Animationer med TI-Nspire CAS

Størrelse: px
Starte visningen fra side:

Download "Animationer med TI-Nspire CAS"

Transkript

1 Animationer med TI-Nspire CAS Geometrinoter til TI-Nspire CAS version 2.0 Brian Olesen & Bjørn Felsager Midtsjællands Gymnasieskoler Marts 2010

2 Indholdsfortegnelse: Indledning side 1 Eksempel 1: Pythagoras sætning side 1 Eksempel 2: Kongestolen side 6 Eksempel 3: Animation af en dreng, der går på en vej side 12 Eksempel 4: Munken, der vandre op af et bjerg side 16

3 Animationer i TI-Nspire CAS Det er oplagt at lade eleverne selv udarbejde animationer i matematik, ligesom det er oplagt at stille færdiglavede animationer til rådighed i mere komplekse projekter. På Midtsjællands Gymnasieskoler har vi fx arbejdet med animerede beviser for Pythagoras sætning og med illustrative animationer for komplicerede graf-problemer i uendelighedsprojektet. Animationer giver liv i undervisningen og det styrker samtidigt elevernes geometriske kompetencer. Der findes nu en række standardmetoder til at konstruere animationer, som vi vil illustrere i denne note. Udgangspunktet er Transformations-menuen i Geometri-værkstedet: Det er specielt Drejning, som afhænger af drejningsvinklen α, og Multiplikation, som afhænger af forstørrelsesfaktoren k, der egner sig til animationer. Ideen er at vi skal have flyttet en figur fra et sted til et andet. Vi kan da flytte et ankerpunkt for figuren og på den måde trække figuren med, eller vi kan parallelforskyde figuren med en vektor, der forbinder startpunktet med ankerpunktet. Hvis figuren skal drejes bruger vi en drejning med en variabel drejningsvinkel på samme måde. Animationer kan styres af en skyder. Som udgangspunkt kan vi bruge en enheds-skyder, der går fra 0 til 1. Men ellers kan vi bare skalere skyderens værdier passende. Eksempel 1: Pythagoras sætning Der findes adskillige variationer af Pythagoras sætning, som har et tydeligt visuelt og dynamisk islæt 1. Det første bevis tager udgangspunkt isætningen om kvadratet på en toleddet størrelse. Man starter derfor med at konstruere et vandret linjestykke, der deles i to delstykker med et variabelt delepunkt. Det repræsenterer den toleddede størrelse a + b: 1 Brian har skrevet en fin note om Pythagoras som et projekt i 1g: Pythagoræiske tripler 1

4 Figuren er dynamisk idet vi kan trække i delepunktet og derved ændre på de enkelte bidrag til summen. Oven på dette linjestykke konstruerer vi nu et kvadrat og opdeler det på traditionel vis i to delkvadrater og to rektangler. Hver af disse rektangler deles derefter i to retvinklede trekanter med kateterne a og b samt hypotenusen c: Det viser altså kvadratsætningen 2. Men vi vil nu flytte rundt på trekanterne, så de hver for sig placeres i et hjørne af det store kvadrat. Det gør vi på et separat kvadrat, så vi ikke mister den oprindelige figur. Vi lægger derfor ud med en vandret parallelforskydning af det store kvadrat. Parallelforskydningen kontrolleres af en lang vandret vektor, som vi forskyder langs: Vi indføre nu fire enhedsskydere, der skal styre forskydningerne af de fire trekanter: De fire skydere indstilles, så de ikke viser værdien, der er irrelevant for geometrien bag konstruktionen. For hver af de fire skydere opretter vi derefter en tekstboks med navnet på skyderen og beregner tekstboksen (med tryk på L), 2

