Statistik og skalavalidering. Opgave 1

Størrelse: px
Starte visningen fra side:

Download "Statistik og skalavalidering. Opgave 1"

Transkript

1 Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk formål, der typisk både drejer sig om at lære hvordan man kan få SPSS til at foretage de beregninger, som man har brug for, og om at lære at læse det output som SPSS producerer. Og for det andet et metodisk formål, der drejer sig om at gennemføre en fornuftig statistisk analyse, der kan give løsning på en række fagligt motiverede problemer. Datamaterialet til denne øvelse stammer fra en spørgeskemaundersøgelse af arbejdsmiljøet i den danske folkeskole i slutningen af 90 erne. I det datamateriale, som hører til øvelsen, er der inkluderet demografiske oplysninger (køn og alder), oplysninger om helbred (angivet ved antal sygeperioder), oplysninger om det fysiske arbejdsmiljø, oplysninger om dagligt forbrug af alkohol- og tobak samt oplysninger om forbrug af fire forskellige type af medicin. Det overordnede formål er at finde ud af, hvilken betydning de faktorer, der er inkluderet i datamaterialet, har for forbruget af medicin under hensyntagen til eventuel konfounding og effektmodifikation. For at løse det problem, skal der opstilles en statistisk model med medicinforbrug som afhængig variabel og nogle af datamaterialets øvrige variable som uafhængige (forklarende) variable. Der er to krav til en god løsning. Det ene er, at der er tale om en enkel model, der ikke indeholder mere end nødvendigt, således at tolkningen af det, som modellen fortæller, ikke bliver for kompliceret. Det andet krav er, at modellen ikke er udtryk for en overforenkling, således at resultaterne af den statistiske analyse er konfoundede. Et af de praktisk/tekniske formål med øvelsen er, at give jer en mulighed for at repetere det, I lærte på bachelorkurset om logistisk regression ved hjælp af SPSS. 1

2 Et andet teknisk formål er at lære, hvordan man foretager likelihood-analyser ved hjælp af SPSS. For at kunne gøre det, skal I dels lære at læse noget mere af det output, som SPSS producerer i forbindelse med disse analyser, og dels vide, hvordan I får SPSS til at beregne likelihood ratio test som supplement til de Wald test, I ellers har brugt. For at besvare det overordnede problem skal I opstille og kontrollere en statistisk model, i dette tilfælde en logistisk regressionsmodel, der beskriver hvorledes en af medicin variablene afhænger af andre variable i materialet. For at kunne gøre det, skal I kunne bruge de faciliteter til logistisk regression, som SPSS stiller til rådighed, men SPSS løser ikke alle problemerne for jer: 1) Skal alle andre variable afprøves? Og hvis ikke: hvilke variable kan udelades fra starten? 2) Visse variable foreligger i flere versioner. Hvilke af disse variable skal bruges? Kontinuert eller kategoriseret alder? Tobak og alkohol med to, tre eller fire kategorier? 3) Skal der inkluderes interaktioner i modellerne? Hvorfor eller hvorfor ikke? Skal alle interaktioner med eller kun nogle (hvilke)? 4) Hvordan skal resultaterne tolkes? 5) Hvilke resultater skal rapporteres? For at hjælpe jer med dette vil vi dele opgaven op i flere trin. De første skal hjælpe jer med det rent spss-tekniske, mens de sidste i højere grad handler om det metodiske. Følgende variable skal bruges i denne opgave: Afhængig variabel: berolmid Uafhængige variable: køn, alder, sygeperioder, tobak, alkohol (Vi har altså taget stilling til de to første problemer i ovenstående liste for at I kan komme i gang med øvelsen. I praksis kan valget af variable til analyserne være alt afgørende. Hvis I vil overbevises om det kan I jo prøve at gennemføre analyserne med alderen opdelt i forskellige kategorier og med dikotomiserede alko- og tobaksvariable). 2

