nedenunder: 13
14 b) Regneforskriften for den omvendte (inverse) funktion h. h(x) = ln(2x + 1) y = ln(2x + 1) Vi bytter xog y x = ln(2y + 1) Logaritmen tages på begge sider: e x = e ln(2y+1) e x = 2y + 1 y = ex 1 2 Som ses så gælder da følgende for den omvendte funktion: Dmh = V mh 1 =] 1 2 ; [ V mh = Dmh 1 = R Opgave 10 (15 %) Der er registreret følgende pointfordeling ved en prøve på en skole: Point sum Hyppighed Frekvens Kumuleret frekvens
15 a) Tegn en sumkurve for pointfordelingen. b) Bestem kvartilsøttet og middelværdien. c) Bestem hvor mange procent af eleverne, der har opnået mindst 90 point i pråven. a) Sumkurven tegnes først efter følgende tabel er lavet Interval endepunkter Kumuleret frekvens GeoGebra bruges til at skitsere sumkurven på ffølgende måde: 15
16 b) Middelværdien beregnes: µ = = Opgave 11 (5 %) På nedenstående figur er vist de grafiske billeder for en funktion f og dens afledede f. a) Angiv med begrundelse, hvilken graf der afbilder grafen for f og hvilken der afbilder grafen for f. a) Man kan se af figuren at funktionens afledede f (A) har nulpunkter der hvor funktionen f (B) har ekstema. Funktionen B beskriver således f 16
Løsningsforslag MatB Juni 2012
Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion
Løsningsforslag 27. januar 2011
Løsningsforslag 27. januar 2011 Opgave 1 (5%) Isolér t i udtrykket: 3x + 4 = 2x + t t 3x + 4 = 2x + t t og t 0 t(3x + 4) = 2x + t 3tx + 4t t = 2x t(3x + 4 1) = 2x t = 2x 3x + 3 og G = R\{-1} Opgave 2 (5%)
Løsningsforslag Mat B August 2012
Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave
Løsningsforslag MatB Juni 2014
Løsningsforslag MatB Juni 2014 Opgave 1 (5 %) a) Bestem en ligning for den rette linje l, der indeholder punkterne P( 2,4) og Q(4, 1) Løsning: Da de to punkter er givet kan vi beregne hældningen på følgende
Løsningsforslag MatB December 2013
Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor
Løsningsforslag MatB Jan 2011
Løsningsforslag MatB Jan 2011 Opgave 1 (5 %) Funktionen f er givet ved forskriften f (x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). Løsning: a) f (x) = ln(x 2) + x 2 Da den naturlige
Løsningsforslag Mat B 10. februar 2012
Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.
Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren:
Løsningsforslag MatB Juni 2013
Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x
11. Funktionsundersøgelse
11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med
Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Parallelle linjer En linje l går gennem punktet og er parallel med linjen m der er givet ved:
GL. MATEMATIK B-NIVEAU
GL. MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 29. maj 2013 2016 Opgave 1 Opgave 2 Opgave 3 Opgave 4 Vejledende eksempler på eksamensopgaver og eksamensopgaver
Løsningsforslag 7. januar 2011
Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen
Differentialregning 2
Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()
matx.dk Enkle modeller
matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær
Studentereksamen i Matematik B 2012
Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er
Løsning til aflevering - uge 12
Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store
(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2
MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum
Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.
Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående
Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner
MATEMATIK A-NIVEAU. Kapitel 1
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01
Ib Michelsen Vejledende løsning stxb 101 1
Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er
Matematik B-niveau 31. maj 2016 Delprøve 1
Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =
Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4
Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat
Matematik B-niveau STX 7. december 2012 Delprøve 1
Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme
Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier:
Løsningsvejledning til eksamenssæt fra januar 2009 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - To linjer Vi får opgivet linjen m: Vi skal bestemme en ligning til linjen l, som er parallel med
Spørgsmål Nr. 1. Spørgsmål Nr. 2
Spørgsmål Nr. 1 TITEL: Statistik Definition af beskrivende statistik Opdeling af beskrivende statistik i grupperede observationer og ikke grupperede observationer Deskriptorerne typetal og middelværdi
10. Differentialregning
10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C MIHY (Michael
Matematik A August 2016 Delprøve 1
Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,
Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.
1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,
1hf Spørgsmål til mundtlig matematik eksamen sommer 2014
1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE
[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0
MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015
Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau HHX Matematik C Lærer(e) LSP ( Liselotte Strange-Pedersen
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C PEJE (Pernille
MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010
MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 2016 MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 Dette
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2011 Institution ZBC, Vordingborg Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jørgen Slot
PeterSørensen.dk : Differentiation
PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3
1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det.
Emne: procent og rente: 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet
Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk
Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres
Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg
Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.
Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) SIPE
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B (hf-enkeltfag)
13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b
3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik
Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11.
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2010/11 Institution Uddannelse Fag og niveau Lærer(e) Hold Zealand Business College Hhx Matematik
Undervisningsbeskrivelse
Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A Kenneth Berg k708hhxa3 Oversigt over gennemførte undervisningsforløb
Matematik A, STX. Vejledende eksamensopgaver
Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,
Undervisningsbeskrivelse
Undervisningsbeskrivelse Klasse/hold Fag og niveau Lærer at2hhcmkb11 Matematik B Birgit Paulsen Oversigt over undervisningsforløb 1 Beskrivende statistik 2 Funktioner generelt 3 Lineære funktioner 4 Andengradsfunktioner
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B MANY (Mads Schulz
MATEMATIK B-NIVEAU STX081-MAB
MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver
GUX. Matematik Niveau B. Prøveform b
GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.
