MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

Størrelse: px
Starte visningen fra side:

Download "MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012"

Transkript

1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016

2 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01 Dette uddrag indeholder kapitel 3 som handler om ligninger og formler. Der vil blive foretaget beregninger samt illustrationer i CAS programmer herunder GeoGebra. Maple 016 anvendes til de mere komplicerede udregninger, idet man forudsætter, at man kan anvende CAS til eksamen. For anvendelse af dokumentet, anbefales det, at man prøver at løse opgaven først, inden man anvender løsningerne. 016 Side 1 ud af 16

3 Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01 Opgave STX matematik A niveau, kapitel 3 Formler og ligninger Opstilling af formel for BMI BMI = Hvor vægten er i kg. og højden er i m. a) Formlen for BMI kan skrives sådan kg højde BMI(x, y) = x y Hvor x betegner vægten og y betegner højden, målt i meter. b) Der undersøges for en person med en vægt på 70kg og højde på 180cm. BMI 70kg,1,8m = 70 (1.8) = 1.60 Så personen ligger i kategorien normalvægt. c) Der opstilles en funktion for en kvinde med en højde på 1.65m. BMI(x) = x 1.65 = x.75 Så undersøges vægtintervallet for kvinden, som ønsker at være i normalvægt. Der løses to ligninger = x.75 Ligningen løses for x vha. CAS-værktøjet WordMat. x = 50, = x.75 Ligningen løses for x vha. CAS-værktøjet WordMat. x = 67,7905 Så med kvindes højde på 1.65m (165cm) skal kvinden ligge i intervallet 50.36kg kg hvis hun ønsker at være i den kategori. Side ud af 16

4 Opgave 3.00 Opgave En funktion for spinat er givet Her er t tiden. y(t) = t a) Der løses en ligning. 19 = t Ligningen løses for t vha. CAS-værktøjet WordMat. t = Så når der er gået 4.1 (timer?) så er vitaminindholdet på 19. b) Der er nu givet en ny funktion over nitratindholdet i spinaten. z(t) = t Så indsættes 15 på y(t) da det er vitaminindholdet. 15 = t Ligningen løses for t vha. CAS-værktøjet WordMat. t = Dette tal indsættes i t på z(t). z( ) = = Så er nitratindholdet efter 6 timer på Der opstilles en model ud fra oplysningerne om at det radioaktive stof strontium 90; b = 7g a % =.45% Så der er altså tale om en eksponentiel model. a) Først omskrives a. a = 1 + ( ) = Så har man f(x) = x Hvor f(x) er mængden af strontium 90 og x er antal år efter 004. Nu bestemmes der for to år efterfølgende, dvs. indsættelse af. f() = = Så efter år er der kun 6.66 strontium 90 tilbage. Side 3 ud af 16

5 Opgave b) Funktionen blev allerede udregnet i a) så man har f(x) = x Hvor f(x) er mængden af strontium 90 og x er antal år efter 004. c) Der løses en ligning. 1 = x Ligningen løses for x vha. CAS-værktøjet WordMat. x = Så efter 78 år vil der være 1 gram tilbage. Der gives en række oplysninger, der nedskrives A cirkel = π r A trekant = 1 h g a) Så hvis de skal have lige store arealer. A cirkel = A trekant Så man har π r = 1 h g Opgave b) Så man isolerer r for at få et udtryk π r π = r = 1 h g π 1 h g π r = 1 h g π Først skrives formlerne ned. Spørgsmål a) og b) slås sammen. O cylinder = π r h A cylinder = π r V kegle = 1 3 π r h a) Først udtrykkes højden som funktion af r. Her har man 1dm 3 for keglen i det indre af cylinderen. Her isoleres højden. 1 = 1 3 π r h Fortsættes næste side Side 4 ud af 16

6 Opgave = 3 π r h 1 3 h = 1 3 π 1 r 3 π 1 r 3 π π r = h r Så indsættes den i h for formlen for en cylinder samt produktet af arealet for en cirkel pga. bunden. 3 O(r) = π r + π r π r Som altså er et funktionsudtryk. Der er givet tre punkter. De skrives lige ind i GeoGebra, så man har en formodning om, hvad man skal holde øje med. a) Man kunne evt. starte med at anvende formlen for den faktoriseret andengradspolynomium. (1), f(x) = a(x r 1 )(x r ) På grafen kan man se rødderne. De indskrives (), f(x) = a(x )(x 8) Desuden kender man punktet for R, den indsættes også i ovenstående. (3), 4 = a ( ) ( 8) Ligningen løses for a vha. CAS-værktøjet WordMat. a = 0,5 Så har man sin a-værdi. Den kan man indsætte i (), så man har Omskrives til andengradspolynomiet. Som er den ønskede polynomium. (4), f(x) = 1 (x )(x 8) 4 (5), f(x) = 1 4 x 5 x + 4 Side 5 ud af 16