3 Formålet med opgaven er at undersøge om det er nødvendigt at tage højde for effektmodifikation i den model, der skal beskrive effekten af de uafhængige variable på forbruget af beroligende midler. For at undersøge det, er det nødvendigt at regne tingene igennem for en model uden interaktionsled og en model med alle de interaktionsled som kan komme på tale., og derefter at sammenligne resultaterne af de to analyser ved hjælp af et likelihood ratio test. Analysen forløber derfor i følgende fire trin, hvor det første trin blot er den form for deskriptiv analyse, som man altid starter med for at sætte sig ind i hvilke variable, der er til rådighed for analyserne. Trin 1: Foretag en univariat deskriptiv analyse (frekvenstabeller og/eller søjlediagrammer) af alle variablene i datamaterialet Trin 2: a) Gennemfør en logistisk regressionsanalyse ved hjælp af ovenstående variable, men uden interaktioner. Husk at angive hvilke variable, der er kategoriale, og hvilke kategorier, der skal være referencekategorier. For at tvinge SPSS til også at beregne likelihood ratio test for hver enkelt variabel skal I sætte Method til Backwards LR og Removal = 1.00 i Options 1. Likelihood ratio testene vil blive skrevet i en output-tabel med overskriften Model if term removed b) Find tabellen med estimater af parametre og odds-ratio værdier. Kan I huske hvad tallene er udtryk for? Er der signifikant effekt af alle variable? c) Find tabellen med likelihood ratio testene. Sammenlign med Wald testene. Er der forskelle? Hvis der er forskel skal I tro mere på likelihood ratio testet end på Wald testet. d) Udfyld skema1. Oplysningerne kan findes i outputtet. 1 Hvis removal ikke sættes lig med 1,00 vil SPSS starte en automatisk backwards modelsøgning, hvilket ikke er hensigten på dette tidspunkt. 3

4 Skema 1: Resultater vedrørende model med hovedvirkninger for all variable uden interaktioner Resultat Afsnit i outputtet Antal personer i analysen 1754 Case processing Summary Antal ukendte parametre i modellen 11 Lig med df i tabellen med Omnibus Tests of Model Coefficients (Block 1) Test af den tomme model mod modellen med all hovedvirkninger Chi-square og Sig. For Model i Omnibus tests -2 log likelihood Fra model summary (Block 1) Trin 3: e) Gennemfør en logistisk regressionsanalyse på samme måde som i Trin 2, men nu med en model, hvor der er to-vejs interaktioner mellem samtlige variable. Er der nogle af to-vejs interaktionerne, der er signifikante? (husk at lægge mærke til forskellen på Wald-testene og likelihood ratio testene. De er slående). f) Udfyld skema 2. Oplysningerne kan findes i outputtet. Skema 2: Resultater vedrørende model med hovedvirkninger for all variable med interaktioner Resultat Afsnit i outputtet Antal personer i analysen 1754 Case processing Summary Antal ukendte parametre i modellen 54 Lig med df i tabellen med Omnibus Tests of Model Coefficients (Block 1) Test af den tomme model mod modellen med all hovedvirkninger Chi-square og Sig. For Model i Omnibus tests -2 log likelihood Fra model summary (Block 1) Bemærk, at antallet af ukendte parametre er større end i skema 1, men at -2 log likelihood er mindre. Hvorfor? Trin 4: g) Kontroller, at antallet af personer er det samme i de to skemaer. h) Beregn likelihood ratio test størrelsen med modellen uden interaktioner som nul-hypotese og modellen med interaktioner som alternativ. (træk -2log likelihood fra skema 2 fra den tilsvarende værdi i skema 1). LR = = 64.4, df=54-11=43 i) Antallet af frihedsgrader er lig med forskellen på antallet af parametre i de to modeller. Beregn p-værdien for likelihood ratio testet ved hjælp af syntaks-filen pchi.sps. Kan 4