5 så vi også får skyderens værdi ind i geometrirummet og dermed kan bruge den i de efterfølgende konstruktioner: På basis af de fire skydere kan vi nu flytte de fire trekanter over i deres nye position. Princippet er det samme for alle fire trekanter, så vi nøjes med at vise det for den røde trekant. Ankerpunktet for den røde trekant er det retvinklede hjørnepunkt. Det passer ind i kvadratets øverste venstre hjørne (tilsvarende passer den orange trekants hjørnepunkt ind i kvadratets nederst højre hjørne osv.) Vi vælger nu multiplikation transformations-menuen udpeger den røde trekants hjørnepunkt som startpunkt, det forskudte kvadrats venstre hjørnepunkt som det punkt, der skal multipliceres, og endelig værdien af den røde trekantskyder som forstørrelsesfaktor. Vi får derved frembragt et kontrolpunkt, der glider frem og tilbage mellem startpunktet og slutpunktet for den røde trekant. Vi konstruerer nu en vektor fra startpunktet til kontrolpunktet og parallelforskyder den røde trekant langs denne vektor. Den forskudte trekant farves også rød, så man kan se, hvor den kommer fra. Når vi trækker i den 'røde' skyder vil den røde trekant derfor flytte sig lige så fint fra det oprindelige kvadrat til dets slutposition i det nye kvadrat: 3

6 Derefter gør vi det samme med de tre sidste trekanter: Til sidst skjuler vi alle de overflødige vektorer, tekstbokse med beregninger og værdierne af beregningerne. trækker vi alle skyderne i bund ser vi da netop at det ro oprindelige kvadrater på kateterne og er blevet transformeret over i kvadratet på hypotenusen. Men så må de jo have samme areal, dvs.. 4

7 Figuren er naturligvis fuldt dynamisk. Trækker vi i delepunktet for grundlinjen i det første kvadrat følger alt med. 5

8 Eksempel 2: Kongestolen Vender vi os nu mod Euklids bevis, den såkaldte kongestol, er transformationerne mere komplicerede og animationen skal derfor opbygges mere omhyggeligt. Udgangspunktet er en opdeling af hypotenusekvadratet ud fra højden på hypotenusen. Vi skal så bevise at de to rektangler, der opstår netop har samme arealer som de to kvadrater på kateterne: Figuren er selvfølgelig dynamisk, så man trække i højdens fodpunkt på hypotenusen. Vi transformerer nu det lyseblå kvadrat over i det venstre delrektangel. Det sker i tre trin. Vi indfører derfor tre enhedsskydere for at kunne kontrollere de tre trin. Til hver af skyderne oprettes en tekstboks, med samme navn som skyderen og tekstboksen beregnes (tast L), så skyderens værdi også bliver tilgængelig i geometri-rummet. 6

9 Det første trin er en shear-operation. Den har ikke noget godt dansk navn, men vi vil kalde det en forskubning langs kvadratets grundlinje (der bærer etiketten. Den bevarer grundlinjen, men skubber punktet C ned i punktet B (parallelt med grundlinjen!). Vi udfører derfor en multiplikation med startpunkt i C, hvor vi multiplicerer punktet B med værdien af enhedsskyderen for det første trin for at frembringe et kontrolpunkt, der netop skubbes fra C til B, når vi trækker i skyderen: Vi konstruerer derefter parallelogrammet med samme grundlinje som kvadratet og kontrolpunktet som hjørnepunkt. Dette parallelogram har samme areal som kvadratet, fordi de har fælles grundlinje og fælles højde. Parallelogrammet farves lyseblå og vi fjerner farven for det oprindelige lyseblå kvadrat. Vær omhyggelig med konstruktionen af parallelogrammet, så det ikke forsvinder, når du deformerer den retvinklede trekant. Du må ikke bruge skæringspunkter med katetekvadratets sider i konstruktionen! 7

