DIFFERENTIALREGNING Hvorfor er himlen blå?

Størrelse: px
Starte visningen fra side:

Download "DIFFERENTIALREGNING Hvorfor er himlen blå?"

Transkript

1 DIFFERENTIALREGNING Hvorfor er himlen blå? Differentialregning - Rayleigh spredning - oki.wpd INDLEDNING Hvem har ikke betragtet den flotte blå himmel på en klar dag og beundret den? Men hvorfor er himlen blå? Disse sider skal forsøge at løfte sløret for, hvorfor det er tilfældet. Samtidig er emnet et godt eksempel på anvendelsen af det, som I har lært om differentialregning. Fra toppen af Mount Everest ses et klart eksempel på Rayleigh spredning af solens lys ved atmosfærens luftmolekyler. LYS OG LUFT Betragt et luftmolekyle, der vekselvirker med lys, altså stråling i området fra omkring 300 til 3000 nanometer. Lys er jo elektromagnetiske svingninger, og især luftmolekylernes ydre elektroner udsættes for elektriske kraftpåvirkninger af lyset. Luftens molekyler består af ca. 78% kvælstof og 21% ilt plus sporgasser. Lysets svingningsfrekvens f er givet ved hvor c er lysets hastighed, og L er bølgelæng den. Elektronerne sættes i tvungne svingninger. Kraften F, som det svingende elektriske felt E cos (wt) udøver på elektronerne (med ladning e og masse m) er givet ved F = e E cos(wt) Hvorfor er himlen blå? -1- Differentialregning

2 Newtons anden lov siger, at kraftpåvirkningen på et legeme med masse m er givet ved: F = m a = m d 2 x/dt 2 hvor a = d 2 x/dt 2 er legemets acceleration. Bemærk, at accelerationen er den anden afledede af positionen x med hensyn til tiden t. Ud over kraftpåvirkningen fra det elektriske felt er der en kraftpåvirkning fra molekylet, hvortil elektronen er bundet, idet man som første approksimation kan antage, at Hookes lov (F = -kx) gælder. Den samlede kraftpåvirkning på elektronen er således: - k x + e E cos(wt ) hvor k er bestemt af molekylet, og minustegnet er et udtryk for, at elektronen tvinges tilbage mod molekylet, når der kommer et udslag bort fra eller mod det. Lidt i samme stil som en fjeder og et lod, der svinger. Bruger vi nu Newtons anden lov, fås: m d 2 x/dt 2 = - k x + e E cos(wt ) Ligesom en fjeder og et lod i svingninger har en karakteristisk svingningsfrekvens, gælder det samme for den svingende elektron i molekylet. Man plejer at anvende begrebet vinkelfrekvens w (omega), og for elektronen med massen m og fjederkonstanten k gælder: Da der står w 0, er det et udtryk for, at der er tale om elektronens egenfrekvens, altså frekvensen, som elektronen med denne masse og k-værdi helst vil svinge med. Når der bare står omega (w), er der i stedet tale om lysstrålens vinkelfrekvens. Som nævnt er sammenhængen mellem den almindelige frekvens f, der måles i Hz, og vinkelfrekvensen w:. Bemærk, at vinkelfrekvensens enheder er radianer per sekund. DIFFERENTIALLIGNINGEN Nu da den fysiske baggrundsforklaring er på plads, kan vi tage fat på matematikken, nemlig differentialligningen. Her er der tale om en ren matematisk opgave. Når opgaven er løst, skal løsningen fortolkes i forhold til den fysiske verden, vi gerne vil forklare: hvorfor himlen er blå. Dette er et godt eksempel på en matematisk model eller hypotese, der skal anvendes til at beskrive vore omgivelser. Det er så afgørende, om modellens forudsigelser siden kan bekræftes ved hjælp af observationer. Hvorfor er himlen blå? -2- Differentialregning