5 modellen uden interaktioner accepteres? p = Modellen uden vekselvirkninger bliver derfor forkastet. Der er med andre ord signifikant evidens for, at der er tale om en eller anden form for effekt modifikation. Resultatet er følgende SPSS-syntaksen i pchi.sps udfyldes på følgende måde temporary. n of cases 1. compute chi= compute df= compute pvalue=1.0-cdf.chisq(chi,df). format chi(f8.1) / df(f3) / pvalue(f8.5). LIST VARIABLES= chi df pvalue. chi df pvalue 64,4 43,01881 Number of cases read: 1 Number of cases listed: 1 Trin 5 (eventuelt): Hvis modellen forkastes må der være tale om en eller anden form for interaktion. Undersøg i output-tabellen med Model if term removed, om der er nogle interaktionsled, der er signifikante og fjern alle de insignifikante led. Kontroller den reducerede model mod modellen med alle interaktionsled på samme måde som i trin 3. Kan denne model accepteres? Der er tre signifikante interaktionsled: - køn*tobak (p = 0.007) - alkohol*sygeperioder (p = 0.014) - alkohol*tobak (p = 0.024) 5

6 Et test af en model med disse tre interaktionsled accepterer modellen. Beregningen af teststørrelsen er som følger: LR = = 22.7 df = = 19 p = 0.25 Trin 6 (eventuelt): Hvis modellen ikke accepteres, er det nødvendigt at foretage en trinvis elimination af interaktionsled fra modellen med alle interaktioner. Til dette formål skal I bruge likelihood ratio test i stedet for Wald test. Dette gøres ved at vælge backward LR i method og ved at sætte Removal = 1,00 i Options (for at sikre at modelsøgningen bliver manuel). Kontroller slutmodellen. Modellen blev accepteret, så dette trin skal springes over Trin 7. Foretag en trinvis manuel modelsøgning fra den reducerede model på samme måde som I gjorde på bachelorkurset. Husk principperne for hierarkiske modeller. Kontroller slutmodellen i forhold til modellen med alle interaktionsled, og fortolk alle parametrene. Bemærk: Når man foretager et likelihood ratio test af en model i forhold til en anden er det vigtigt, at antallet af personer er det samme i de to analyser, hvor -2*loglikelihood beregnes. For at sikre, at det er tilfældet skal i beregne en variabel, der angiver antallet af missing values blandt de variable, der indgår i den mest komplicerede model, og derefter foretager analyserne for de variable, hvor antallet af missing values er lig med 0. (brug Select cases i datamenuen). For at holde styr på hvad der sker i løbet af modelsøgningen, inklusiv den løbende kontrol i forhold til den mættede model med samtlige to-faktor vekselvirkninger, er det en god ide, at samle resultaterne op i en tabel svarende til skemaet på næste side. 6

7 Mættet model: (altså modellen med alle to-faktor vekselvirkninger) Antal personer = 1754 Antal parametre = 54-2 * log likelihood = Modelsøgning Oplysninger om modellen efter elimination af en interaktion eller en variabel Antal personer Oplysninger om modellen efter elimination af en interaktion eller en variabel Antal parametre -2 * loglike LR df p Elimineret p- værdi køn*tobak , køn alko*tobak Forsøget med at slette alko*tobak fører til en model, der lige akkurat forkastes i forhold til modellen med alle to-faktor vekselvirkninger. Alko*tobak interaktionen kan altså ikke fjernes fra modellen. Der er intet andet, der kan elimineres pga. det hierarkiske princip. Ifølge analysen afhænger forbruget af beroligende midler derfor af alder, sygeperioder, tobak og alkohol. Effekten af alkohol modificeres af tobak og sygeperioder. Hvis man skulle få lyst til at fjerne alko*tobak fra modellen fordi en p-værdi på ikke er særlig overbevisende fortsætter modelsøgningen indtil der kun er alder og sygeperioder tilbage. Et test af denne model i forhold til modellen med to-faktor vekselvirkninger bliver klart forkastet. Den er klart et udtryk for overforenkling. 7

8 Hvad betyder interaktionerne? Det er naturligvis kompliceret, men så heller ikke værre. Et 3d-søjlediagram, der viser andelen, der bruger beroligende midler i forhold til alko og tobak ser således ud. Der er en påfaldende stor andel af personer, der tidligere har drukket, og som ikke ryger, som bruger beroligende midler. 8