7 Opgave Der tegnes en lille tegning over situationen. Som kunne være et godt bud. a) Så har man overfladeareal formlen. O kasse = b h + l b + l h Så hvis man betegner højden med x, så har man bredden som er 4x. Hermed er O kasse = x + x 4x + x 4x = 18x Så O(x) = 18x b) Man ønsker målet for klodsen, når volumen er 3. Formlen for volumen er V = l b h Her er b og h = x. Hvor l er 4 x, så har man V = 4x x x = 4x 3 Så løser man en ligning 3 = 4x 3 Ligningen løses for x vha. CAS-værktøjet WordMat. x = Som angiver både bredden og højden. Desuden skal man vide, at længden er 4x så man har x = 8. Derved kan man tegne figuren igen: Disse mål giver et rumfang på 3cm 3. Side 6 ud af 16

8 Opgave Opgaven løses i Maple 016. a) Fassfa b) Afsfasf Side 7 ud af 16

9 Opgave c) Her isoleres m i udtrykket: log(e) =.4 m 1. log(e) m =.4.4 log(e) + 1. m =.4 Så har man sin model fra det gennemsnitlige: y = m Så indsættes m i udtrykket for y. y = log(e)+1..4 Udtrykket forkortes. y = log(e)+1..4 = = log(e) = log(e) Som er det nye udtryk..4 log(e)+1. Først noteres formlerne for en kugle og en cylinder. Det oplyses, at kuglens radius er 10. Formlen for en cylinders rumfang: V cylinder = h π r a) Det ses, at halvdelen af cylinderen har højden t, altså må formlen for volumen være V cylinder = t π r Det ses, at kuglens radius kan udgøre hypotenusen i en retvinklet trekant samt højden t er en af kateterne, altså har man r + t = 10 r = 100 t Som man indsætter i formlen for volumen. V cylinder = t π (100 t ) = 00 π t π t 3 Som er det ønskede. Side 8 ud af 16

10 Opgave Der er givet en model over effektiviteten for en udøver af et stykke arbejde. f(t) = t, t 0 a) Der løses en ligning for t. Omtrent ca. 3 uger = t = t 0.05 = t = 0.9t log ( 1 1 ) t log(0.9) = log(0.9) log(0.9) t = Opgave Funktionen betragtes. f(x) = sin ( ) +, 0 x 4π a) Funktionens nulpunkter er der hvor den rammer x-aksen. Det ses grafisk. Så nulpunkterne må være hhv. x = 0 x = 4π. Fortsættes næste side Side 9 ud af 16

11 Man kan også finde nulpunkterne pr. håndkraft. sin ( ) + = 0 sin ( ) + = sin ( ) = sin ( ) = sin 1 (sin ( )) = sin 1 ( ) = π ( ) = ( π ) = π x = 0 Og så har man følgende ligning for sinus er periodisk, heraf sin 1 (k) = π p + k sin ( ) + = 0 sin ( ) + = sin ( ) = sin ( ) = sin 1 (sin ( )) = sin 1 ( ) = p π + π π ( ) = (p π + ) = 4π p π x = 4π p Så her ses det, at nulpunkterne ligger i intervallet x = 0 og x = 4π. b) Så differentieres funktionen, så man kan finde det maksimale punkt. f (x) = sin ( 1 x) Her gælder det stadig indenfor intervallet 0 x 4π sin ( 1 x) = 0 sin 1 (sin ( 1 x)) = sin 1 (0) 1 x = 0 x = 0 Så har man det første nulpunkt. Men da sinus er i perioder, løses ligning med tricket. Fortsættes næste side Side 10 ud af 16

12 sin ( 1 x) = 0 sin 1 (sin ( 1 x)) = sin 1 (0) 1 x = π p + 0 ( 1 x) = (π p + 0) x = π p Så man har nulpunkterne x = 0 x = π x = 4π For at undersøge, om funktionen har et maksimum, så tages den aflededes punkt og indsættes i den oprindelige funktion. Der gøres prøve. π π f(π) = sin ( ) + = 4 4π π f(4π) = sin ( ) + = 0 Så den maksimale højde er i y = 4. Dette indskrives i GeoGebra, så man kan 1) se højdepunktet og ) den aflededes punkt. Med god vilje kan man se, at der hvor den afledede rammer x aksen, så har f sit højeste punkt. Det hele sker i x = π, hvor y = 4. Ved aflæsning ses det også, at når den afledede vokser (over x aksen) så vokser den oprindelige funktion også. Men når først den afledede går under x aksen, så ses det, at f er aftagende. Deraf kan man konkludere at f er voksende i intervallet ]0; π] og aftagende i intervallet [π; 4π[ Side 11 ud af 16