3 Påstanden her er, at løsningen til differentialligningen, som vi har fundet frem til, er følgende: For at eftervise, at det er korrekt, at denne funktion faktisk er en løsning til differentialligningen, skal udtrykket indsættes i ligningen for at se, om ligningen så går op. Vi får i denne forbindelse brug for den anden afledede d 2 x/dt 2. Husk på, at den eneste variabel i det lange udtryk er tiden t, og at cosinus differentieret giver minus sinus. Desuden: sinus differentieret giver cosinus. Hele den konstante størrelse foran sker der jo ikke noget med, da den er ikke afhængig af tiden. Nu indsættes d 2 x/dt 2 og x(t) i vores differentialligning for at se, om vi kan få det til at passe: Dette ser en lille smule afskrækkende ud, men det viser sig, at det slet ikke er så slemt alligevel. Der er nemlig flere faktorer, der går igen i hvert led, og dem kan vi så slette alle steder: Led 1: m i tælleren går ud mod m i nævneren; desuden kan e E cos (wt ) slettes, da denne størrelse går igen i alle tre led. Led 2: igen kan vi slette e E cos(wt ). Desuden svarer k/m til w 02. Led 3: e E cos(wt) kan divideres væk, så der kun står et éttal tilbage. Hermed bliver det hele reduceret til: Vi udvider det sidste led (éttallet), så vi får en fælles nævner: Hvorfor er himlen blå? -3- Differentialregning

4 Nu kan fællesnævneren fjernes ved at gange det hele igennem med nævneren, så man finder: Nu lysner det! Vis nu selv, at ved at gange færdig bliver venstre side og højre side netop éns: (Din udregning:) Vi har dermed vist, at den påståede løsning til DL en virkelig duer. LØSNINGEN FORENKLES er jo vores løsning. Men læg mærke til, at hvis lysets frekvens w er meget mindre end elektronens resonansfrekvens w 0 (frekvensen, som elektronen helst vil svinge med), så vil brøken w 2 2 /w 0 være meget mindre end 1. I så fald kan løsningen forenkles til: I de videnskabelige fag gør man ofte det, at man forenkler sine formler for at gøre dem lettere at arbejde med - med skyldig hensyntagen til, at vigtige informationer ikke smides væk. Som Einstein har sagt Man bør gøre sin beskrivelse så enkel som muligt - men heller ikke enklere. Accelerationen med denne forenkling bliver (idet vi igen differentierer to gange): ACCELERERET LADNING UDSENDER STRÅLING Det kan være, at du spørger dig selv, hvor blev det blå lys af i alt dette? Det kommer nu her, fordi accelererede ladninger udsender stråling (jfr. TV, mobiltelefon, radio, mm.). Det er vist (af Heinrich Hertz), at denne udstrålings effekt W er givet ved formlen: hvor a er elektronens acceleration, c er lysets hastighed og e 0 er en kon- Hvorfor er himlen blå? -4- Differentialregning

5 stant (vacuum permittiviteten). Men vi kender jo accelerationen a, og den kan så indsættes her, så: Vil man finde effektens middelværdi <W> over en hel svingning, skal man anvende, at middelværdien af cosinus <cos 2 (wt)> = ½. Dette er nemt at indse ved at betragte begge sider af ligningen sin 2 (wt) + cos 2 (wt) = 1. Alle de andre størrelser er blot konstanter, som man skal reducere. Hermed bliver effektens middelværdi: Vinkelfrekvensen omregnes, således at vi får lysets bølgelængde L ind i billedet: Til sidst indsættes omega, og hele udtrykket reduceres. Prøv selv at vise, at: Læg mærke til, at der indgår L 4 i nævneren. Altså er genudstrålingen af energien fra luftmolekylernes svingende elektroner er omvendt proportional med lysets bølgelængde i fjerde potens. Når lys spredes som her beskrevet, taler man om Rayleigh spredning af lyset ved luftens molekyler. OPGAVE: Gå på internettet og søg på Rayleigh scattering, blue sky, mm. Se hvor meget du nu forstår efter gennemgangen af disse sider. Betragt nu rødt lys med en bølgelængde L = 600 nanometer og UV lys med L = 300 nm. Hvad bliver forskellen på lysets spredning ved disse to bølgelængder? Alt andet lige fås for rødt lys en faktor 1/600 4 og for UV lys faktoren 1/ Ser Det synlige lys dækker et spektralområde fra 400 (violet) til 800 (mørkerød) nanometer. Derudover findes der ultraviolet (UV) lys ( nm) og nær infrarødt (NIR) lys ( nm). man på forholdet mellem disse to tal, fås: Hvorfor er himlen blå? -5- Differentialregning