9 Appendiks Medicin-2010.sav Nedenstående tabel indeholder en oversigt over alle de variable, som findes i datamaterialet til denne øvelse. Bemærk, at de korte spss-labels er skrevet med fed skrift samt at visse variable (alder samt jævnligt tobaks- og alkoholforbrug findes i flere forskellige variationer). Descriptive Statistics N Minimum Maximum køn Køn alder Alder rengøring Generes af utrilstrækkelig rengøring vedligehold Generes af manglende vedligeholdelse af lokaler træk Generes af træk ventilation Generes af dårlig ventilation, tør luft m.m sygeperioder Antal sygeperioder 1873,00 16,00 tobak Jævnligt tobaksforbrug 1902,00 4,00 alkohol Jævnligt alkoholforbrug 1921,00 4,00 alder10 Alder i 10-årsgrupper ,00 6,00 berolmid jvt. forbrug af beroligende midler sovemid Jvt. forbrug af sovemedicin smrtstil jvt. forbrug af smertestillende midler stoffer jvt forbrug af stærkere stoffer tobak3 Tobaksforbrug i tre kategorier 1902,00 2,00 alko3 Alkohold i tre kategorier 1921,00 2,00 tobak2 Tobaksforbrug i to kategorier 1902,00 1,00 alko2 Alkohol i to kategorier 1921,00 1,00 Valid N (listwise)

Logistisk regression

Logistisk regression Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Introduktion til SPSS

Introduktion til SPSS Introduktion til SPSS Øvelserne på dette statistikkursus skal gennemføres ved hjælp af det såkaldte SPSS program. Det er erfaringsmæssigt sådan, at man i forbindelse af øvelserne på statistikkurser bruger

Læs mere

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller. Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i

Læs mere

Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab

Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab Eksamensnummer: 16, 23

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Statistik & Skalavalidering

Statistik & Skalavalidering å Statistik & Skalavalidering Synopsis til mundtlig eksamen d. 24. januar 2011 K ø b e n h a v n s U n i v e r s i t e t K a n d i d a t u d d a n n e l s e n i F o l k e s u n d h e d s v i d e n s k

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4 Indholdsfortegnelse INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF OULATIONEN... 4 DELOGAVE 1...5 BEGREBSVALIDITET... 6 Differentiel item funktionsanalyser...7 Differentiel item effekt...10 Lokal

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Bilag I afrapportering af signifikanstest i tabeller i artikel er der benyttet følgende illustration af signifikans: * p

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine

Læs mere

Eksamen i Statistik og skalavalidering

Eksamen i Statistik og skalavalidering Eksamen i Statistik og skalavalidering 2009-studieordning Til aflevering d. 22. december 2010 Efterårssemestret 2010, Kandidatuddannelsen i Folkesundhedsvidenskab Opgaven er udarbejdet af: Eksamensnummer

Læs mere

Eksamen i statistik 2009-studieordning

Eksamen i statistik 2009-studieordning Kandidatuddannelsen i Folkesundhedsvidenskab Det sundhedsvidenskabelige fakultet Københavns Universitet 21.12.2010 Eksamen i statistik 2009-studieordning Underviser Svend Kreiner Udarbejdet af eksamens

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Et psykisk belastende arbejde har store konsekvenser for helbredet

Et psykisk belastende arbejde har store konsekvenser for helbredet Flere gode år på arbejdsmarkedet 5. maj 2017 Et psykisk belastende arbejde har store konsekvenser for helbredet Risikoen for at have et dårligt psykisk helbred mere end fordobles for personer med et belastende

Læs mere

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater.

Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater. Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater. 1 Sammenfatning Der er en statistisk signifikant positiv sammenhæng mellem opnåelse af et godt testresultat og elevernes oplevede

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod

Læs mere

Regressionsanalyse i SurveyBanken

Regressionsanalyse i SurveyBanken Først vælges datasættet De Kommunale Nøgletal. Klik på Variable Description og derefter De Kommunale Nøgletal 2010. De enkelte variable i datasættet bliver nu oplistet og kan vælges. Klik herefter på Analysis