10 Vi skal så i gange med drejningen af parallelogrammet, så det lægger sig op af siderne i hypotenusekvadratet. Vi skal altså udføre en drejning omkring A med drejningsvinklen -90, fordi vi drejer i negativ omløbsretning. Vi indfører derfor en ny skyder svarende til det andet trin, og beregner denne gang værdien af drejningsvinklen, dvs. 90 _. Drejningsvinklen vil da netop 'vokse' fra startværdien 0 til slutværdien -90 når vi trækker i skyderen. Derefter udfører vi derfor drejningen af parallelogrammet omkring punktet A med den beregnede drejningsvinkel. Du har nu to parallelogrammer: Det oprindelige forskubbede parallelogram og det drejede program. Skjul nu det forskubbede parallelogram, så det kun er det sidste, der kan ses. Det sidste parallelogram tegnes nu også lyseblåt. Kontroller, at det sidste parallelogram virker hele vejen, dvs. 1. Nulstil begge skydere 2. Træk først i den første skyder og kontrollér at kvadratet forskubbbes 3. Træk derefter i den anden skyder og kontroller at det forskubbede kvadrat, dvs. parallelogrammet, drejes. 8

11 Der er sat spor på det øverste hjørne i katetekvadratet, så man kan se, hvordan det først forskydes, og dernæst drejes. På skærmen ser man selvfølgelig hele den dynamiske proces udfoldet! Vi mangler så kun den sidste forskubning af parallelogrammet lodret ned i det venstre rektangel. Derved overføres punktet C i fodpunktet for højden. Da forskubningen hverken ændrer den lodrette grundlinje eller den vandrette højde, ændrer denne sidste transformation heller ikke arealet. Vi indfører derfor en skyder svarende til det tredje trin, og overfører værdien til geometri-rummet via en tekstboks. Det sidste trin er det sværeste! Sørg for at den anden skyder ikke er drejet i bund: Punkterne der ryger over i det retvinklede hjørnepunkt C henholdsvis højdens fodpunkt D kaldes C ' og D '. Derefter udføres en multiplikation af D ' omkring C ' med skyderens værdi som forstørrelsesfaktor. Derved frembringes et nyt kontrolpunkt. Til sidst konstrueres parallelogrammet udspændt af den drejede grundlinje og kontrolpunktet som hjørnepunkt. 9

12 10

13 Du kan nu skjule den drejede figur fra det andet trin, så du kun beholder parallelogrammet fra det tredje trin. Samtidigt kan du skjule hjælpelinjer og overflødige tekstbokse, beregninger osv. Igen er der sat spor på så man kan følge det ene hjørne under hele processen. Hvis du har været omhyggelig kan du nu trække i de tre skydere efter tur og se kongestolen udfolde sig på skærmen. Det er ikke helt simpelt, så man skal være lidt sej for at få animationen til at gå op! 11

14 Eksempel 3: Animation af en dreng, der går på en vej Denne gang vil vi konstruere en animation af en dreng, der går hen af en vej ud fra en enhedsskyder. Selve grundtegningen af drengen, der går hen af vejen, er opbygget af simple polygoner, linjestykker, cirkler osv. knyttet til et usynligt gitter net. Ser vi bort fra ben og arme, der skal bevæge sig, er det nemt at oprette en lodret linje, dele den i felter ved hjælp af cirkler med faste radier og tegne de nødvendige cirkler, polygoner osv. idet støttepunkterne typisk frembringes med flittig brug af midtpunkter, vinkelhalveringslinjer osv. Det kan man selv hygge sig med. Stien drengen følger har et startpunkt og et slutpunkt afsat på en vandret halvlinje ud fra startpunktet. Når vi så skal konstruere ankerpunktet går vi således frem: 12

15 Skyderens værdi overføres til Geometri-værkstedet ved at oprette en tekstboks og skrive skydervariablens navn i boksen, her time. Derefter udføres en beregning på boksen, så vi får fat i skyderens værdi (ved at taste L): Derefter er skyderens værdi til rådighed for transformationerne: Vi vælger så Multiplikation på Transformations-menuen udpeger startpunktet som udgangspunkt for multiplikationen, slutpunktet, som det geometriske objekt, der skal multipliceres, og skyderværdien (ud for tekstboksen!) som forstørrelsesfaktoren: Trækker vi nu i skyderen vil ankerpunktet bevæge sig fra startpunktet til slutpunktet. Derefter er det et nørklearbejde at tegne drengen. Først oprettes en linje vinkelret på vejen gennem ankerpunktet. Derefter tegnes en kæde på tre cirkler med fast radius fx 1cm op af den vinkelrette. Det er starten på det gitter, der benyttes til konstruktion af figuren: 13