6 Altså spredningen af UV-lyset er 16 gange kraftigere end spredningen af rødt lys. OPGAVE: Find selv forholdet mellem spredningen af blåt lys med en bølgelængde på 450 nm og rødt lys med en bølgelængde på 650 nm. Da blåt lys spredes betydeligt mere end de rødlige farver, ser man den blå farve, når man kikker op på himlen. De gule og røde farver trænger bedre igennem atmosfæren uden spredning, og af denne grund opleves solskiven ved solnedgang som gul og rødlig, idet lyset da skal trænge igennem mange luftlag. SPREDNINGSDATA FRA GRØNLAND Som praktisk eksempel på virkningen af Rayleigh-spredning på solens indstråling, følger her et eksempel fra Thule Air Base (Pituffik) i den nordlige Grønland. Det drejer sig om målinger af den direkte solindstråling ved forskellige, bestemte bølgelængder. Mens solen (24 timer i døgnet) flytter sig på himlen, gennemløber den forskellige solelevationsvinkler, således at lyset fra solen gennemtrænger forskellige tykkelser af jordens atmosfære. Forskellige solelevationsvinkler svarer til, at solens direkte stråling passerer gennem forskellige luftlagstykkelser ( air masses AM). Apparatet, der er vist i figuren på næste side, indeholder detektorer, der optager hver sin bølgelængde. To af kanalerne svarer til UV lys (368 nm) og NIR lys (1030 nm). Signaler for disse to kanaler er vist i den efterfølgende illustration. Hvorfor er himlen blå? -6- Differentialregning

7 Disse pyrheliometre er monteret på en solar tracker på en bakke syd for startbanen på Thule Air Base i Nordgrønland (76,5 0 N). Trackeren drejer dagen igennem, så instrumenterne altid peger direkte mod solskiven. (Bemærk den flotte Rayleigh-spredning på himlen bag ved!) Figuren viser data optaget ved hjælp af pyrheliometrene på trackeren. Læg mærke til, hvordan NIR-strålingen gennemtrænger atmosfæren næsten uden attenuation. Derimod bliver UV-strålingen kraftigt attenueret. Dette skyldes i høj grad Rayleigh-spredningen af den kortbølgede stråling. (Data fra Ph.D. afhandling, Frank Bason, Aarhus Universitet og DMI, 1999). Bemærk, at prikkerne, der ligger under de rette linier i figuren, skyldes skypassager. Data på de rette linier svarer til klart solskin. Da de væsentlige data ligger på rette linier på semilogaritmisk papir, er der jo tale om eksponentielle udviklinger. Men det fører jo til en helt anden historie! Hvorfor er himlen blå? -7- Differentialregning

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Arbejdsopgaver i emnet bølger

Arbejdsopgaver i emnet bølger Arbejdsopgaver i emnet bølger I nedenstående opgaver kan det oplyses, at lydens hastighed er 340 m/s og lysets hastighed er 3,0 10 m/s 8. Opgave 1 a) Beskriv med ord, hvad bølgelængde og frekvens fortæller

Læs mere

Solindstråling på vandret flade Beregningsmodel

Solindstråling på vandret flade Beregningsmodel Solindstråling på vandret flade Beregningsmodel Formål Når solens stråler rammer en vandret flade på en klar dag, består indstrålingen af diffus stråling fra himlen og skyer såvel som solens direkte stråler.

Læs mere

MODUL 1-2: ELEKTROMAGNETISK STRÅLING

MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1 - ELEKTROMAGNETISKE BØLGER I 1. modul skal I lære noget omkring elektromagnetisk stråling (EM- stråling). I skal lære noget om synligt lys, IR- stråling, UV-

Læs mere

Harmoniske Svingninger

Harmoniske Svingninger Harmoniske Svingninger Frank Villa 16. marts 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Den harmoniske svingning

Den harmoniske svingning Den harmoniske svingning Teori og en anvendelse Preben Møller Henriksen Version. Noterne forudsætter kendskab til sinus og cosinus som funktioner af alle reelle tal, dvs. radiantal. I figuren nedenunder

Læs mere

A KURSUS 2014 ATTENUATION AF RØNTGENSTRÅLING. Diagnostisk Radiologi : Fysik og Radiobiologi

A KURSUS 2014 ATTENUATION AF RØNTGENSTRÅLING. Diagnostisk Radiologi : Fysik og Radiobiologi A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi ATTENUATION AF RØNTGENSTRÅLING Erik Andersen, ansvarlig fysiker CIMT Medico, Herlev, Gentofte, Glostrup Hospital Attenuation af røntgenstråling

Læs mere

I dagligdagen kender I alle røntgenstråler fra skadestuen eller tandlægen.