Læs mere

Et fysisk hårdt arbejdsliv har store konsekvenser for helbred og tilbagetrækning

Et fysisk hårdt arbejdsliv har store konsekvenser for helbred og tilbagetrækning Flere gode år på arbejdsmarkedet 5. maj 2017 Et fysisk hårdt arbejdsliv har store konsekvenser for helbred og tilbagetrækning Et hårdt arbejdsliv har store konsekvenser for helbredet og tilknytningen til

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Kursets hjemmeside: http://staff.pubhealth.ku.dk/~skm/fsvpage/index.html

Kursets hjemmeside: http://staff.pubhealth.ku.dk/~skm/fsvpage/index.html Kursets hjemmeside: http://staff.pubhealth.ku.dk/~skm/fsvpage/index.html 1 Kandidatkursus i statistik efteråret 2010 Planen er sidst revideret den 6.9.2010 Oversigt over kursets forløb Periode Emne 7/9

Læs mere

Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008

Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008 Indholdsfortegnelse 1 INDLEDNING OG PROBLEMSTILLING... 2 1.1 OVERVÆGT SOM CASE... 2 2 ANALYSEFORBEREDELSER... 4 2.1 HEPRO-UNDERSØGELSEN... 4 2.2 DEN AFHÆNGIGE VARIABEL VIGTIGHED AF ÆNDRINGEN AF VÆGT...

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression 1 Multipel lineær regression Regression med 2 eksponeringsvariable Fortolkning og estimation AnovaTabel og multipel R 2 Ensidet variansanalyse: Dummy kodning Kovariansanalyse og effektmodifikation Tosidet

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Uge 13 referat hold 4

Uge 13 referat hold 4 Uge 13 referat hold 4 Gruppearbejde 1a: Er variablen kvotient inkluderet på en hensigtsmæssig måde? Der er to problemer med kvotient: 1) Den er trunkeret ved 6.9 og 10.0, løsningen er at indføre dummyer

Læs mere

KORTLÆGNING AF DIGITIALISERINGS- BEHOV I DANMARK HUMANOMICS RESEARCH CENTER

KORTLÆGNING AF DIGITIALISERINGS- BEHOV I DANMARK HUMANOMICS RESEARCH CENTER ANALYSERAPPORT KORTLÆGNING AF DIGITIALISERINGS- BEHOV I DANMARK HUMANOMICS RESEARCH CENTER Denne rapport samt bilag indeholder den endelige database af spørgeskemaet Anvendelsen af digitale ressourcer

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression Indhold 1 Multipel lineær regression 2 1.1 Regression med 2 eksponeringsvariable......................... 2 1.2 Fortolkning og estimation................................ 3 1.3 AnovaTabel og multipel R

Læs mere

Øvelse 2. SPSS og sandsynlighedsregning

Øvelse 2. SPSS og sandsynlighedsregning Øvelse 2 SPSS og sandsynlighedsregning Der er flere forskellige formål med opgaverne i denne øvelse. Det væsentligste formål er at arbejde lidt med sandsynlighedsregningen, binomialfordelingen og de store

Læs mere

Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A)

Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A) Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A) Opgave 1 I nedenstående tabel ses resultaterne af samtlige hjerteklapoperationer i 007-08 ved Odense Universitetshospital (OUH) sammenlignet

Læs mere

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006 Dagens program Økonometri 1 Kvalitative variable 8. marts 2006 Kvalitative variabler som forklarende variabler i en lineær regressionsmodel (Wooldridge kap. 7.1-7.4) Kvalitative variabler generelt Dummy

Læs mere

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles

Læs mere

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes 25. april 2. gang: Introduktion til Logistisk Regression Morten Frydenberg 22 Institut for Biostatistik, Århus Universitet MPH. studieår specialmodul Cand. San. uddannelsen. studieår Hvorfor logistisk

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

Simpel og multipel logistisk regression

Simpel og multipel logistisk regression Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende

Læs mere

TIL RAPPORTEN DANSKE LØNMODTAGERES ARBEJDSTID EN REGISTERBASERET ANALYSE, SFI DET NATIONALE FORSKNINGSCENTER FOR VELFÆRD 09:03.