16 Vi kan nu hurtigt udfylde omridset af figuren: Munden tegnes som et linjestykke, øjnene som en vektor, huen som en kombination af et linjestykke og en polygon. 14

17 Dermed er vi klar til benene (inklusive buksebenene) og armene. Lad os førs se på armene: Der er en højrearm på forsiden af figuren og en venstrearm på bagsiden af figuren. Højrearmen er nemmest. Vi skal simpelthen dreje ankerpunktet for hånden omkring skulderpunktet. Drejningsvinklen bestemmes af enhedsskyderen. Hvis vi vil foretage 14 armsving i løbet af gåturen skal vi have en fase, der vokser med Hvis udsvinget for armen skal være 40, så er drejningsvinklen derfor givet ved formlen 40 sin Denne formel skrives derfor ind i en tekstboks, og tesktboksen beregnes: Vi kan nu dreje ankerpunktet for hånden omkring skulderpunktet med drejningsvinklen 40 sin 5040, dvs. værdien af den: Skulderpunkt Håndpunkt Hoftepunkt Knæpunkt Fodpunkt Derefter forbindes skulderpunktet og håndpunktet med et linjestykke, tegnet tykt, og vi har en højrearm, der svinger lige så fint frem og tilbage i takt med drenges vandring fra start til slut. Venstrearmen er lidt mere tricket, fordi den svinger på bagsiden. Udgangspunktet er en spejling i den lodrette akse af højrearmen. Men venstrearmen må netop ikke gå helt op til skulderpunktet. SÅ 15

18 derfor konstruerer vi skæringspunkterne med forsiden af kroppen henholdsvis bagsiden af kroppen (hvilket kræver at vi flytter lidt på figuren undervejs, da vi kun kan se et af skæringspunkterne af gangen! Derefter skjuler vi spejlbilledet af den højre arm og forbinder skæringspunkterne med håndpunktet. Det sidste gøres igen af to omgange ved at flytte figuren undervejs, så venstrearmen peger fremad henholdsvis bagud. I realiteten er der altså to stykker venstrearme: Én der peger bagud og én, der peger fremad: Benene konstrueres nu på samme måde, idet vi både drejer knæpunktet (som styrer buksebenet) og fodpunktet, hvor der efterfølgende sættes en fod på. Og dermed er vi færdige med at konstruere drengen, der vandrer langs en vej. Eksempel 4: Munken, der vandrer op ad et bjerg Hvis vi skal have figur til at vandre op ad et bjerg, dvs. af en mere kompliceret sti, må vi stykke stien sammen som et stykke af en polygon. I munkens tilfælde bruges polygonen til at tegne bjerget: 16

19 Vi benytter da en lidt anden teknik, idet vi kan overføre en måling til en polygon. Vi tegner derfor først polygonen med udgangspunkt i startpunktet. Derefter har jeg tegnet den vandrette bund (ved at holde shift nede), den lodrette side op til slutpunktet (ved at holde shift nede) og til sidst den takkede vej ned fra slutpunkt til startpunkt: Jeg har nu brug for at vide hvor lang den takkede bjergside er. Jeg måler derfor hele omkredsen af polygonen, ligesom jeg måler længderne af den vandrette side i bunden og den lodrette side til højre. Derefter kan længden af den takkede bjergside nemt beregnes ud fra en tekstboks: I dette tilfælde er længden af den takkede bjergside altså 15.6 cm. Det er nu simpelt at opbygge en formel, der omdanner skyderens værdi til et tal mellem 0 når skyderen er helt til højre og 15.6 når skyderen er helt til venstre. Denne værdi kan så efterfølgende overføres til polygonen ud fra slutpunktet i positiv omløbsretning (fra slutpunkt mod startpunkt). Når skyderen trækkes fra venstre til højre, vil ankerpunktet for bjergklatringen derfor glide fra startpunktet op til slutpunktet. 17