I dagligdagen kender I alle røntgenstråler fra skadestuen eller tandlægen. GAMMA Gammastråling minder om røntgenstråling men har kortere bølgelængde, der ligger i intervallet 10-11 m til 10-16 m. Gammastråling kender vi fra jorden, når der sker henfald af radioaktive stoffer

Læs mere

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning 49 6 Plasmadiagnostik Plasmadiagnostik er en fællesbetegnelse for de forskellige typer måleudstyr, der benyttes til måling af plasmaers parametre og egenskaber. I fusionseksperimenter er der behov for

Læs mere

Fysik A - B Aarhus Tech. Niels Junge. Bølgelærer

Fysik A - B Aarhus Tech. Niels Junge. Bølgelærer Fysik A - B Aarhus Tech Niels Junge Bølgelærer 1 Table of Contents Bølger...3 Overblik...3 Harmoniske bølger kendetegnes ved sinus form samt følgende sammenhæng...4 Udbredelseshastighed...5 Begrebet lydstyrke...6

Læs mere

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Opgaverne er udregnet i samarbejde med Thomas Salling, s110579 og Mikkel Seibæk, s112987. 11/12-2012

Læs mere

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter.

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. Kræfter og Energi Jacob Nielsen 1 Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. kraften i x-aksens retning hænger sammen med den

Læs mere

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted Mini SRP Afkøling Klasse 2.4 Navn: Jacob Pihlkjær Lærere: Jørn Christian Bendtsen og Karl G Bjarnason Roskilde Tekniske Gymnasium SO Matematik A og Informations teknologi B Dato 31/3/2014 Forord Under

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 10 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

Svingninger. Erik Vestergaard

Svingninger. Erik Vestergaard Svingninger Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2009. Billeder: Forside: Bearbejdet billede af istock.com/-m-i-s-h-a- Desuden egne illustrationer. Erik Vestergaard

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

Den ideelle operationsforstærker.

Den ideelle operationsforstærker. ELA Den ideelle operationsforstærker. Symbol e - e + v o Differensforstærker v o A OL (e + - e - ) - A OL e ε e ε e - - e + (se nedenstående figur) e - e ε e + v o AOL e - Z in (i in 0) e + i in i in v

Læs mere

Svingninger & analogier

Svingninger & analogier Fysik B, 2.år, TGK, forår 2006 Svingninger & analogier Dette forsøg løber som tre sammenhængende forløb, der afvikles som teoretisk modellering og praktiske forsøg i fysiklaboratorium: Lokale 43. Der er

Læs mere

MOBILTELEFONI OG DIT HELBRED Af Trine Jørgensen

MOBILTELEFONI OG DIT HELBRED Af Trine Jørgensen MOBILTELEFONI OG DIT HELBRED Af Trine Jørgensen Tips til at begrænse strålingen i hverdagen. Flere og flere bliver konstateret allergiske overfor radiobølger og elektrosmog. I dag er vi bogstavelig talt

Læs mere

Fluorescens & fosforescens

Fluorescens & fosforescens Kræftens Bekæmpelse og TrygFonden smba (TryghedsGruppen smba), august 2009. Udvikling: SolData Instruments v/frank Bason og Lisbet Schønau, Kræftens Bekæmpelse Illustrationer: Maiken Nysom, Tripledesign

Læs mere

Strålingsbalance og drivhuseffekt - en afleveringsopgave

Strålingsbalance og drivhuseffekt - en afleveringsopgave LW 014 Strålingsbalance og drivhuseffekt - en afleveringsopgave FORMÅL: At undersøge den aktuelle strålingsbalance for jordoverfladen og relatere den til drivhuseffekten. MÅLING AF KORTBØLGET STRÅLING

Læs mere

Protoner med magnetfelter i alle mulige retninger.

Protoner med magnetfelter i alle mulige retninger. Magnetisk resonansspektroskopi Protoners magnetfelt I 1820 lavede HC Ørsted et eksperiment, der senere skulle gå over i historiebøgerne. Han placerede en magnet i nærheden af en ledning og så, at når der

Læs mere

Ordliste. Teknisk håndbog om magnetfelter og elektriske felter

Ordliste. Teknisk håndbog om magnetfelter og elektriske felter Ordliste Teknisk håndbog om magnetfelter og elektriske felter Afladning Atom B-felt Dielektrika Dipol Dosimeter E-felt Eksponering Elektricitetsmængde Elektrisk elementarladning Elektrisk felt Elektrisk

Læs mere

2. ordens differentialligninger. Svingninger.

2. ordens differentialligninger. Svingninger. arts 011, LC. ordens differentialligninger. Svingninger. Fjederkonstant k = 50 kg/s s X S 80 kg F1 F S er forlængelsen af fjederen, når loddets vægt belaster fjederen. X er den påtvungne forlængelse af

Læs mere

Optisk gitter og emissionsspektret

Optisk gitter og emissionsspektret Optisk gitter og emissionsspektret Jan Scholtyßek 19.09.2008 Indhold 1 Indledning 1 2 Formål og fremgangsmåde 2 3 Teori 2 3.1 Afbøjning................................... 2 3.2 Emissionsspektret...............................

