dpersp Uge 40 - Øvelser Internetalgoritmer

Størrelse: px
Starte visningen fra side:

Download "dpersp Uge 40 - Øvelser Internetalgoritmer"

Transkript

1 Øvelse 1 dpersp Uge 40 - Øvelser Internetalgoritmer (Øvelserne 4 og 6 er afleveringsopgaver) a) Hver gruppe får en terning af instruktoren. Udfør 100 skridt af nedenstående RandomWalk på grafen, som også findes på slidsene fra mandagens forelæsning. For hvert skridt noter i hvilken af de 6 knuder I står. Når I har foretaget 100 skridt, tæl da op hvor mange gange I har været i hver af de 6 knuder. Beregn den procentvise fordeling blandt de seks knuder. Sammenlign med de beregnede sandsynligheder. Metode RandomSurfer Start på knude 1 Gentag mange gange: Kast en terning: Hvis den viser 1-5: Vælg en tilfældig pil ud fra knuden ved at kaste en terning hvis 2 udkanter Hvis den viser 6: Kast terningen igen og spring hen til den knude som terningen viser Knude Antal gange % fordeling (% fra slides) b) Læg tallene for alle grupperne på holdet sammen og sammenlign igen med de beregnede sandsynligheder. Knude Gruppe 1 Gruppe 2 Gruppe 3... Totalt % fordeling (% fra slides)

2 Øvelse 2 Regnearket hvormed PageRank værdierne for eksemplet i øvelse 1 er beregnet med findes her: I denne opgave skal I downloade regnearket og modificere det. Cellerne som det er nødvendigt at rette i for at løse de følgende øvelser er markeret med gult. Bemærk at der er to worksheets: Et med grafen og et med PageRank beregningerne. a) Prøv at ændre sandsynligheden for at foretage et tilfældigt spring (skal være i intervallet [0,1]). Hvor mange skridt skal man gentage før de første 3 decimaler i sandsynlighedsfordelingen ikke ændrer sig? Gentag beregningerne for alle sandsynlighederne fra 0,0 til 1,0 med skring på 0,1. sandsynlighed 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 # skridt b) Gentag ovenstående beregning for grafen med nedenstående incidensmatrice (hvilket er en 0-1- matrice hvor indgang (i,j) indeholder 1 hvis og kun hvis der er en kant (i,j) i grafen). Læg specielt mærke til beregningen for sandsynligheden 0,0 dvs. man følger kun kanterne tilfældigt uden nogensinde at foretage et spring til en tilfældig knude. Prøv at forklare jeres observationer. (i,j) sandsynlighed 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 # skridt

3 Øvelse 3 Betragt følgende graf: Regnearket til beregning af PageRank værdierne findes her: a) Hvilket link skal tilføjes for at maksimere PageRank værdien for knuden 1. b) Hvad er det mindste antal links (og hvilke) der skal tilføjes grafen for knuden 1 får den højeste PageRank værdi? Knude PageRank Øvelse 4 (Afleveringsopgave) Detaljerne i Google s rangering af søgeresultater er en af deres dybeste hemmeligheder. PageRank er kun en af de mulige parametre. Prøv at overveje hvordan I ville rangere en mængde af søgeresultater, og beskriv hvordan I ville forsøge at rangere outputtet så relevante websider bliver listet først. Mulige emner I kan komme ind på (men behøves ikke) er f.eks. hvordan håndteres personlig rangering, kunstige for høje rangeringer (modvirk SEO), geografisk information, tvetydige søgninger (f.eks. frø ), I må meget gerne søge information på nettet til at besvare opgaven.

4 Øvelse 5 a) Beskriv map og reduce funktioner der kan bruges til at transformere en liste af n værdier [ x 1, x 2,..., x n ] til listen [ k ] hvor k er antal forskellige x i i listen, dvs. vi beregner antal forskellige værdier i input. b) Beskriv map og reduce funktioner der kan bruges til at transformere en liste af n par [ (x 1,c), (x 2,0),..., (x n,0) ] til listen [ (x 1,c), (x 2,c),..., (x n,c) ] dvs. tilknytter til hvert x i værdien c. Vi antager c > 0. Øvelse 6 (Afleveringsopgave) I denne opgave vil vi se på hvordan man kan anvende MapReduce interfacet til at beregne PageRank værdierne for en webgraf. Vi antager at inputtet er givet ved en liste af links (i,j), som angiver at side i henviser til side j, og hvor både i og j antages at være heltal. Vi antager at hver side indeholder mindst ét link. For nedenstående graf har vi f.eks. følgende liste som input: [ (1,2), (5,6), (2,4), (3,1), (4,2), (4,5), (6,2), (5,2), (3,2) ] Vi ønsker at beregne sandsynlighedsfordelingen for at være på siderne efter s = 50 skridt af RandomSurfer algoritmen, dvs. vi ønsker at beregne listen