13 Opgave 3.01 Der tegnes en figur over situationen a) Som det fremgår af figuren, ses det, at der er to ensvinklede trekanter. AED og EBF. Her er kateterne for AED AD = x, DE = For trekant EBF EF = 1.5, BF = y Så har man forstørrelsesfaktoren for to trekanter. EF AD = BF DE Her indsættes værdierne 1.5 x = y y = 3 x Så ønsker man (x + 1.5) + (y + ) = 5 Det ses på hele trekanten, at hypotenusen i alt er 5, og tages den i anden potens, har man 5. Heraf bruges Pythagoras. Ved afstanden fra AC har man (x + 1.5) og afstanden BC har man (y + ) Så kan man bruge Pythagoras. (x + 1.5) + (y + ) = 5 (x + 1.5) + (y + ) = 5 Som man ønskede. Nu isoleres udtrykket for y, så man har en ligning med x som variable. (x + 1.5) + (y + ) = 5 Så her indsættes den første fundet ligning. Som er en ligning. (x + 1.5) + ( 3 x + ) = 5 x x + 9 x + 1 x + 4 = 5 x + 3x + 9 x + 1 x = 0 x + 3x + 9 x + 1 x = 0 Ligningen løses for x vha. CAS-værktøjet WordMat. x = 6,63041 x = 0, x = 1,5 x =, De negative værdier forkastes, så man har 1.5 og.0 som mål man kan anvende. Side 1 ud af 16

14 Opgave Opgave Man formår at dugen er et rektangel som har arealformlen A = l b a) Her er l =.0 og b = 1.1 Her vil dugens areal reduceres med 5% efter en vask, så længden og bredden reduceres. Først omskrives 5%. Det bliver = 0.95 (fordi den krymper). Man har så A (0.95) =. (1 x) 1.1 (1 x) Her reduceres den med den første ligning vha division. A (0.95).4 (1 x) = A = (1 x) Som er den ønskede ligning. Der er givet en cylinder med en halv kugle, så man har formlen for volumen af en kugle, som skal indeholde 0cm 3 a) Formlen er Man har, at det er en halv kugle. Så V = 4 π r3 3 V kugle = π r3 3 Man har også formlen for cylinderen. V cylinder = h π r Da kuglen ligger inde i cylinderen, trækkes det fra. V beholder = V cylinder V kugle = h π r π r3 3 Man ved desuden, at den skal kunne indeholde 0dm 3 så her har man Endelig isoleres højden 0 = h π r π r3 3 0 = h π r 3 π r3 => h = 0 π r + r 3 b) Man skal nu finde overfladearealet af beholderen. Det ses, at A beholder = A cirkel + A cylinderside + A1 kugle = π r + π r h + 1 (4 π r ) = 3 π r + π r h Side 13 ud af 16

15 Opgave Der er givet en figur. a) Arealet af en firkant er givet ved A = h g Desuden er arealet for en vilkårlig trekant givet ved A = 1 a b sin(c) Det ses, at der er tre trekanter i firkanten. Arealet for den sidste trekant (vilkårlige) kan man finde ved at trække de andre fra. Altså man har Så har man A lille trekant = 1 (1 x)(1 x) A nederst = 1 (1 x) 1 A øverst = 1 1 (1 x) A = x x (1 x) 1 => A(x) = x + x Derved kan man nu bestemme arealet af den indre trekant. b) For at finde det største areal, differentieres funktionen. A (x) = 1 x Så løses den for en ligning 1 x = 0 x = 1 Så indsættes tallet i den oprindelige funktion A(1) = = 1 Så det største areal fås ved x = 1. Side 14 ud af 16

16 Opgave Parablen er givet. f(x) = ax + bx + c a) Man aflæser sin c-værdi til 4.8. Dermed kender man toppunktet for funktionen. T x = b a Her er b = 0. Da hele gavlens bredde er 5m, må rødderne være hhv..5 og.5 (da det er en parabel) Så man har f(x) = a(x r 1 )(x r ) Man kan isolere a ved at anvende sine rødder og toppunkt. 4.8 = a(0.5)(0 +.5) 4.8 = a(.5)(.5) 4.8 = 6.5a a = Så kan man indsætte den tilbage i den faktoriseret formel. f(x) = (x.5)(x +.5) f(x) = 0.768x Som altså er parablen. Denne tegnes. Fortsættes næste side Side 15 ud af 16

17 b) Man kan bestemme højden ved indsættelse af bredden i funktionen. Bemærk, at bredden er 3m, men da det er en parabel, indsættes 1.5. f(1.5) = = 3.07 Så højden er hermed 3.07m, når bredden er 3m. Så løses der en ligning 3.5 = x Ligningen løses for x vha. CAS-værktøjet WordMat. x = x = Disse tal lægges sammen numerisk 1, , =.6008 Så bredden for porten ved en højde på 3.5m giver altså.60m Slut på kapitel 3 - Formler og ligninger Kapitel 4 handler om Statistik og sandsynlighedsregning fra bogen: Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01 Side 16 ud af 16

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 5 Funktioner og grafer, modellering af variabelsammenhænge 2016 MATEMATIK A-NIVEAU Vejledende eksempler

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

GL. MATEMATIK B-NIVEAU

GL. MATEMATIK B-NIVEAU GL. MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 29. maj 2013 2016 Opgave 1 Opgave 2 Opgave 3 Opgave 4 Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

Matematik B-niveau STX 7. december 2012 Delprøve 1

Matematik B-niveau STX 7. december 2012 Delprøve 1 Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme

Læs mere

Matematik A eksamen 14. august Delprøve 1

Matematik A eksamen 14. august Delprøve 1 Matematik A eksamen 14. august 2014 www.matematikhfsvar.page.tl Delprøve 1 Info: I denne eksamensopgave anvendes der punktum som decimaltal istedet for komma. Eks. 3.14 istedet for 3,14 Opgave 1 - Andengradsligning

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX

MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX Anders Jørgensen & Mark Kddafi 2016 matematikhfsvar.page.tl 8. august 2016 15. august 2016 Anders Jørgensen & Mark Kddafi MATEMATIK

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010

MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 2016 MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 Dette

Læs mere

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A Matematik A, STX. Anders Jørgensen & Mark Kddafi

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A Matematik A, STX. Anders Jørgensen & Mark Kddafi MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A-24052016 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 4 Statistik & sandsynlighedsregning 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

Matematik B. Anders Jørgensen

Matematik B. Anders Jørgensen Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: KUGLESTØD

MATEMATIK, MUNDTLIG PRØVE TEMA: KUGLESTØD MATEMATIK, MUNDTLIG PRØVE TEMA: KUGLESTØD Kuglestød er en af atletikkens kastediscipliner, hvor man skal forsøge at støde en metalkugle længst muligt. Historisk set kan kuglestød føres tilbage til antikkens

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: Projekt Vejanlæg. Matematik B-niveau Differentialregning

VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: Projekt Vejanlæg. Matematik B-niveau Differentialregning VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: 333247 2015 Projekt Matematik B-niveau Differentialregning Anders Jørgensen, Kirstine Irming, Mark Kddafi, Zehra Köse og Tobias Winberg Indledning I dette

Læs mere

GUX. Matematik Niveau B. Prøveform b

GUX. Matematik Niveau B. Prøveform b GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion 1 Indledning Dette afsnit omhandler første delprøve, den uden hjælpemidler. Dette afsnit bygger på vejledningen til lærerplanen og lærerplanen for matematik b-niveau, samt eksamensopgaverne fra 2014-2012,

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Opgave 1 - Eksponentiel funktion/procent og renter

Opgave 1 - Eksponentiel funktion/procent og renter Alle beregninger er, hvis ikke andet angivet, udført med WordMat. Opgave 1 - Eksponentiel funktion/procent og renter Jeg vil nu finde ud af hvor stort et beløb der står på kontoen efter 1 år med en starts

Læs mere

Eksamen HFC 4. juni 2012

Eksamen HFC 4. juni 2012 Sponsoreret til af en dygtig elev Eksamen HFC 4. juni 2012 Opgave 1) Ligningen løses for K_0 vha. CAS-værktøjet WordMat. Der blev indsat 50.000 kroner på kontoen. b) Ligningen løses for r vha. CAS-værktøjet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår efterår 16, eksamen december 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er