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Matematik og Fysik for Daves elever

Matematik og Fysik for Daves elever TEC FREDERIKSBERG www.studymentor.dk Matematik og Fysik for Daves elever MATEMATIK... 2 1. Simple isoleringer (+ og -)... 3 2. Simple isoleringer ( og )... 4 3. Isolering af ubekendt (alle former)... 6

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Studenterkurset

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2014 Studenterkurset

Læs mere

Undersøgelse af lyskilder

Undersøgelse af lyskilder Felix Nicolai Raben- Levetzau Fag: Fysik 2014-03- 21 1.d Lærer: Eva Spliid- Hansen Undersøgelse af lyskilder bølgelængde mellem 380 nm til ca. 740 nm (nm: nanometer = milliardnedel af en meter), samt at

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Studenterkurset

Læs mere

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3 Gaslovene SH ver. 1.2 Indhold 1 Hvad er en gas? 2 1.1 Fysiske størrelser................... 2 1.2 Gasligninger...................... 3 2 Forsøgene 3 2.1 Boyle Mariottes lov.................. 4 2.1.1 Konklusioner.................

Læs mere

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler Lektion 12 2. ordens lineære differentialligninger homogene inhomogene eksempler højere ordens lineære differentiallininger 1 Anden ordens lineære differentialligninger med konstante koefficienter A. Homogene

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

Begge bølgetyper er transport af energi.

Begge bølgetyper er transport af energi. I 1. modul skal I lære noget omkring elektromagnetisk stråling(em-stråling). Herunder synligt lys, IR-stråling, Uv-stråling, radiobølger samt gamma og røntgen stråling. I skal stifte bekendtskab med EM-strålings

Læs mere

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006

Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006 Den Naturvidenskabelige acheloreksamen Københavns Universitet Fysik 1-14. september 006 Første skriftlige evaluering 006 Opgavesættet består af 4 opgaver med i alt 9 spørgsmål. Skriv tydeligt navn og fødselsdato

Læs mere

Theory Danish (Denmark)

Theory Danish (Denmark) Q1-1 To mekanikopgaver (10 points) Læs venligst den generelle vejledning i en anden konvolut inden du går i gang. Del A. Den skjulte metalskive (3.5 points) Vi betragter et sammensat legeme bestående af

Læs mere

PETERTROELSENTEKNISKGYMNASI UMHADERSLEVHTXPETERTROELSE NTEKNISKGYMNASIUMHADERSLEV HTXPETERTROELSENTEKNISKGYMN ASIUMHADERSLEVHTXPETERTROEL

PETERTROELSENTEKNISKGYMNASI UMHADERSLEVHTXPETERTROELSE NTEKNISKGYMNASIUMHADERSLEV HTXPETERTROELSENTEKNISKGYMN ASIUMHADERSLEVHTXPETERTROEL PETERTROELSENTEKNISKGYMNASI UMHADERSLEVHTXPETERTROELSE NTEKNISKGYMNASIUMHADERSLEV HTXPETERTROELSENTEKNISKGYMN ASIUMHADERSLEVHTXPETERTROEL Dæmpede svingninger SENTEKNISKGYMNASIUMHADERSLE Studieretningsprojekt

Læs mere

1. Vibrationer og bølger

1. Vibrationer og bølger V 1. Vibrationer og bølger Vi ser overalt bevægelser, der gentager sig: Sætter vi en gynge i gang, vil den fortsætte med at svinge på (næsten) samme måde, sætter vi en karrusel i gang vil den fortsætte

Læs mere

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Relativitetsteori Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Koordinattransformation i den klassiske fysik Hvis en fodgænger, der står stille i et lyskryds,

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau VUC Holstebro Lemvig Struer HF Matematik C Læreplan Lærer(e) Hold Michael

Læs mere

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

Differentiation. Frank Nasser. 11. juli 2011

Differentiation. Frank Nasser. 11. juli 2011 Differentiation Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009 Lysets hastighed Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.1.009 Indholdsfortegnelse 1. Opgaveanalyse... 3. Beregnelse af lysets hastighed... 4 3.