5 [ (i 1, p i1 (s) ), (i 2, p i2 (s) ), (i 3, p i3 (s) ),..., (i n, p in (s) ) ] hvor i 1, i 2,..., i n er de n forskellige sider der indgår i linksene. Sandsynlighederne beregnes ud fra følgende formel: p 1.0 p p n p ( s) i 0.85 j : j i p ( s 1) j udgrad( j) n (*) For ovenstående eksempel graf bliver dette [ (1, ), (2, ), (3, ), (4, ), (5, ), (6, ) ] (værdierne er beregnet v.h.a. regnearket fra PageRank øvelse 1 ved at sætte sandsynligheden til 15%). Vi kan beregne den ønskede liste ved at foretage nedenstående transformationer på vores input liste, hvor 1, 2, 3, og 5 udføres præcis én gang, og 4 udføres s gange. 1 udvider hver linket (i,j) med sandsynligheden for at stå på side i i starten af RandomSurfer processen, 2 udvider yderligere hvert link (i,j) med information om udgraden af i i webgrafen, og endeligt udvider 3 hver link med information om det totale antal sider n repræsenteret i input. 4 beregner for et link (i,j) den nye sandsynlighed for at stå på side i hvis vi laver yderligere ét skridt i RandomSurfer algoritmen. Dette kan beregnes ved formelen (*) ovenfor. Endeligt reducerer 5 input til et par for hver knude. [ (i 1, j 1 ), (i 2, j 2 ),... ] 1 [ (i 1, j 1, p i1 ), (i 2, j 2, p i2 ),... ] 2 [ (i 1, j 1, p i1, udgrad(i 1 )), (i 2, j 2, p i2, udgrad(i 2 )),... ] 3 [ (i 1, j 1, p i1, udgrad(i 1 ), n), (i 2, j 2, p i2, udgrad(i 2 ), n),... ] 4 [ (i 1, j 1, p i1 (1), udgrad(i 1 ), n), (i 2, j 2, p i2 (1), udgrad(i 2 ), n),... ] s 4 [ (i 1, j 1, p i1 (2), udgrad(i 1 ), n), (i 2, j 2, p i2 (2), udgrad(i 2 ), n),... ]... 4 [ (i 1, j 1, p i1 (s), udgrad(i 1 ), n), (i 2, j 2, p i2 (s), udgrad(i 2 ), n),... ] 5 [ (i 1, p i1 (s) ), (i 2, p i2 (s) ),... ] a) Beskriv hvordan mindst to af de fire transformationer 1, 2, 3, 4 og 5 kan implementeres v.h.a. MapReduce interfacet for passende valg af map og reduce funktioner.

Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem

Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem Eksamensopgaver datalogi, dlc 2011 side 1/5 1. Lodtrækningssystem Der skal fremstilles et program, som kan foretage en lodtrækning. Programmet skal kunne udtrække en eller flere personer (eller andet)

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer Philip Bille Orienteret graf. Mængde af knuder forbundet parvis med orienterede kanter. deg + (7) =, deg - (7) = Lemma. v V deg - (v) = v V deg + (v) = m. Bevis. Hver kant har netop en startknude og slutknude.

Læs mere

Cash Flow Forecast 1

Cash Flow Forecast 1 Cash Flow Forecast 1 Indholdsfortegnelse Introduktion til Cash Flow Forecast... 3 Formål... 3 Du kan... 3 Det skal du bruge for at få adgang til værktøjet... 3 Cash Flow Forecast egenskaber... 3 Tilføjelser...

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

13.1 Matrixpotenser og den spektrale radius

13.1 Matrixpotenser og den spektrale radius SEKTION 3 MATRIXPOTENSER OG DEN SPEKTRALE RADIUS 3 Matrixpotenser og den spektrale radius Cayley-Hamilton-sætningen kan anvendes til at beregne matrixpotenser: Proposition 3 (Lasalles algoritme) Lad A

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer.