20 Til slut nogle bemærkninger om opbygningen af den samlede scene ud fra hovedprincippet: Nye figurer tegnes altid, så de ligger foran gamle figurer. Når man vil opbygge scenen med munken, der vandrer op ad bjerget, mens solen går hen over himlen, skal man altså starte med solen først, for den skal ligge bagerst. Derefter tegnes bjerget med to af træerne, så munken kan gå foran to af træerne. Derefter tegnes munken og stil slut de sidste to træer, som munken denne gang går bagved. Det giver liv i scenen: 18

Animationer og Websider med TI-Nspire CAS

Animationer og Websider med TI-Nspire CAS Animationer og Websider med TI-Nspire CAS Geometrinoter til TI-Nspire CAS version 3.1 Brian Olesen & Bjørn Felsager Midtsjællands Gymnasieskoler Revideret november 2011 69 Indholdsfortegnelse: Animationer

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydningsloven Når en bølge, fx en lysbølge, rammer en grænseflade mellem to stoffer, vil bølgen normalt blive spaltet i to: Noget af bølgen kastes tilbage (spejling), hvor udfaldsvinklen u

Læs mere

Projekt 3.4 Introduktion til geometri med TI-Nspire

Projekt 3.4 Introduktion til geometri med TI-Nspire Projekt 3.4 Introduktion til geometri med TI-Nspire 1. Introduktion til geometriværktøjerne i TI-Nspire cas... 2 1.2. Åben en geometriapplikation... 2 1.2. Klik-Flyt-Klik... 2 Eksempel: Tegn en cirkel...

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

GeoGebra 3.0.0.0 Quickstart. det grundlæggende

GeoGebra 3.0.0.0 Quickstart. det grundlæggende GeoGebra 3.0.0.0 Quickstart det grundlæggende Grete Ridder Ebbesen frit efter GeoGebra Quickstart af Markus Hohenwarter Virum, 28. februar 2009 Introduktion GeoGebra er et gratis og meget brugervenligt

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Hvad er matematik? C, i-bog ISBN

Hvad er matematik? C, i-bog ISBN Man kan nøjes med at gennemføre første del af projektet, som er den spiralkonstruktion, der er omtalt i kapitel 10. Eller man kan udvide med anden del, der giver en mere elegant, men også mere kompliceret

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

Mandatfordelinger ved valg

Mandatfordelinger ved valg Mandatfordelinger ved valg I denne note vil vi prøve at beskrive et nyttigt diagram når man skal analysere problemstillinger vedrørende mandatfordelinger. For at holde diagrammet enkelt ser man på den

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Bacheloruddannelsen 1. år E15

Bacheloruddannelsen 1. år E15 Bacheloruddannelsen 1. år E15 2 v/jan Fugl 3 Projektionstegning Projek tion -en, -er (lat.pro jectio, til pro jicere-, kaste frem, af pro frem + jacere kaste; jf. Projekt, projektil, projektion) afbildning

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Om opbygningen af en geometrisk model for mandatfordelinger

Om opbygningen af en geometrisk model for mandatfordelinger Om opbygningen af en geometrisk model for mandatfordelinger I denne note vil vi prøve at beskrive et nyttigt diagram når man skal analysere problemstillinger vedrørende mandatfordelinger. For at holde

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

DesignPro II Side 11. Grupper

DesignPro II Side 11. Grupper DesignPro II Side 11 Grupper Hvis man arbejde helt fra grunden, er det ofte en fordel at kunne samle tekst, billeder og baggrund til en fast gruppe, som så kan flyttes rundt, og ændres i størrelsen. I

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Introducerende undervisningsmateriale til Geogebra

Introducerende undervisningsmateriale til Geogebra Klaus Frederiksen & Christine Hansen Introducerende undervisningsmateriale til Geogebra - Dynamisk geometriundervisning www.bricksite.com/ckgeogebra 01-03-2012 Indhold 1. Intro til programmets udseende...