Læs mere

RKS Yanis E. Bouras 21. december 2010

RKS Yanis E. Bouras 21. december 2010 Indhold 0.1 Indledning.................................... 1 0.2 Løsning af 2. ordens linære differentialligninger................ 2 0.2.1 Sætning 0.2............................... 2 0.2.2 Bevis af sætning

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Diodespektra og bestemmelse af Plancks konstant

Diodespektra og bestemmelse af Plancks konstant Diodespektra og bestemmelse af Plancks konstant Fysik 5 - kvantemekanik 1 Joachim Mortensen, Rune Helligsø Gjermundbo, Jeanette Frieda Jensen, Edin Ikanović 12. oktober 28 1 Indledning Formålet med denne

Læs mere

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives.

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives. Eksamensspørgsmål - maj/juni 2016 1. Tal Du skal redegøre for løsningsregler for ligninger. Forklar, hvordan følgende ligning kan løses grafisk: x + 4 = 3x - 2 Redegør for opstilling af formler til løsning

Læs mere

Kulstofnanorør - småt gør stærk Side 20-23 i hæftet

Kulstofnanorør - småt gør stærk Side 20-23 i hæftet Kulstofnanorør - småt gør stærk Side 20-23 i hæftet SMÅ FORSØG OG OPGAVER Lineal-lyd 1 Lineal-lyd 2 En lineal holdes med den ene hånd fast ud over en bordkant. Med den anden anslås linealen. Det sker ved

Læs mere

Elektromagnetisme 14 Side 1 af 10 Elektromagnetiske bølger. Bølgeligningen

Elektromagnetisme 14 Side 1 af 10 Elektromagnetiske bølger. Bølgeligningen Elektromagnetisme 14 Side 1 af 1 Bølgeligningen Maxwells ligninger udtrykker den indbyrdes sammenhæng mellem de elektromagnetiske felter samt sammenhængen mellem disse felter og de feltskabende ladninger

Læs mere

Optical Time Domain Reflectometer Princip for OTDR

Optical Time Domain Reflectometer Princip for OTDR Optical Time Domain Reflectometer Princip for OTDR Hvad er en OTDR Backscattered lys Pulse input Hvad er en OTDR? En OTDR er et instrument, der analyserer lys tabet i en optisk fiber og benyttes til at

Læs mere

Symbolsprog og Variabelsammenhænge

Symbolsprog og Variabelsammenhænge Indledning til Symbolsprog og Variabelsammenhænge for Gymnasiet og Hf 1000 kr 500 0 0 5 10 15 timer 2005 Karsten Juul Brugsanvisning Du skal se i de fuldt optrukne rammer for at finde: Regler for løsning

Læs mere

Newtons love - bevægelsesligninger - øvelser. John V Petersen

Newtons love - bevægelsesligninger - øvelser. John V Petersen Newtons love - bevægelsesligninger - øvelser John V Petersen Newtons love 2016 John V Petersen art-science-soul Indhold 1. Indledning og Newtons love... 4 2. Integration af Newtons 2. lov og bevægelsesligningerne...

Læs mere

Antennens udstrålingsmodstand hvad er det for en størrelse?

Antennens udstrålingsmodstand hvad er det for en størrelse? Antennens udstrålingsmodstand hvad er det for en størrelse? Det faktum, at lyset har en endelig hastighed er en forudsætning for at en antenne udstråler, og at den har en ohmsk udstrålingsmodstand. Den

Læs mere

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indhold Længdebølger og tværbølger... 2 Forsøg med frembringelse af lyd... 3 Resonans... 4 Ørets følsomhed over for lydfrekvenser.... 5 Stående tværbølger på en snor.... 6 Stående lydbølger i resonansrør.

Læs mere

Mørk energi Anja C. Andersen, Dark Cosmology Centre, Niels Bohr Institutet, Københavns Universitet

Mørk energi Anja C. Andersen, Dark Cosmology Centre, Niels Bohr Institutet, Københavns Universitet Mørk energi Anja C. Andersen, Dark Cosmology Centre, Niels Bohr Institutet, Københavns Universitet En af de mest opsigtsvækkende opdagelser inden for astronomien er, at Universet udvider sig. Det var den

Læs mere

Opgaveformuleringer til studieprojekt - Matematik og andet/andre fag:

Opgaveformuleringer til studieprojekt - Matematik og andet/andre fag: Opgaveformuleringer til studieprojekt - Matematik og andet/andre fag: Fag: Matematik/Historie Emne: Det gyldne snit og Fibonaccitallene Du skal give en matematisk behandling af det gyldne snit. Du skal

Læs mere

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså

Læs mere

Dæmpet harmonisk oscillator

Dæmpet harmonisk oscillator FY01 Obligatorisk laboratorieøvelse Dæmpet harmonisk oscillator Hold E: Hold: D1 Jacob Christiansen Afleveringsdato: 4. april 003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