TIL RAPPORTEN DANSKE LØNMODTAGERES ARBEJDSTID EN REGISTERBASERET ANALYSE, SFI DET NATIONALE FORSKNINGSCENTER FOR VELFÆRD 09:03. 05:2009 ARBEJDSPAPIR Mette Deding Trine Filges APPENDIKS TIL RAPPORTEN DANSKE LØNMODTAGERES ARBEJDSTID EN REGISTERBASERET ANALYSE, SFI DET NATIONALE FORSKNINGSCENTER FOR VELFÆRD 09:03. FORSKNINGSAFDELINGEN

Læs mere

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Cox regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside:

Læs mere

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved

Læs mere

Brugervejledning til udskriften ReproAnalyse

Brugervejledning til udskriften ReproAnalyse Brugervejledning til udskriften ReproAnalyse Tilgængelighed Udskriften ReproAnalyse er tilgængelig i Dairy Management System (DMS) under fanebladet Analyse og lister > Analyseudskrifter. Husk at vælge

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Introduktion 1 Formelt Lærere: Esben Budtz-Jørgensen Jørgen Holm Petersen Øvelseslærere: Berivan+Kathrine, Amalie+Annabell Databehandling: SPSS

Læs mere

Økogården. Virksomheds- og situationsbeskrivelse. Problemformuleringer. Økogården

Økogården. Virksomheds- og situationsbeskrivelse. Problemformuleringer. Økogården Økogården Økogården Virksomheds- og situationsbeskrivelse I 2008 besluttede 8 landmænd at lave et kooperativ, der som nicheproduktion skulle producere og forhandle økologiske madvarer direkte til forbrugeren.

Læs mere

Inklusions rapport i Rebild Kommune Elever fra 4. til 10. klasse Rapport status Læsevejledning Indholdsfortegnelse Analyse Din Klasse del 1

Inklusions rapport i Rebild Kommune Elever fra 4. til 10. klasse Rapport status Læsevejledning Indholdsfortegnelse Analyse Din Klasse del 1 Inklusions rapport i Rebild Kommune Elever fra 4. til 10. klasse Nærværende rapport giver et overblik over, hvorledes eleverne fra 4. til 10. klasse i Rebild Kommune trives i forhold til deres individuelle

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A)

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A) Økonometri 1 Forår 2003 Ugeseddel 13 Program for øvelserne: Gruppearbejde Opsamling af gruppearbejdet og introduktion af SAS SAS-øvelser i computerkælderen Øvelsesopgave 6: Hvem består første årsprøve

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression // SVAR

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression // SVAR ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression // SVAR Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende

Læs mere

Supplerende dokumentation af boligligningerne

Supplerende dokumentation af boligligningerne Danmarks Statistik MODELGRUPPEN Arbejdspapir* Ralph Bøge Jensen 13. september 2010 Supplerende dokumentation af boligligningerne Resumé: Papiret skal ses som et supplement til den nye Dec09-ADAM dokumentation

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A

Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A Analyse af sociale baggrundsfaktorer for elever, der opnår Bonus A Forfattere: Jeppe Christiansen og Lone Juul Hune UNI C UNI C, juni

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Ralph Bøge Jensen 20. december 2010. Lønligningen. Resumé:

Ralph Bøge Jensen 20. december 2010. Lønligningen. Resumé: Danmarks Statistik MODELGRUPPEN Arbejdspapir* Ralph Bøge Jensen 20. december 2010 Lønligningen Resumé: Dette papir skal ses som et supplement til den nye Dec09- ADAM dokumentation, hvor nogle af de beregninger,

Læs mere

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4.

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4. 1 af 12 MAT A HHX Udskriv siden FACITLISTE TIL KAPITEL 8 Øvelser Øvelse 1 Graf tegnes med CAS. Øvelse 2 Bedste rette linie: Øvelse 3 Bedste rette linie: Øvelse 4 Bedste rette linie: Øvelse 5 ad øvelse

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 4 Statistik & sandsynlighedsregning 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Program. 1. Flersidet variansanalyse 1/11

Program. 1. Flersidet variansanalyse 1/11 Program 1. Flersidet variansanalyse 1/11 To-sidet variansanalyse Eksempel: (opgave 14.2 side 587) vitamin indhold i frossen juice målt for ialt 9 kombinationer af mærke (Rich food, Sealed-sweet, Minute

Læs mere

Kausalitet. Introduktion til samfundsvidenskabelig metode. Samfundsvidenskabelig metode. Hvad er metode? Hvad er kausalitet.