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. Merging og Hashing Tilgang til data To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. API for sekventiel tilgang (API =

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Symmetrisk Traveling Salesman Problemet

Symmetrisk Traveling Salesman Problemet Symmetrisk Traveling Salesman Problemet Videregående Algoritmik, Blok 2 2008/2009, Projektopgave 2 Bjørn Petersen 9. december 2008 Dette er den anden af to projektopgaver på kurset Videregående Algoritmik,

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 5 (fem) Eksamensdag: Fredag den 10. august 007, kl.

Læs mere

Hvad er meningen? Et forløb om opinionsundersøgelser

Hvad er meningen? Et forløb om opinionsundersøgelser Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Vejledning til Google Analytics rapporter

Vejledning til Google Analytics rapporter Vejledning til Google Analytics rapporter Internet statistik kan godt være svært at forstå specielt hvis man ikke er vant til at arbejde med sådanne ting. For at gøre det nemmere for vores kunder at forstå

Læs mere

BM121 Resume af tirsdags forlæsningen, Uge 47

BM121 Resume af tirsdags forlæsningen, Uge 47 BM121 Resume af tirsdags forlæsningen, Uge 47 Morten Källberg (kallberg@imada.sdu.dk) 22/11-2005 1 Probabilistiske modeller Vi vil i det følgende betragte to forskellige måder at evaluerer en given model

Læs mere

Plan. Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser. Materiale mm.

Plan. Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser. Materiale mm. Institut for Matematiske Fag Plan Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser Helle Sørensen Eftermiddagen vil være bygget om 3 4 eksempler: A. B. Random

Læs mere

Eksamensopgaver datalogi, dl/vf 2010 side 1/5. 1. Lodtrækningssystem

Eksamensopgaver datalogi, dl/vf 2010 side 1/5. 1. Lodtrækningssystem Eksamensopgaver datalogi, dl/vf 2010 side 1/5 1. Lodtrækningssystem Der skal fremstilles et program, som kan foretage en lodtrækning. Programmet skal kunne udtrække en eller flere personer (eller andet)

Læs mere

Ugeseddel 12(10.12 14.12)

Ugeseddel 12(10.12 14.12) Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Filosofien og matematikken bag Google

Filosofien og matematikken bag Google 40 Baggrundsartikel Filosofien og matematikken bag Google Med fokus på PageRank Jakob Lindblad Blaavand, Oxford University Indledning En internetsøgemaskine er god, hvis den først og fremmest kan søge

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer. Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Variable. 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0

Variable. 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0 Variable 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0 2 a x = 5 b x = 1 c x = 1 d y = 1 e z = 0 f Ingen løsning. 3

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Eksempel på muligt eksamenssæt i Diskret Matematik

Eksempel på muligt eksamenssæt i Diskret Matematik Eksempel på muligt eksamenssæt i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet???dag den?.????, 20??. Kl. 9-13. Nærværende eksamenssæt består af 13 nummererede sider med

Læs mere

Navn :..Læreren... Underskrift :... Bord nr. :... Ogave Svar

Navn :..Læreren... Underskrift :... Bord nr. :... Ogave Svar Side 1 af 26 sider Skriftlig prøve, den 14. december 2013. Kursus navn: Billedanalyse. Kursus nummer: 02502 Hjælpemidler: Varighed: Vægtning: Alle hjælpemidler er tilladt. 4 timer Alle opgaver vægtes ligeligt.

Læs mere

Køreplan Matematik 1 - FORÅR 2005

Køreplan Matematik 1 - FORÅR 2005 Lineær algebra modulo n og kryptologi Køreplan 01005 Matematik 1 - FORÅR 2005 1 Introduktion Kryptologi er en ældgammel disciplin, som går flere tusinde år tilbage i tiden. Idag omfatter disciplinen mange

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Allan C. Malmberg. Terningkast

Allan C. Malmberg. Terningkast Allan C. Malmberg Terningkast INFA 2008 Programmet Terning Terning er et INFA-program tilrettelagt med henblik på elever i 8. - 10. klasse som har særlig interesse i at arbejde med situationer af chancemæssig

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538)

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Institut for Matematik & Datalogi Syddansk Universitet Fredag den 9 Januar 2015, kl. 10 14 Alle sædvanlige hjælpemidler(lærebøger, notater etc.) samt

Læs mere

Perspektiverende Datalogi 2011

Perspektiverende Datalogi 2011 Perspektiverende Datalogi 2011 Internetalgoritmer Gerth Stølting Brodal Christian S. Jensen Erik Meineche Schmidt Niels Olof Bouvin Internetsøgemaskiner (2. oktober 2011) marketshare.hitslink.com Historiske

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR ATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Algoritmer og atastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. august 0,

Læs mere

Kort Her får du vist dine enheder på kort Google Map. Kortet opdateres hvert 30 sekund, således man konstant kan følge køretøjernes bevægelser.