Harmoniske Svingninger

Harmoniske Svingninger Harmoniske Svingninger Frank Nasser 14. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Elektromagnetisk spektrum

Elektromagnetisk spektrum 1 4 7 3 3. Bølgelængde nm Varme og kolde farver Af Peter Svane Overflader opvarmes af solen, men temperaturen afhænger ikke kun af absorption og refleksion i den synlige del af spektret. Det nære infrarøde

Læs mere

Gravitationsbølger Steen Hannestad, astronomidag 1. april 2016

Gravitationsbølger Steen Hannestad, astronomidag 1. april 2016 Gravitationsbølger Steen Hannestad, astronomidag 1. april 2016 TYNGDELOVEN SIDST I 1600-TALLET FORMULEREDE NEWTON EN UNIVERSEL LOV FOR TYNGDEKRAFTEN, DER GAV EN FORKLARING PÅ KEPLERS LOVE TYNGDELOVEN SIGER,

Læs mere

Teknologi Projekt. Trafik - Optimal Vej

Teknologi Projekt. Trafik - Optimal Vej Roskilde Tekniske Gymnasium Teknologi Projekt Trafik - Optimal Vej Af Nikolaj Seistrup, Henrik Breddam, Rasmus Vad og Dennis Glindhart Roskilde Tekniske Gynasium Klasse 1.3 7. december 2006 Indhold 1 Forord

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Teknisk rapport 05-18 Solskinstimer i Pituffik Verifikation af metode til beregning af solskinstimer ud fra globalstrålingsdata

Teknisk rapport 05-18 Solskinstimer i Pituffik Verifikation af metode til beregning af solskinstimer ud fra globalstrålingsdata Solskinstimer i Pituffik Verifikation af metode til beregning af solskinstimer ud fra globalstrålingsdata Maja Kjørup Nielsen December 2005 København 2005 Kolofon Serietitel: Teknisk rapport 05-18 Titel:

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

EDR Frederikssund Afdelings Almen elektronik kursus

EDR Frederikssund Afdelings Almen elektronik kursus Afsnit 4-5-6 EDR Frederikssund Afdelings Joakim Soya OZ1DUG Formand http://en.wikipedia.org/wiki/index_of_electronics_articles http://openbookproject.net/electriccircuits/ 2012-09-13 OZ1DUG 4-5-6 1 Repetition

Læs mere

KOMMUNIKATION/ IT C. Titel: Grafisk design Navn: Mark B, Thomas L og Maria S Klasse: 1.4g Dato: 8/12 2006 Sidetal:

KOMMUNIKATION/ IT C. Titel: Grafisk design Navn: Mark B, Thomas L og Maria S Klasse: 1.4g Dato: 8/12 2006 Sidetal: Titel: Grafisk design Navn: Mark B, Thomas L og Maria S Klasse: 1.4g Dato: 8/12 2006 Sidetal: 1 Indholdsfortegnelse: Farvelære s. 2 - farvens fysik s. 2 Øjet s. 2 - farvesyn s. 3 - nethinden s. 3 - efterbilleder

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011 Matematik A Højere teknisk eksamen Forberedelsesmateriale htx112-mat/a-26082011 Fredag den 26. august 2011 Forord Forberedelsesmateriale til prøverne i matematik A Der er afsat 10 timer på 2 dage til

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj 2013 HTX Vibenhus

Læs mere

MINI SRP MAT-IT. Lavet af Adam Kjærum og Frederik Franklin klasse 2.4 på Rokilde Tekniske Gymnasium. Lavet på Rokilde Tekniske Gymnasium

MINI SRP MAT-IT. Lavet af Adam Kjærum og Frederik Franklin klasse 2.4 på Rokilde Tekniske Gymnasium. Lavet på Rokilde Tekniske Gymnasium MINI SRP MAT-IT Lavet af Adam Kjærum og Frederik Franklin klasse 2.4 på Rokilde Tekniske Gymnasium Lavet på Rokilde Tekniske Gymnasium Indhold Forord... 2 Indledning... 2 Model og differentielligning...

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indhold Længdebølger og tværbølger... 2 Forsøg med frembringelse af lyd... 3 Måling af lydens hastighed... 4 Resonans... 5 Ørets følsomhed over for lydfrekvenser.... 6 Stående tværbølger på en snor....