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Introduktion: Vi vil nu se på et konkret eksempel på hvordan man i praksis fordeler mandaterne i et repræsentativt demokrati,

Læs mere

Projekt 3.3 Linjer og cirkler ved trekanten

Projekt 3.3 Linjer og cirkler ved trekanten Projekt 3.3 Linjer og cirkler ved trekanten Midtnormalerne i en trekant Konstruer et linjestykke (punkt-menuen) og navngiv endepunkterne A og B (højreklik og vælg: Etiket), dvs. linjestykket betegnes AB.

Læs mere

Projekt 2.5 Brændpunkt og ledelinje

Projekt 2.5 Brændpunkt og ledelinje Projekter. Kapitel. Projekt.5 Brændpunkt og ledelinje Projekt.5 Brændpunkt og ledelinje En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen

Læs mere

Opsætte f.eks. en rejsebeskrivelse med tekst og billede i Draw side 1

Opsætte f.eks. en rejsebeskrivelse med tekst og billede i Draw side 1 side 1 Hvis man vil lave en opsætning af rejsebeskrivelse og billeder, kan man også gøre det i DRAW. Denne vejledning vil vise hvordan man indsætter hjælpelinjer så man laver en pæn opstilling med billede

Læs mere

matematikhistorie og dynamisk geometri

matematikhistorie og dynamisk geometri Pythagoras matematikhistorie og dynamisk geometri med TI-Nspire Indholdsfortegnelse Øvelse 1: Hvem var Pythagoras?... 2 Pythagoras læresætning... 2 Geometrisk konstruktion af Pythagoræisk tripel... 3 Øvelse

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig som også findes i en trigonometrisk variant, den såkaldte 'appelsin'-formel: Men da en trekants form

Læs mere

12 skarpe! Eksempler på elevaktiverende øvelser med. Indhold

12 skarpe! Eksempler på elevaktiverende øvelser med. Indhold 12 skarpe! Eksempler på elevaktiverende øvelser med Indhold Øvelse Niveau Navn 1 C Elementær geometri 2 C Lineære funktioner 3 C-B Optimering af en æske fra et A4-ark 4 C-B Bestemmelse af forklaringsgrad

Læs mere

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Baggrund: I de senere år har en del gymnasieskoler eksperimenteret med HOT-programmet i matematik og fysik, hvor HOT står for Higher

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten.

Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten. Perspektiv tegning Hjælp til perspektivtegning. Illustrationerne er købt fra Perspektivtegning - Matematik i Billedkunst, billedkunst i matematik. - en kopimappe som er lavet af Jørgen Skourup og Ole Stærkjær.

Læs mere

Pythagoras og andre sætninger

Pythagoras og andre sætninger Pythagoras og andre sætninger Pythagoras Pythagoras fra den græske ø Samos levede i det 6. århundrede f.v.t. fra ca. 580 til ca. 500. Han lægger som sagt navn til den sætning, vi tidligere har nævnt,

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

KonteXt +5, Kernebog

KonteXt +5, Kernebog 1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Mattip om. Arealer 1. Tilhørende kopier: Arealer 1, 2 og 3. Du skal lære om: De vigtigste begreber. Arealberegning af et kvadrat eller rektangel

Mattip om. Arealer 1. Tilhørende kopier: Arealer 1, 2 og 3. Du skal lære om: De vigtigste begreber. Arealberegning af et kvadrat eller rektangel Mattip om realer 1 Du skal lære om: De vigtigste begreber Kan ikke Kan næsten Kan realberegning af et kvadrat eller rektangel Tegning/konstruktion af kvadrater og rektangler realberegning af et parallelogram

Læs mere

Geometri med Geometer II

Geometri med Geometer II hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed

6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Geometriske begreber: kunne sætte matematiske begreber ind i en matematisk kontekst samt kende den visuelle betydning

Læs mere

DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE.

DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE. Geogebra. DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE. (dvs. det er ikke alle emner i SYMBOLLINIEN, der beskrives). Navnet GEOGEBRA er en

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

Animationer med TI Nspire CAS i tredimensional geometri

Animationer med TI Nspire CAS i tredimensional geometri Animationer med TI Nspire CAS i tredimensional geometri Indholdsfortegnelse: Geo3d: En hjælpepakke til 3 dimensional geometri side 1 Eksempel 1: Udfoldning af en terning side 2 Eksempel 2: Hyperkuben side

Læs mere

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer:

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer: Euclidean Eggs Freyja Hreinsdóttir, University of Iceland 1 Introduction Ved hjælp af et computerprogram som GeoGebra er det nemt at lave geometriske konstruktioner. Specielt er der gode værktøjer til

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Løsningsforslag til Geometri 1.-6. klasse

Løsningsforslag til Geometri 1.-6. klasse 1 Løsningsforslag til Geometri 1.-6. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser,

Læs mere

Introduktion til geometri med TI-Nspire CAS version 3.2

Introduktion til geometri med TI-Nspire CAS version 3.2 Introduktion til geometri med TI-Nspire CAS version 3.2 Midtsjællands Gymnasieskoler 2012-13 Materialet er udarbejdet af Brian Olesen med assistance fra Bjørn Felsager. [Version 5. september 2012] Dynamiske

Læs mere

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger.

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger. Matematik for malere praktikopgaver 3 Tilhører: Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger 2 Indhold: Tegneopgave... side 4 Ligninger... side 8 Areal...

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Installer DesignPro. DesignPro I Side 1

Installer DesignPro. DesignPro I Side 1 DesignPro I Side 1 Installer DesignPro DesignPro 5 DesignPro fra Avery, er fint layoutprogram, der har nogle store fordele frem for Publisher og Draw. Det er på Dansk, og så er det gratis. Programmet er

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

1.1.1 Første trin. Læg mærke til at linjestykket CP ikke er en cirkelbue; det skyldes at det ligger på en diameter, idet = 210

1.1.1 Første trin. Læg mærke til at linjestykket CP ikke er en cirkelbue; det skyldes at det ligger på en diameter, idet = 210 1.1 Konstruktionen Denne side går lidt tættere på den hyperbolske geometri. Vi bruger programmet HypGeo, og forklarer nogle geometriske konstruktioner, som i virkeligheden er de samme, som man kan udføre

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Introduktion til GeoGebra

Introduktion til GeoGebra Introduktion til GeoGebra Om navne Ib Michelsen Herover ses GeoGebra's brugerflade. 1 I øverste linje finder du navnet GeoGebra og ikoner til at minimere vinduet, ændre til fuldskærm og lukke I næste linje

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Introduktion til ovaler: Ovato Tondo fra Rafaels skole En oval er en lukket krum kurve med to vinkelrette symmetriakser, storeaksen og lilleaksen, og dermed også et symmetricentrum. Der findes mange forskellige

Læs mere

matematikhistorie og dynamisk geometri

matematikhistorie og dynamisk geometri Pythagoras matematikhistorie og dynamisk geometri med TI-Nspire Indholdsfortegnelse Øvelse 1: Hvem var Pythagoras?... 2 Pythagoras læresætning... 2 Geometrisk konstruktion af Pythagoræisk tripel... 3 Øvelse

Læs mere

Bjørn Felsager, Haslev Gymnasium & HF, 2003

Bjørn Felsager, Haslev Gymnasium & HF, 2003 Keglesnitsværktøjer De følgende værktøjer er beregnet til at tegne keglesnit på forskellig vis, såsom ellipser og hyperbler ud fra centrum, toppunkter, halvakser og lignende. Der er faktisk allerede inkluderet

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Trigonometri at beregne Trekanter

Trigonometri at beregne Trekanter Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )

Læs mere

dvs. vinkelsummen i enhver trekant er 180E. Figur 11

dvs. vinkelsummen i enhver trekant er 180E. Figur 11 Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.