Kort Her får du vist dine enheder på kort Google Map. Kortet opdateres hvert 30 sekund, således man konstant kan følge køretøjernes bevægelser. Kort Her får du vist dine enheder på kort Google Map. Kortet opdateres hvert 30 sekund, således man konstant kan følge køretøjernes bevægelser. 1. 2. 3. 4. 6. 7. 10. 11. 9. 8. 1. Se køretøjer på kort.

Læs mere

Profitten i det første år kan da beregnes som (i kr.)

Profitten i det første år kan da beregnes som (i kr.) Chapter 13: Simulation Simulation er en kvantitativ metode til bestemmelse af et real life systems basale karakteristika under usikkerhed v.h.a. eksperimenter indenfor en modelramme, der repræsenterer

Læs mere

BLIV FUNDET PÅ GOOGLE! Hvorfor er det vigtigt? Hvad er Google (en søgemaskine)? Hvordan fungerer den? Hvad er SEO?

BLIV FUNDET PÅ GOOGLE! Hvorfor er det vigtigt? Hvad er Google (en søgemaskine)? Hvordan fungerer den? Hvad er SEO? BLIV FUNDET PÅ GOOGLE! Hvorfor er det vigtigt? Hvad er Google (en søgemaskine)? Hvordan fungerer den? Hvad er SEO? Mål for denne workshop: Grundlæggende forståelse for SEO Grundlæggende redskaber til SEO

Læs mere

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet Sikre Beregninger Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Introduktion I denne note skal vi kigge på hvordan man kan regne på data med maksimal sikkerhed, dvs. uden at kigge på de tal

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer som model for sekventielle

Læs mere

Rolf Fagerberg. Forår 2012

Rolf Fagerberg. Forår 2012 Forår 2012 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM502 og DM503 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM502 og DM503 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Hurtig SEO Guide til din hjemmeside

Hurtig SEO Guide til din hjemmeside Hurtig SEO Guide til din hjemmeside For at forbedre din hjemmesides synlighed på søgemaskiner, vil vi anbefale at du er omhyggelig med søgeoptimeringen deraf. Hvis du følger de følgende punkter omhyggeligt

Læs mere

Indholdsfortegnelse. Regneark for matematiklærere

Indholdsfortegnelse. Regneark for matematiklærere Indholdsfortegnelse Forord... 3 Diskettens indhold... 4 Grafer i koordinatsystemet... 5 Brug af guiden diagram... 5 Indret regnearket fornuftigt... 9 Regneark hentet på Internettet... 15 Læsevenlige tal

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1 Landmålingens fejlteori Sandsynlighedsregning Lektion 1 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 23. april 2009 1/28 Landmålingens

Læs mere

AT-forløb Jordskælv i Chile 1.u

AT-forløb Jordskælv i Chile 1.u Kapitel 1 AT-forløb Jordskælv i Chile 1.u 1.1 Indgående fag I forløbet indgår fagene naturgeografi v. Mikkel Røjle Bruun (BR), samfundsfag v. Ann Britt Wolsing (AW) og matematik v. Flemming Pedersen (FP).

Læs mere

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Aarhus Universitet

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Aarhus Universitet Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Aarhus Universitet Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer

Læs mere

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang 16. marts Resume sidste gang Abstrakt problem konkret instans afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret

Læs mere

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING

Mini AT-forløb om kommunalvalg: Mandatfordeling og Retfærdighed 1.x og 1.y 2009 ved Ringsted Gymnasium MANDATFORDELING MANDATFORDELING Dette materiale er lavet som supplement til Erik Vestergaards hjemmeside om samme emne. 1 http://www.matematiksider.dk/mandatfordelinger.html I dette materiale er en række øvelser der knytter

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet RSA Kryptosystemet Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Kryptering med RSA Her følger først en kort opridsning af RSA kryptosystemet, som vi senere skal bruge til at lave digitale signaturer.