Læs mere

Folkeskolens afgangsprøve Maj-juni 2006 Fysik / kemi - Facitliste

Folkeskolens afgangsprøve Maj-juni 2006 Fysik / kemi - Facitliste Folkeskolens afgangsprøve Maj-juni 2006 1/25 Fk5 Opgave 1 / 20 (Opgaven tæller 5 %) I den atommodel, vi anvender i skolen, er et atom normalt opbygget af 3 forskellige partikler: elektroner, neutroner

Læs mere

MATEMATIK A. Indhold. 92 videoer.

MATEMATIK A. Indhold. 92 videoer. MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer

Læs mere

Teknikken er egentlig meget simpel og ganske godt illustreret på animationen shell 4-5.

Teknikken er egentlig meget simpel og ganske godt illustreret på animationen shell 4-5. Fysikken bag Massespektrometri (Time Of Flight) Denne note belyser kort fysikken bag Time Of Flight-massespektrometeret, og desorptionsmetoden til frembringelsen af ioner fra vævsprøver som er indlejret

Læs mere

Bringing Mathematics to Earth... using many languages 155

Bringing Mathematics to Earth... using many languages 155 Bringing Mathematics to Earth... using many languages 155 Rumrejser med 1 g acceleration Ján Beňačka 1 Introduktion Inden for en overskuelig fremtid vil civilisationer som vores være nødt til at fremskaffe

Læs mere

1. Tryk. Figur 1. og A 2. , der påvirkes af luftartens molekyler med kræfterne henholdsvis F 1. og F 2. , må der derfor gælde, at (1.1) F 1 = P.

1. Tryk. Figur 1. og A 2. , der påvirkes af luftartens molekyler med kræfterne henholdsvis F 1. og F 2. , må der derfor gælde, at (1.1) F 1 = P. M3 1. Tryk I beholderen på figur 1 er der en luftart, hvis molekyler bevæger sig rundt mellem hinanden. Med jævne mellemrum støder de sammen med hinanden og de støder ligeledes med jævne mellemrum mod

Læs mere

Vejledning til Excel 2010

Vejledning til Excel 2010 Vejledning til Excel 2010 Indhold Eksempel på problemregning i Excel... 2 Vejledning til skabelon og opstilling... 3 Indskrivning... 5 Tips til problemregninger... 6 Brøker... 6 Når du skal bruge pi...

Læs mere

Lysspredning for gymnasiet

Lysspredning for gymnasiet Lysspredning for gymnasiet Lars Øgendal Det Biovidenskabelige Fakultet, Københavns Universitet, 28. februar 2011 ii Indhold 1 Indledning 1 1.1 Hvad er lysspredning?.............................. 1 1.2

Læs mere

Flemmings Maplekursus 1. Løsning af ligninger

Flemmings Maplekursus 1. Løsning af ligninger Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er

Læs mere

Hvorfor lyser de Sorte Huller? Niels Lund, DTU Space

Hvorfor lyser de Sorte Huller? Niels Lund, DTU Space Hvorfor lyser de Sorte Huller? Niels Lund, DTU Space Først lidt om naturkræfterne: I fysikken arbejder vi med fire naturkræfter Tyngdekraften. Elektromagnetiske kraft. Stærke kernekraft. Svage kernekraft.

Læs mere

Begge bølgetyper er transport af energi.

Begge bølgetyper er transport af energi. I 1. modul skal I lære noget omkring elektromagnetisk stråling(em-stråling). Herunder synligt lys, IR-stråling, Uv-stråling, radiobølger samt gamma og røntgen stråling. I skal stifte bekendtskab med EM-strålings

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Matematik B. Anders Jørgensen

Matematik B. Anders Jørgensen Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, lørdag den 13. december, 2014 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle tilladte hjælpemidler på

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2009 Institution Herningsholm Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B og A (1.år)

Læs mere

Lysets kilde Ny Prisma Fysik og kemi 9 - kapitel 8 Skole: Navn: Klasse:

Lysets kilde Ny Prisma Fysik og kemi 9 - kapitel 8 Skole: Navn: Klasse: Lysets kilde Ny Prisma Fysik og kemi 9 - kapitel 8 Skole: Navn: Klasse: Opgave 1 Der findes en række forskellige elektromagnetiske bølger. Hvilke bølger er elektromagnetiske bølger? Der er 7 svarmuligheder.

Læs mere

1 Lysets energi undersøgt med lysdioder (LED)

1 Lysets energi undersøgt med lysdioder (LED) Solceller og Spektre Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 26. august 2010 Formål Formålet med øvelsen

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk Mekanik 2 Skriftlig eksamen 23. januar 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner Besvarelsen må

Læs mere