Læs mere

GEOMETER-BANALITETER DEC SIDE 1

GEOMETER-BANALITETER DEC SIDE 1 GEOMETER-BANALITETER DEC. 2002 SIDE 1 GEOMETER-BANALITETER Indhold: Indhold side 1 Forord side 2 Et lille tip side 2 En trekants omskrevne cirkel side 3 Sæt bogstaver på hjørnerne og centrum for omskreven

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

Ligningsløsning som det at løse gåder

Ligningsløsning som det at løse gåder Ligningsløsning som det at løse gåder Nedenstående er et skærmklip fra en TI-Nspirefil. Vi ser at tre kræmmerhuse og fem bolsjer balancerer med to kræmmerhuse og 10 bolsjer. Spørgsmålet er hvor mange bolsjer,

Læs mere

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er

Læs mere

Sådan gør du i GeoGebra.

Sådan gør du i GeoGebra. Sådan gør du i GeoGebra. Det første vi skal prøve er at tegne matematiske figurer. Tegne: Lad os tegne en trekant. Klik på trekant knappen Klik på punktet ved (1,1), (4,1) (4,5) og til sidst igen på (1,1)

Læs mere

Dragværk. På billedet kan du se en pige eller kvinde, der står på ryggen af en hane. Pigen er syet i dragværk. Det er et lille motiv på en knædug.

Dragværk. På billedet kan du se en pige eller kvinde, der står på ryggen af en hane. Pigen er syet i dragværk. Det er et lille motiv på en knædug. Dragværk Fra anden halvdel af 1700-tallet er tekstiler med såkaldt dragværk bevaret. Her trak kvinderne i brede borter tråde ud i hele stoffets bredde og syede derefter figurer som f.eks. dyr og træer

Læs mere

Grafværktøjer til GeoMeter Grafværktøjer Hjælp Grafværktøjer.gsp Grafværktøjer

Grafværktøjer til GeoMeter Grafværktøjer Hjælp Grafværktøjer.gsp Grafværktøjer Grafværktøjer til GeoMeter Bjørn Felsager, Haslev Gymnasium & HF, 2003 Når man installerer GeoMeter på sin maskine følger der en lang række specialværktøjer med. Men det er også muligt at skræddersy sine

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde t system rod orden nøjagtig præcis

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

Geogebra. Dynamisk matematik. Version: August 2012

Geogebra. Dynamisk matematik. Version: August 2012 Geogebra Dynamisk matematik Version: August 2012 Indholdsfortegnelse Hvad er Geogebra?...4 Denne manual...4 Hent og installer programmet...4 Geogebra gennemgang og praktiske eksempler...4 Menuerne...5

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering. Fag: Matematik Hold: 27 Lærer: Jesper Svejstrup Pedersen Undervisnings-mål 9 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 32-37 i arbejdet med geometri at benytte

Læs mere

Opgaver hørende til undervisningsmateriale om Herons formel

Opgaver hørende til undervisningsmateriale om Herons formel Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

HANS CHRISTIAN HANSEN JOHN SCHOU KRISTINE JESS JEPPE SKOTT GEOMETRI MATEMATIK FOR LÆRERSTUDERENDE 4. 10. KLASSE

HANS CHRISTIAN HANSEN JOHN SCHOU KRISTINE JESS JEPPE SKOTT GEOMETRI MATEMATIK FOR LÆRERSTUDERENDE 4. 10. KLASSE HANS CHRISTIAN HANSEN JOHN SCHOU KRISTINE JESS JEPPE SKOTT MATEMATIK FOR LÆRERSTUDERENDE GEOMETRI 4. 10. KLASSE Hans Christian Hansen, Joh n Schou, Kristine Jess og Jeppe Skott Matematik for lærerstuderende

Læs mere