Løsninger til eksamensopgaver på B-niveau 2014
Løsninger til eksamensopgaver på B-niveau 014. maj 014: Delprøven UDEN hjælpemidler Opgave 1: Algekoncentrationen målt i mio. pr. L betegnes med A. Tiden måles i antal timer fra start og angives med t.
Ugesedler til sommerkursus
Aalborg Universitet - Adgangskursus Ugesedler til sommerkursus Matematik B til A Jens Friis 12 Adgangskursus Strandvejen 12 14 9000 Aalborg tlf. 99 40 97 70 ak.aau.dk sommer Matematik A 1. Lektion : Mandag
Differentialregning. Ib Michelsen
Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af
Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion
ISBN 978877664974 Projekter: Kapitel. Projekt. Omvendt funktion og differentiation af omvendt funktion Projekt. Omvendt funktion og differentiation af omvendt funktion Vi har i Bbogens kapitel 4 afsnit
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund
Ang. skriftlig matematik B på hf
Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet
MAT B GSK december 2008 delprøven uden hjælpemidler
MAT B GSK december 008 delprøven uden hjælpemidler Opg Nedenstående diagram viser sumkurven F() for fordelingen af målte hastigheder højst 60 km/t. Bestem kvartilsættet (bent bilag ) og bestem hvor mange
Årsprøve i matematik 1y juni 2007
Opgave 1 Årsprøve i matematik 1y juni 2007 Figuren viser to ensvinklede trekanter PQR og P 1 Q 1 R 1 a) Bestem længden af siden P 1 Q 1 Skalafaktoren beregnes : k = 30/24 P 1 Q 1 = 20 30/24 P 1 Q 1 = 25
Differentialregning ( 16-22)
Differentialregning ( 16-22) 16-22. Side 1 Opgaver med rødt nummer er opgaver der går ud over B-niveauet. 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5)
Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014
Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Lene Thygesen
1 monotoni & funktionsanalyse
1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig
Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode
Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode Man kan skifte mellem tekst- og matemamatikmode ved at trykke på F5. I øjeblikket er jeg i tekstmode.. 2. lektion.
Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring
Matematik - et grundlæggende kursus Dennis Cordsen Pipenbring 22. april 2006 2 Indhold I Matematik C 9 1 Grundlæggende algebra 11 1.1 Sprog................................ 11 1.2 Tal.................................
Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.
Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f
navn: dato: fag: Matematik hold: 2dMa modtaget af: ark nr: 1 af i alt 12 ark
ark nr: af i alt ark Opgave En lineær funktion f opfylder at dens graf går gennem A(3,7) og B(9,5) Vi finder hældningen a af grafen a = y - y 5-7 8 = = = 3 x - x 9-3 6 Forskriften for f kan nu bestemmes
9 Eksponential- og logaritmefunktioner
9 Eksponential- og logaritmefunktioner Hayati Balo, AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2 2. Crone og Rosenquist, Matematiske elementer
MAT B GSK december 2009 delprøven uden hjælpemidler
MAT B GSK december 009 delprøven uden hjælpemidler Opg Sumkurven for alderen i måneder på en HHX-klasses mobiltelefoner. 90%-fraktilen er 0, måneder a) Giv en fortolkning af 90%-fraktilen og bestem kvartilsættet..
MM501 forelæsningsslides
MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C CASO(Carina Suzanne
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold hf Matematik C Rukiye
MATEMATIK C. Videooversigt
MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.
Kapitel 2. Differentialregning A
Kapitel 2. Differentialregning A Indhold 2.2 Differentiabilitet og tangenter til grafer... 2 2.3 Sammensat funktion, eksponential-, logaritme- og potensfunktioner... 7 2.4 Regneregler for differentiation
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen
DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015
DELPRØVE 1 Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1, maj 2008 Følgende opgaver i delprøve 1 er løst i hånden, hvorefter det er skrevet ind i Word, så det er lettere at læse og evt. kommentere på udregningerne.
Stx matematik B december 2007. Delprøven med hjælpemidler
Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem
Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven
2014-0522 1stx141-MAT-B - eksemplarisk besvarelse Bemærk, at i opgaverne uden hjælpemidler er Maple blot benyttet som tekstbehandling. Til eksamen skal besvarelsen laves med papir og blyant. Opgavetksten
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2011 Institution Vejle Handelsskole Uddannelse Fag og niveau HHX Matematik C Lærer(e) LSP ( Liselotte
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 2012/13
GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB
GUX Matematik B-Niveau Fredag den 29. maj 2015 Kl. 9.00-13.00 Prøveform b GUX151 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 2009 Institution Silkeborg Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik, niveau
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleåret 13/14 Institution Herning HF oh VUC Uddannelse Fag og niveau Lærer(e) Hold hf Matematik
matx.dk Differentialregning Dennis Pipenbring
mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten
Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB
Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren
Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / Juni 2013 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen