DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet

Størrelse: px
Starte visningen fra side:

Download "DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet"

Transkript

1 DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse. Opgave stilles fredag 16. februar 2007 og skal afleveres seest tirsdag 27. februar 2007 kl i DIKU s førstedelsadmiistratio. For at blive godkedt skal der være gjort et reelt forsøg på at løse samtlige spørgsmål. Besvarelse skal udarbejdes i grupper på to til tre deltagere. Grupper med é deltager kræver skriftlig accept fra istruktore midst e uge før opgave skal afleveres. Læs veligst hele opgaveformulerige igeem ide du går i gag. Hits til opgavere ka fås ved øvelsere, hvor der er afsat tid til at arbejde med projektopgave. Idledig Kapsack problemet har utallige avedelser idefor økoomi (budgetlægig) trasport (pakig, ladig), og som uderproblem ved løsig af mere komplekse problemer [4, 3]. Specielt bruges kapsack problemet til at separere lovlige uligheder i heltalsprogrammerigs-løsere og det opstår som pricig problem år ma løser bi-packig problemet ved Datzig-Wolfe dekompoerig. Kapsack problemet er et heltalsprogrammerigsproblem (IP-problem) som er NP-hårdt at løse. Formelt ka kapsack problemet defieres på følgede vis: Lad der være givet gestade som hver har e tilkyttet profit p j og vægt w j. Udvælg e delmægde af gestadee således at de samlede profit-sum bliver maksimeret ude at de tilhørede vægt-sum overstiger e give græse c, kaldet kapacitete. Hvis vi bruger biære variable x j til at agive om e gestad vælges eller ej, får vi følgede matematiske defiitio af problemet: maximize subject to p j x j (1) w j x j c, (2) x j {0,1}, j = 1,...,. (3) De optimale løsigsværdi vil blive beteget z. Det atages ormalt at alle koefficieter p j, w j og c er positive heltal. Se evt. Corme [2] afsit 16.2 for yderligere beskrivelse af problemet. Eksempel 1 I det følgede eksempel er c = 9 og der er givet = 7 gestade med følgede profitter og vægte: j p j w j De optimale løsig er at vælge gestadee 1 og 4 hvilket giver e optimal løsig på z = 15. 1

2 Løsig af det fraktioelle kapsack problem LP-relaxerige af (1) (3) svarer til det fraktioelle kapsack problem, hvor det er tilladt at medtage brøkdele af gestade: maximize subject to p j x j (4) w j x j c, (5) 0 x j 1, j = 1,...,. (6) Selv om problemet (4) (6) er et ormalt LP-problem, og derfor ka løses med Simplex algoritme, ka det bedre betale sig at løse problemet med e grådig algoritme. Først sorteres gestadee efter aftagede effektivitet p j /w j således at p 1 w 1 p 2 w 2 p 3 w 3... p w (7) hvorpå rygsække fyldes som følger: Elemetere 1, 2, 3,... lægges i rygsække idtil ma støder på de første gestad s, som der ikke er plads til. De optimale løsig er da at medtage de første s 1 gestade (dvs. x j = 1 for j = 1,...,s 1) mes e brøkdel af gestad s medtages således at hele de tilbageværede kapacitet udyttes: x s = c s 1 w j w s Ige af gestadee efter s medtages (dvs. x j = 0 for j = s + 1,...,). Det fraktioelle kapsack problem ka dermed løses i O( log ) tid, hvor de tugeste beregig er sorterige (7). Løsigsværdie til det fraktioelle kapsack problem beteges z LP z LP = s 1 Opgave 1 Fid z LP for istase fra eksempel 1. p j + p s c s 1 w j w s Grådig løsig Sorterige (7) ka bruges til at fide e lovlig (me ikke ødvedigvis optimal) løsig til kapsack problemet (1) (3). Vi geemløber gestadee i rækkefølge 1,2,3,..., og medtager gestad j (dvs. sætter x j = 1) hvis de ka tilføjes rygsække ude at overskride kapacitete c. De tilsvarede løsigsværdi vil blive beteget z G. Opgave 2 Fid z G for istase fra eksempel 1. 2

3 Duale problem Opgave 3 Opskriv (i geerel form) det duale problem af (4) (6). Lad y være de duale variabel svarede til begræsig (5) og y j for j = 1,..., være de duale variable svarede til begræsigere (6). Opgave 4 Agiv værdiere af y og y 1,...,y for istase fra eksempel 1. Opgave 5 Vis at der geerelt gælder at de duale værdi svarede til begræsig (5) er givet ved y = p s /w s. Opgave 6 Bestem i geerelt form de duale værdier y i svarede til begræsigere (6). LP-følsomhedsaalyse Ofte keder ma ikke profitter p j og vægte w j af gestadee med fuldstædig øjagtighed. Det ka derfor være relevat at bestemme hvor meget profitte eller vægte af e gestad j ka ædres ude at de optimale LP-løsig ædrer sig. Dette kaldes følsomhedsaalyse (sesitivity aalysis), jf. Taha [5] afsit 4.5. Opgave 7 Agiv for hver gestad j = 1,...,7 i eksempel 1 de midste og største værdi af profit p j således at LP-løsige er uædret. Det er tilstrækkeligt ku at redegøre for detaljere i udregige for de første gestad, og herefter at opstille alle resultater i tabel-form. Reduced-cost fixig Opgave 8 Vis at hvis vi øger/midsker kapacitete c af rygsække med, da er e øvre græseværdi U for det fraktioelle kapsack problem givet ved U(c + ) = z LP + y Atag at vi har fudet e LP-løsig til det fraktioelle kapsack problem (4) (6). Hvis der for e gestad j gælder at p p s j w j zlp z G (8) w s så vil x j i e IP-løsig (kapsack problemet) have samme værdi som x j i de tilhørede LP-løsig (fraktioelle kapsack problem). Opgave 9 Vis at oveståede påstad er korrekt. Metode kaldes reduced cost fixig og de ka avede til at formidske e istas af kapsack problemet idet de variable hvis IP-løsigsværdi er kedt ka fjeres fra problemet ([6] sectio 7.8 exercise 7). Opgave 10 Udreg værdie af p j w j p s /w s for j = 1,..., i istase fra eksempel 1, og aved reduced cost fixig til at bestemme de optimale IP-løsigsværdier for så mage variable som muligt. Opgave 11 Fjer de reducerede variable fra kapsack problem istase i eksempel 1 og opskriv det tilbageværede problem. Husk at reducere kapacitete c af rygsække med e passede værdi. 3

4 Dyamisk programmerig Bellma viste i 1957 at kapsack problemet ka løses med dyamisk programmerig [1] (se også Taha [5] afsit ). Lad f i (d) være e optimal løsig til (1) (3), hvor kapacitete er begræset til c = d og hvor ku de første i gestade tages i betragtig. Med adre ord har vi i i f i (d) = max{ p j x j : w j x j d, x j {0,1} for i = 0,..., og d = 0,...,c. For i = 0 ka ma aturligvis ku opå profit-summe 0 uaset værdie af d så der gælder f 0 (d) = 0 for d = 0,...,c (10) Hvis vi keder de optimale løsiger for f i 1 ka vi fide de optimale løsiger for f i ved brug af følgede rekursio { fi 1 (d) hvis d < w i f i (d) = { } (11) max f i 1 (d), f i 1 (d w i ) + p i hvis d w i De optimale løsigsværdi til (1) (3) fides dermed som z = f (c). Eksempel 2 Tabelle f i (d) for eksempel 1 løst med dyamisk programmerig bliver: d\ i } (9) IP følsomhedsaalyse Modsat følsomhedsaalyse af LP-problemer er det ikke emt at lave følsomhedsaalyse af IP-problemer. For kapsack problemet ka det dog lade sig gøre relativt effektivt ved brug af dyamisk programmerig. Betragt kapsack problemet fra eksempel 1 og de tilhørede dyamisk programmerigs tabel fra eksempel 2. Opgave 12 Atag at vi vil fide de midste og største værdi af p i således at IP-løsige er uædret. Vi betragter de sidste gestad = 7 i problemet. Betragt de sidste to koloer i dyamisk programmerigs tabelle, og agiv på basis af disse de midste og største værdi af p 7 så IP-løsige er uædret. 4

5 Dyamisk programmerigs rekursioe (11) fugerer uaset rækkefølge af gestadee. Vi ka derfor på skift lade hver gestad i være de sidste gestad i istase. Opgave 13 Beyt dee ide til for samtlige j = 1,...,7 at fide midste og største værdi af p j således at IP-løsige er uædret. Noter Det ka være hesigtsmæssigt at udvikle ogle små programmer til f.eks. at løse kapsack problemet med dyamisk programmerig. Dermed spares mage beregiger, og ma udgår at lave regefejl. Udskrifter af sådae programmer må godt vedlægges besvarelse, me besvarelse skal kue læses ude at kigge i programmet. Litteratur [1] R.E. Bellma (1957), Dyamic programmig, Priceto Uiversity Press, Priceto, NJ. [2] T.H. Corme, C.E. Leisersio, R.L. Rivest, C. Stei (2003), Itroductio to Algorithms, secod editio, MIT-Press, Cambridge, Eglad. [3] H. Kellerer, U. Pferschy, ad D. Pisiger (2004), Kapsack Problems, Spriger, Berli, Germay. [4] S. Martello ad P. Toth (1990), Kapsack Problems: Algorithms ad Computer Implemetatios, Wiley, Chichester, Eglad. [5] H.A. Taha (2003) Operatios Research, a itroductio, Pretice Hall, Lodo, Eglad. [6] L.A. Wolsey (1998) Iteger Programmig Wiley, Chichester, Eglad. 5

6 Vejledede løsiger Svar 1 Gestadee og deres profit-vægt forhold er: j p j w j p j /w j dvs. gestadee er allerede sorteret efter p j /w j. De grådig algoritme fider s = 3 og dermed de primale løsig de tilhørede løsigsværdi er x x x z LP = (9 5) 8 = = Svar 2 De grådige løsig medtager gestade 1,2,7. De tilhørede løsigsværdi er z G = p 1 + p 2 + p 7 = = 14 Svar 3 Primale problem for eksempel 1: )!#"$%$& ' ( )+* ' (, )- ' (, ) ' (, ) ' (, ). ' (, ) ' (, ' (, ) Duale problem for eksempel 1: 0/ )1*2,),),),),),),3)!#"$%$& )1*2 ) 4 ( )1* ) 4 ( )1* ) 4 ( )1* ) 4 ( )1* ) 4 ( )1* ) 4 ( )1* )54 ( 6

7 Geerelt gælder primale problem: maximize subject to p j x j (12) w j x j c, (13) 0 x j 1, j = 1,...,. (14) duale problem: miimize cy + y j (15) subject to w j y + y j p j, j = 1,..., (16) y j 0, j = 1,...,. (17) y 0 (18) Svar 4 Duale løsig er y y y Svar 5 De duale variabel y agiver hvor meget z LP ka øges hvis vi forøger c med 1. Dette vil etop svare til p s /w s Svar 6 De duale variabel y j agiver hvor meget z LP ka øges hvis vi forøger højreside i (6). Hvis x j < 1 i LP-løsige, så vil z LP ikke blive øget uaset hvor meget vi øger højreside i (6), og dermed y j = 0. Hvis x j = 1 i LP-løsige, vil z LP blive øget med p j w j p s /w s hver gag vi øger højreside i (6). Ituitivt set, får vi profitte af gestad j me vi skal fjere w j vægteheder af gestad s fra rygsække. Altså er y j = p j w j p s /w s. Svar 7 Følsomheds itervallere er: j p mi j p j p max j Svar 8 Da de duale værdi y agiver hvor meget z LP øges/midskes ved forøgelse/formidskelse af kapacitete c får vi direkte at U(c + ) = z LP + y 7

8 Svar 9 Atag at j < s dvs. p j /w j p s /w s. Da ka umeriskteget hæves og vi får kriteriet hvilket ka omskrives til p j w j p s w s z LP z G z G U(c + w j ) p j her agiver højreside e øvre græseværdi for det fraktioelle kapsack problem hvis vi sætter x j = 0. Med adre ord har vi e sædvalig upper boud test for forgreige x j = 0. Hvis kude ka forkastes, er det tilladt at sætte x j = 1. Atag at j > s dvs. p j /w j p s /w s. Da hæves umeriskteget og vi får kriteriet hvilket ka omskrives til p j + w j p s w s z LP z G z G U(c w j ) + p j her agiver højreside e øvre græseværdi for det fraktioelle kapsack problem hvis vi sætter x j = 1. Med adre ord har vi e sædvalig upper boud test for forgreige x j = 1. Hvis kude ka forkastes, er det tilladt at sætte x j = 0. Svar 10 Vi udreger værdiere j p j w j p s /w s Vi har edvidere z LP z G = = Dermed ses det at x 1 = 1 og x 6 = 0 i e optimal IP-løsig. Edvidere vil x 7 = 0 i ehver forbedret løsig, me det er ikke det vi blev spurgt om. Svar 11 De reducerede istas er med kapacitet c = 9 2 = 7 j p j w j Svar 12 Lad i = 7 være det sidste elemet. Da x i = 0 i de optimale løsig, øsker vi i recursio (11) at det første led bliver valgt i max-operatore: { } f i (d) = max f i 1 (d), f i 1 (d w i ) + p i (19) Dette sker hvis Da i = 7, w i = 4 og d = c = 9 skal der gælde at f i 1 (d) f i 1 (d w i ) + p i f 6 (9) f 5 (9 4) + p i hvilket er esbetydede med p i f 6 (9) f 5 (9 4) = = 4 Svar 13 Samme metode bruges for alle elemeter. 8

9 !"$# %'&&( )) *,+ *,+- *,+- *,+- *,+- *,+- *,+- *,+- /.$0 1, (/8& 95: /,0,;5; : ; /&( : <& =?> 3522 : (5@ A5@ =. & 0 : (/B /.$0C% (5@! $. > D,0! %/ 0 32E : (/BGF %/(@!.HF.0.(. $ : ( > 2 : (5@/A& = + IJ>KII %L> M & : /& (/.N@5(,;O>)>> M & : /& (/.QP " /@ &5T+ IJ>KII5II5I5I M & : /& (/.QP "$# %'&U 'A + >K555 R! 5@ $8@5/ -VW/8& 5@JP W "# %& A+ X> 55555$ IU Y (@! & /(.& = + IJ>KII %L> M & : & (/. +[Z 5\ 1, ) (5@A : V ] : Y (5@! & (/. X>_I5I5II5II X>_I5I5II5II $ IJ> 555 E : A : '.)& E : /.$;$a,vb : : (J>! 1 & : R! 2 : ` E : 0! : E : : : 1, ) (5@0 cv (. '.&)^ 5@ 5% %$ X>_555 %/ J>_555 %b 5@8 5% '.& /.$;$a,vb $ (J> 1, ) /.N( "#,V W/d e Y /. & 'AU '&T D /.$;$ ] : D 0! % 0 1 ( & R(/B. 1! :5: /.& f$8 $ : ( J> 5 >KII5II '.$S. '&T $ : ( g>ki5ii5i?>kii5ii '.$S. '&T $ $ : ( h>k ' J>KII5II IJ>_I5I5II 9

10 VbIJ>_55 V,.S '. &5T?>KII5II?>_55 VbIJ> 55 V,.S '. &5T >KII5II > 55 V/?>_I5I5II V,.S '. &5T J>KII5II b?>_i5i5ii $ V/?>_55 V,.S '. &5T J>KII5II?>_55 1, ) /. : E,V D YY /. & 'AU '&T D /.$;$ 1 (. & : '.&)^ 2 : 5% R(/B. 1! :5: /.& f$8 %$ X>_55 J>KI5II5I?>KII5II X>_I5I5II %/ J>_55 $ : ( X>KII5II J>_I5I5II %b X>_I5I5II Ih>K55 X>KII5II?>_55 % $ : ( Ih> 5 X>KII5II '.$S. '&T %/ $ : ( $ : ( X>KII5II '.$S. '&T % $ : ( $ : ( X>KII5II '.$S. '&T %b $ : ( $ : ( X>KII5II '.$S. '&T %b $ : ( $ : ( X>KII5II '.$S. '&T 1, ) /.N@ " 5V 3 (bb : d(!.0 Y. '& A &5T D /.$;$ ] : D 0! % 0 1 ( & R(/B. 1! :5: /.& f$8 $ : ( V,.S '. &5T : ( X>_I5I5II $ : ( V,.S '. &5T : ( X>_I5I5II $ $ : ( V,.S '. &5T : ( IJ> 55 VbIJ>_55 VIh>_,$, : ( IJ>, ' VbIJ> 55 VIh> II5I : ( IJ>_5I5II V/?>_I5I5II VIh>_55 : ( IJ>K55 $ V/?>_55 VIh>_,II5I : ( X>_I5I5II 1, ) /.!5" 5V f$858 : d(!.0 Y. '& A &5T D /.$;$ ] : D 0! % 0 1 ( & R(/B. 1! :5: /.& f$8 $ : ( G>KI5II5I '.$S '.U '&T '.$S. '&T $ : ( G>KI5II5I '.$S '.U '&T '.$S. '&T $ $ : ( Ih> 5 '.$S '.U '&T '.$S. '&T VbIJ>_55 $ : ( '.$S '.U '&T '.$S. '&T VbIJ> 55 $ : ( '.$S '.U '&T '.$S. '&T V/?>_I5I5II $ : ( '.$S '.U '&T '.$S. '&T $ V/?>_55 $ : ( '.$S '.U '&T '.$S. '&T 10

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

DATV: Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

DATV: Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem DATV: Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2004 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2003 Dette er de ade obligatoriske projektopgave på kurset Itroduktio til optimerig og operatiosaalyse.

Læs mere

Branch-and-bound. Indhold. David Pisinger. Videregående algoritmik, DIKU ( )

Branch-and-bound. Indhold. David Pisinger. Videregående algoritmik, DIKU ( ) Brach-ad-boud David Pisiger Videregåede algoritmik, DIK (005-06) 6 Kvalitet af græseværdifuktioe 3 6. Eksempler på domias....................... 3 7 Kritiske og Semikritiske delproblemer 34 8 Kuste at

Læs mere

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Løsigsforslag til skriftlig eksame i Kombiatorik, sadsylighed og radomiserede algoritmer (DM58) Istitut for Matematik & Datalogi Syddask Uiversitet Madag de 3 Jauar 011, kl. 9 13 Alle sædvalige hjælpemidler

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Uge 37 opgaver. Opgave 1. Svar : Starter med at definere sup (M) og inf (M) :

Uge 37 opgaver. Opgave 1. Svar : Starter med at definere sup (M) og inf (M) : Uge 37 opgaver Opgave Svar : a) Starter med at defiere sup (M) og if (M) : Kigge u på side 3 i kompedie og aveder aksiom (.3) Kotiuitetsaksiomet A = x i x 2 < 2 Note til mig selv : Har søgt på ordet (iequalities)

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og det kvadratiske geemsit. Først skal vi ved fælles

Læs mere

Den grådige metode 2

Den grådige metode 2 Algoritmedesig 1 De grådige metode De grådige metode Et problem løses ved at foretage e række beslutiger Beslutigere træffes e ad gage i e eller ade rækkefølge Hver beslutig er baseret på et grådighedskriterium

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Meigsmåliger KLADDE Thomas Heide-Jørgese, Rosborg Gymasium & HF, 2017 Idhold 1 Meigsmåliger 2 1.1 Idledig................................. 2 1.2 Hvorda skal usikkerhede forstås?................... 3 1.3

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN

og Fermats lille Projekt 0.4 Modulo-regning, restklassegrupperne sætning ..., 44, 20,4,28,52,... Hvad er matematik? 3 ISBN Projekt 0.4 Modulo-regig, restklassegruppere sætig ( p 0, ) og Fermats lille Vi aveder moduloregig og restklasser mage gage om dage, emlig år vi taler om tid, om hvad klokke er, om hvor lag tid der er

Læs mere

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2 Idhold 1 Pukt- og itervalestimatio 2 1.1 Puktestimatorer: Cetralitet(bias) og efficies.................... 2 2 Kofidesiterval 3 2.1 Kofidesiterval for adel................................ 4 2.2 Kofidesiterval

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation. De reelle tal Morte Grud Rasmusse 5. ovember 2015 Ordede mægder Defiitio 3.1 (Ordet mægde). pm, ăq kaldes e ordet mægde såfremt: For alle x, y P M gælder etop ét af følgede: x ă y, x y, y ă x @x, y, z

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

cos(t), v(t) = , w(t) = e t, z(t) = e t.

cos(t), v(t) = , w(t) = e t, z(t) = e t. Aalyse Øvelser Rasmus Sylvester Bryder. og. oktober 3 Bevis for Cotiuity lemma Theorem. Geemgås af Michael Staal-Olse. Bevis for Lemma.8 Dee har vi faktisk allerede vist; se Opgave 9.5 fra Uge. Det er

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner Rentesregning Indekstal

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner Rentesregning Indekstal FUNKTIONER del Fuktiosbegrebet Lieære fuktioer Ekspoetialfuktioer Logaritmefuktioer Retesregig Idekstal -klassere Gammel Hellerup Gymasium November 08 ; Michael Szymaski ; mz@ghg.dk Idholdsfortegelse FUNKTIONSBEGREBET...

Læs mere

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning Hvad er matematik? Projekter: Kaitel 9 Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Sætig : Regeregler

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Projekt 3.2 Anlægsøkonomien i Storebæltsforbindelsen. Indhold. Hvad er matematik? 1 ISBN

Projekt 3.2 Anlægsøkonomien i Storebæltsforbindelsen. Indhold. Hvad er matematik? 1 ISBN Projekt 3.2 Alægsøkoomie i Storebæltsforbidelse Dette projekt hadler, hvorda økoomie var skruet samme, da ma byggede storebæltsforbidelse. Store alægsprojekter er æste altid helt eller delvist låefiasieret.

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Noter om Kombinatorik 2, Kirsten Rosenkilde, februar

Noter om Kombinatorik 2, Kirsten Rosenkilde, februar Noter om Kombiatori, Kirste Roseilde, februar 008 1 Kombiatori Disse oter itroducerer ogle cetrale metoder som ofte beyttes i ombiatoriopgaver, og ræver et grudlæggede edsab til ombiatori (se fx Kombiatori

Læs mere

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n. IMFUFA Carste Lude Peterse Om Følger og Ræer Nyttige Græseværdier lim = 1 lim! = x = 0! lim lim (1 + x ) = e x! lim = e 1 Nyttige Ræer 1 p < p > 1 1 log p ( + 1) < p > 1 x = = x 1 x for x < 1 og Z, diverget

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Introduktion til Optimering. DIKU, 4 timers skriftlig eksamen, 13. april 2007

Introduktion til Optimering. DIKU, 4 timers skriftlig eksamen, 13. april 2007 Itroduktio til Optimerig DIKU, 4 timers skriftlig eksame, 13. april 2007 Ket Aderse, David Pisiger Alle hjælpemidler må beyttes dog ikke lommereger eller computer. Besvarelse ka udarbejdes med blyat eller

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags.

Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags. Praktisk ifo Liste med rettelser og meigsforstyrrede trykfejl i DS på Absalo. Statistisk aalyse af e ekelt stikprøve: kedt eller ukedt varias Sadsylighedsregig og Statistik (SaSt) Helle Sørese Projekt

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Længde [cm] Der er frit vandspejle i sandkassen. Herudover er sandkassen åben i højden cm i venstresiden og 0-20 cm i højresiden.

Længde [cm] Der er frit vandspejle i sandkassen. Herudover er sandkassen åben i højden cm i venstresiden og 0-20 cm i højresiden. Vadtrasportmodel Formål For beregig af vadtrasporte i sadkasse er der lavet e boksmodel. Formålet med boksmodelle er at beskrive vadtrasporte i sadkasse. Herover er formålet at bestemme de hydrauliske

Læs mere

Matematik A. Højere handelseksamen. Tirsdag den 26. maj 2015 kl hhx151-mat/a

Matematik A. Højere handelseksamen. Tirsdag den 26. maj 2015 kl hhx151-mat/a Matematik A Højere hadelseksame hhx151-mat/a-26052015 Tirsdag de 26. maj 2015 kl. 9.00-14.00 Matematik A Prøve består af to delprøver. Delprøve ude hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

6 Populære fordelinger

6 Populære fordelinger 6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

1. De karakteristiske egenskaber ved de tre mest almindelige talsystemer, og... 2

1. De karakteristiske egenskaber ved de tre mest almindelige talsystemer, og... 2 Projekt 0.3 Galois-legemere GF p - et værktøj til fejlrettede QR-koder Idhold. De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og.... De kommutative, associative og distributive lov

Læs mere

M Å L T E O R I S A N D S Y N L I G H E D S T E O R I 1. 1 F O R E L Æ S N I N G S N O T E R S V E N D E R I K G R A V E R S E N O G

M Å L T E O R I S A N D S Y N L I G H E D S T E O R I 1. 1 F O R E L Æ S N I N G S N O T E R S V E N D E R I K G R A V E R S E N O G F O R E L Æ S N I N G S N O T E R T I L M Å L T E O R I O G S A N D S Y N L I G H E D S T E O R I 1. 1 S V E N D E R I K G R A V E R S E N A U G U S T 2 0 0 5 I N S T I T U T F O R M A T E M A T I S K

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Talfølger og -rækker

Talfølger og -rækker Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber

Læs mere

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.

Læs mere

MOGENS ODDERSHEDE LARSEN. Komplekse tal

MOGENS ODDERSHEDE LARSEN. Komplekse tal MOGENS ODDERSHEDE LARSEN Komplekse tal a b. udgave 004 FORORD Dette otat giver e kort idførig i teorie for komplekse tal, regeregler, røddere i polyomier bl.a. med heblik på avedelser ved løsig af lieære

Læs mere

Den hurtige Fouriertransformation. Jean Baptiste Joseph Fourier ( )

Den hurtige Fouriertransformation. Jean Baptiste Joseph Fourier ( ) De hurtige Fouriertrasformatio Jea Baptiste Joseph Fourier (768-83) Polyomier Polyomium: p + 2 3 4 ( x) = 5 + 2x + 8x + 3x 4x Geerelt: p(x) = eller! " i= a i x i p(x) = a + a x + a 2 x 2 +!+ a! x! 2 Evaluerig

Læs mere

Udtrykkelige mængder og Cantorrækker

Udtrykkelige mængder og Cantorrækker Udtrykkelige mægder og Catorrækker Expressible sets ad Cator series Matematisk speciale Simo Bruo Aderse 20303870 Vejleder: Simo Kristese Istitut for Matematik Aarhus Uiversitet 208 Abstract This thesis

Læs mere

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor godschauffør området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Modul 14: Goodness-of-fit test og krydstabelanalyse

Modul 14: Goodness-of-fit test og krydstabelanalyse Forskigsehede for Statistik ST01: Elemetær Statistik Bet Jørgese Modul 14: Goodess-of-fit test og krydstabelaalyse 14.1 Idledig....................................... 1 14.2 χ 2 -test i e r c krydstabel.............................

Læs mere

Lokalplan-, delområde- og byggefeltregler. Plandata.dk

Lokalplan-, delområde- og byggefeltregler. Plandata.dk Lokalpla-, delområde- og byggefeltregler Pladata.dk Eksporteret de 30. april 2018 Idholdsfortegelse 1 Lokalpla... 3 2 Delområder og byggefelt... 9 2 1 Lokalpla plaid Alle Nej Plaid skal altid være udfyldt

Læs mere

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n))

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n)) DM19 1. Iformatio-theoretic lower bouds kap. 8 + oter. Ma ka begræse de teoretiske græse for atallet af sammeligiger der er påkrævet for at sortere e liste af tal. Dette gøres ved at repræsetere sorterig-algoritme

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968)

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968) Algoritmedesig med iteretavedelser ved Keld Helsgau Aalyse af algoritmer Iput Algoritme Output E algoritme er e trivis metode til løsig af et problem i edelig tid 1 2 Algoritmebegrebet D. E. Kuth (1968)

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Sejladsbestemmelser for Faurby Yacht 2STAR CUP 2015

Sejladsbestemmelser for Faurby Yacht 2STAR CUP 2015 Sejladsbestemmelser for Faurby Yacht 2STAR CUP 2015 Lørdag de 20. jui 2015 Arr. Middelfart- og Fredericia Sejlklubber. 1 Regler 1.1 Sejladse sejles efter de i Kapsejladsreglere defierede regler ikl. Skadiavisk

Læs mere

Prisfastsættelse af digitale goder - Microsoft

Prisfastsættelse af digitale goder - Microsoft Iteretøkoomi: risfastsættelse af digitale goder Afleveret d. 9 maj 003 Af Julie ech og Malee Aja org risfastsættelse af digitale goder - Microsoft Af Julie ech og Malee Aja org.0.0 DIGITALE GODER....0.0

Læs mere

Operationsanalyse 1 Obligatorisk opgave 2

Operationsanalyse 1 Obligatorisk opgave 2 Operationsanalyse Obligatorisk opgave Anders Bongo Bjerg Pedersen. juni Opgave (i) Vi tilføjer først slack-variable til (P ): Minimize Z = x + x + x subject to x + x + x x 4 = x x + x x 5 = x + x x x =

Læs mere

StudyGuide til Matematik B.

StudyGuide til Matematik B. StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag

Læs mere

Bachelorprojekt for BSc-graden i matematik

Bachelorprojekt for BSc-graden i matematik D E T N A T U R V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Bachelorprojekt for BSc-grade i matematik Mikkel Abrahamse & Sue Precht Reeh Ekstremal grafteori Vejleder:

Læs mere

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser...3 3. ermodyamikkes. hovedsætig....5 4. Reversibilitet...6 5. Reversibel maskie og maksimalt

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Censorvejledning engelsk B, HF 2017-læreplan

Censorvejledning engelsk B, HF 2017-læreplan Cesorvejledig egelsk B, HF 2017-lærepla December 2018 Lie Flitholm, fagkosulet lie.flitholm@stukuvm.dk 33925383 Idholdsfortegelse Cesorvejledig egelsk B, HF 2017-lærepla... 1 Det skriftlige opgavesæt HF

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen Bilag 5: DEA-odelle Bilaget ideholder e teis besrivelse af DEA-odelle FRSYNINGSSERETARIATET FEBRUAR 2013 INDLEDNING... 3 INPUTSTYRET DEA-MDEL... 3 UTPUTSTYRET DEA-MDEL... 7 SALAAFAST... 12 2 Idledig Data

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium KOMPLEKSE TAL x-klassere Gammel Hellerup Gymasium Idholdsfortegelse E kort historie om imagiært og virkeligt... Tallegemet De Komplekse Tal... Idførelse af realdel og imagiærdel samt i... 8 Subtraktio,

Læs mere

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne.

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne. 3y MA, Stee Toft Jørgese side /5 Helsigør Gymasium Vektorregig i 3D Formålet er at skabe overblik over emet. Boge Mat3A af Jes Carstese, kapitel 3 og 4, side 83-5. Defiitioer, formler, sætiger og idee

Læs mere

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0}

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0} Opgve ) f : [, b] R er e begræset fuktio for hvilke er edelig for ethvert < ε < b. Vi skl vise t f er itegrbel og t A ε = { [ + ε, b] } d =. Vi bemærker først t f er itegrbel på [, b] hvis og ku hvis de

Læs mere

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet)

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet) Oversigt (idholdsfortegelse) Bilag 1 Bilag 2 Bilag 3 De fulde tekst Bekedtgørelse om takstædriger i offetlig servicetrafik i trafikselskaber og hos jerbaevirksomheder m.v. (takststigigsloftet) I medfør

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

Anvendt Statistik Lektion 3. Punkt- og intervalestimater Konfidensintervaller Valg af stikprøvestørrelse

Anvendt Statistik Lektion 3. Punkt- og intervalestimater Konfidensintervaller Valg af stikprøvestørrelse Avedt Statistik Lektio 3 Pukt- og itervalestimater Kofidesitervaller Valg af stikprøvestørrelse Pukt- og itervalestimater: Motivatio Motiverede eksempel: I e udersøgelse er adele af rygere 0.27. Det aslås

Læs mere

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium KOMPLEKSE TAL x-klassere Gammel Hellerup Gymasium Februar 09 ; Michael Symaski ; m@ghg.dk Idholdsfortegelse E kort historie om imagiært og virkeligt... Tallegemet De Komplekse Tal... Idførelse af realdel

Læs mere