Læs mere

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB GUX Matematik B-Niveau Fredag den 29. maj 2015 Kl. 9.00-13.00 Prøveform b GUX151 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

gl. Matematik B Studentereksamen

gl. Matematik B Studentereksamen gl. Matematik B Studentereksamen gl-stx123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger Eksamensspørgsmål 11q sommer 01. Gør rede for omformningsreglerne for ligninger. Spørgsmål 1: Ligninger Giv eksempler på hvordan forskellige ligninger løses. Du bør her komme ind på flere forskellige ligningstyper,

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2015, eksamen maj / juni 2015 Institution Kolding HF og VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. FORELØBIGE eksamensspørgsmål mac7100 og mac710 dec 01 og maj/juni 013. Spørgsmål 1: Ligninger Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Giv eksempler

Læs mere

Løsninger til eksamensopgaver på B-niveau 2014

Løsninger til eksamensopgaver på B-niveau 2014 Løsninger til eksamensopgaver på B-niveau 014. maj 014: Delprøven UDEN hjælpemidler Opgave 1: Algekoncentrationen målt i mio. pr. L betegnes med A. Tiden måles i antal timer fra start og angives med t.

Læs mere

Teknisk. Matematik FACITLISTE. Preben Madsen. 4. udgave

Teknisk. Matematik FACITLISTE. Preben Madsen. 4. udgave Teknisk Preben Madsen Matematik 4. udgave FACITLISTE Indhold TAL OG ALGEBRA... LIGNINGER OG ULIGHEDER... GEOMETRI... 4 TRIGONOMETRI... 5 CIRKLEN... 5 6 OVERFLADER UDFOLDNINGER... 5 7 RUMFANG... 8 8 ANALYTISK

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Louise Jakobsen,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 15/16, eksamen maj-juni 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Matematik A studentereksamen

Matematik A studentereksamen Xxxx Side 1 af 11 Opgave 7 Jeg aflæser af boksplottet for personbeskatningen i 2007 medianen til. Første og anden kvartil aflæser jeg til hhv. og. Den mindst observerede personbeskatning i år 2007 var

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 15/16, eksamen maj-juni 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold 2-årig

Læs mere

Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven

Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven 2014-0522 1stx141-MAT-B - eksemplarisk besvarelse Bemærk, at i opgaverne uden hjælpemidler er Maple blot benyttet som tekstbehandling. Til eksamen skal besvarelsen laves med papir og blyant. Opgavetksten

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2014/15, eksamen maj-juni 2015 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex ADGANGSKURSUS AALBORG UNIVERSITET Formelsamling Brush-up Flex 2016 Indholdsfortegnelse 1. Brøkregning... 2 2. Parenteser... 3 3. Kvadratsætningerne:... 3 4. Potensregneregler... 4 5. Andengradsligninger...

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 14MACB11E14

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

Løsningsforslag MatB Juni 2013

Løsningsforslag MatB Juni 2013 Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x

Læs mere

DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015

DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1 Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1, maj 2008 Følgende opgaver i delprøve 1 er løst i hånden, hvorefter det er skrevet ind i Word, så det er lettere at læse og evt. kommentere på udregningerne.

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx141-MATn/A-27052014 Tirsdag den 27. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 14/15 Hf

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx121-MATn/A-31052012 Torsdag den 31. maj 2012 kl. 09.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder.

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder. Parabler En funktion med grundformlen y = ax 2 + bx + c kaldes en andengradsfunktion. Det grafiske billede af en andengradsfunktion er altid en parabel. 1. Hvis a = 0, er det ikke en andengradsfunktion.

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen st10-mat/b-108010 Torsdag den 1. august 010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Vejledende Matematik A

Vejledende Matematik A Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes

Læs mere

INERTIMOMENT for stive legemer

INERTIMOMENT for stive legemer Projekt: INERTIMOMENT for stive legemer Formålet med projektet er at træne integralregning og samtidig se en ikke-triviel anvendelse i fysik. 0. Definition af inertimoment Inertimomentet angives med bogstavet

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2015/2016, eksamen maj-juni 2016 Institution Kolding HF&VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Matematik B. Studentereksamen. Torsdag den 22. maj 2014 kl stx141-MAT/B

Matematik B. Studentereksamen. Torsdag den 22. maj 2014 kl stx141-MAT/B Matematik B Studentereksamen 1stx141-MAT/B-22052014 Torsdag den 22. maj 2014 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07. Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.54 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve 1: 2

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2014/2015, eksamen maj-juni 2015 Institution Kolding HF&VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2013/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen 7Ama1V13

Læs mere

Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Parallelle linjer En linje l går gennem punktet og er parallel med linjen m der er givet ved:

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

Delprøven uden hlælpemidler

Delprøven uden hlælpemidler Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.

Læs mere