Kausalitet. Introduktion til samfundsvidenskabelig metode. Samfundsvidenskabelig metode. Hvad er metode? Hvad er kausalitet. Introduktion til samfundsvidenskabelig metode Samfundsvidenskabelig metode IT-Universitetet September 2007 Mikkel Leihardt Hvad er metode? Metode er regler og retningslinjer for, hvordan vi undersøger

Læs mere

Teknisk note nr. 1. Dokumentation af data-grundlaget fra GDS-undersøgelserne i februar/marts 1996 og februar 1997

Teknisk note nr. 1. Dokumentation af data-grundlaget fra GDS-undersøgelserne i februar/marts 1996 og februar 1997 Teknisk note nr. 1 Dokumentation af datagrundlaget fra GDSundersøgelserne i februar/marts 1996 og februar 1997 Noten er udarbejdet i samarbejde mellem, Søren Pedersen og Søren Brodersen Rockwool Fondens

Læs mere

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif).

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif). Vi vil formulere en model for et kvalitativ variabel y i med to udfald, at bestå og ikke at bestå første årsprøve. Derefter modeller vi respons-sandsynligheden: Specifikation af sandsynligheden for at

Læs mere

Test nr. 6 af centrale elementer 02402

Test nr. 6 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 6 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

2 Logaritme- og eksponentialfunktion 6

2 Logaritme- og eksponentialfunktion 6 Indhold 1 Kontingenstabeller 2 1.1 Krydstabeller....................................... 2 1.2 Forventede under nulhypotesen............................. 4 1.3 Ki-kvadrat test......................................

Læs mere

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom.

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. For at I skal kunne regne på tallene fra undersøgelsen har vi taget en delmængde af variablene

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvalitative egenskaber og dummyvariabler Kvantitative metoder 2 Dummyvariabler 28. marts 2007 Vi har (hovedsagligt) set på kvantitative variabler (løn, priser, forbrug, indkomst, )... Men hvad med kvalitative

Læs mere

Bilag 12 Regressionsanalysens tabeller og forklaringer

Bilag 12 Regressionsanalysens tabeller og forklaringer Bilag 12 Regressionsanalysens tabeller og forklaringer Regressionsanalysens tabeller og forklaringer Regressionsanalysen vil være delt op i 2 blokke. Første blok vil analysere hvor meget de tre TPB variabler

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

LUP læsevejledning til afdelingsrapporter

LUP læsevejledning til afdelingsrapporter Indhold Hvordan du bruger læsevejledningen... 1 Oversigtsfigur... 2 Temafigur... 3 Spørgsmålstabel... 4 Respondenter og repræsentativitet... 6 Oversigtsfigur for afsnit/underopdelinger... 8 Uddybende forklaring

Læs mere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere DET ØKONOMISKE RÅD S E K R E T A R I A T E T d. 20. maj 2005 SG Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere Baggrundsnotat vedr. Dansk Økonomi, forår 2005, kapitel

Læs mere

Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30.

Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30. Hjemmeopgave Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30. oktober) En undersøgelse blandt fødende kvinder

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Klargøring af data til aflevering til DDA. Instruks

Klargøring af data til aflevering til DDA. Instruks v Klargøring af data til aflevering til DDA Instruks Denne instruks gennemgår datadokumentationsformater m.v. for datasystemfiler, som skal afleveres til Dansk Data Arkiv efter indgået aftale om ekstern

Læs mere

Hus 20, hus P10 og hus 22: forelæsning kl samt opfølgning i eget hus kl

Hus 20, hus P10 og hus 22: forelæsning kl samt opfølgning i eget hus kl basiskursus 8: Kvantitativ metode Om kurset Fag Den samfundsvidenskabelige bacheloruddannelse Kursustype Basiskursus Kursus starter 14-02-2014 Kursus slutter 09-05-2014 Undervisningstidspunkt Hus P11 og

Læs mere