Læs mere

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Analyse af ombytningspuslespil

Analyse af ombytningspuslespil Analyse af ombytningspuslespil 1 / 7 Konkret eksempel på algoritmeanalyse Prøv ombytningspuslespillet på kurset webside. 2 / 7 Konkret eksempel på algoritmeanalyse Prøv ombytningspuslespillet på kurset

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Sådan virker. (måske) Gerth Stølting Brodal. Datalogisk Institut Aarhus Universitet

Sådan virker. (måske) Gerth Stølting Brodal. Datalogisk Institut Aarhus Universitet Google logo 24. august 2011 Sådan virker (måske) Gerth Stølting Brodal Datalogisk Institut Aarhus Universitet Ungdommens Naturvidenskabelige Forening Aarhus, 25. august 2011 Hvornår har du sidst brugt

Læs mere

Energiproduktion og energiforbrug

Energiproduktion og energiforbrug OPGAVEEKSEMPEL Energiproduktion og energiforbrug Indledning I denne opgave vil du komme til at lære noget om Danmarks energiproduktion samt beregne hvordan brændslerne der anvendes på de store kraftværker

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Opgave: BOW Bowling. Rules of Bowling. danish. BOI 2015, dag 1. Tilgængelig hukommelse: 256 MB. 30.04.2015

Opgave: BOW Bowling. Rules of Bowling. danish. BOI 2015, dag 1. Tilgængelig hukommelse: 256 MB. 30.04.2015 Opgave: BOW Bowling danish BOI 0, dag. Tilgængelig hukommelse: 6 MB. 30.04.0 Byteasar er fan af både bowling og statistik. Han har nedskrevet resultaterne af et par tidligere bowling spil. Desværre er

Læs mere

Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal

Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal Datalogisk Institut Aarhus Universitet MasterClass Matematik, Mærsk Mc-Kinney Møller Videncenter, Sorø, 29-31. oktober 2009 Algoritmer: Matricer

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

16. december. Resume sidste gang

16. december. Resume sidste gang 16. december Resume sidste gang Abstrakt problem, konkret instans, afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor

Læs mere

Brugervejledning til løntermometeret

Brugervejledning til løntermometeret Brugervejledning til løntermometeret Dette er en brugervejledning til løntermometeret. Vejledningen er skrevet til de to personer, en leder og en medarbejderrepræsentant, som har ansvar for at bruge løntermometeret.

Læs mere

Lektion 9s Statistik - supplerende eksempler

Lektion 9s Statistik - supplerende eksempler Lektion 9s Statistik - supplerende eksempler Middelværdi for grupperede observationer... Summeret frekvens og sumkurver... Indekstal... Lektion 9s Side 1 Grupperede observationer Hvis man stiller et spørgsmål,

Læs mere

Microsoft Excel Kodehusker

Microsoft Excel Kodehusker Side 1 af 6 En kodehusker der kan bruges til alle de koder man efterhånden får til mange ting. Åbn Excel regnearket. Gem det som Kodehusker på computeren. Regnearket består som regel af tre ark Start med

Læs mere

Matematik i Word. En manual til elever og andet godtfolk. Indhold med hurtig-links. Kom godt i gang med Word Matematik. At regne i Word Matematik

Matematik i Word. En manual til elever og andet godtfolk. Indhold med hurtig-links. Kom godt i gang med Word Matematik. At regne i Word Matematik Matematik i Word En manual til elever og andet godtfolk. Indhold med hurtig-links Kom godt i gang med Word Matematik At regne i Word Matematik Kom godt i gang med WordMat Opsætning, redigering og kommunikationsværdi

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Projekt Planlægning: PERT/CPM

Projekt Planlægning: PERT/CPM Chapter 10: Projekt Planlægning: PERT/CPM -> Planlægning og koordinering af aktiviteter, der tilsammen definerer et helt projekt, så projektet færdiggøres indenfor en planlagt tidsramme. Aktiviteterne

Læs mere

Brugen af RiBAY er typisk en iterativ proces, hvor trin 4-6 gentages et antal gange for at kortlægge og forstå risiko.

Brugen af RiBAY er typisk en iterativ proces, hvor trin 4-6 gentages et antal gange for at kortlægge og forstå risiko. Kom godt i gang med RiBAY Risikostyring ved hjælp af RiBAY består af følgende seks trin: 1. Indtastning af systemvariable og budgettal 2. Indtastning af Køb og salg 3. Kalibrering af udgangspunktet for

Læs mere

Vækstprojekt 2. x forår 2016

Vækstprojekt 2. x forår 2016 Vækstprojekt 2. x forår 2016 Thomas Schausen 27. marts 2016 Et eksempel på lineære og eksponentielle udviklinger Præsentation af dette eksempel samt gennemgang af lineær modellering gennemgås på denne

Læs mere

Løsninger til kapitel 5

Løsninger til kapitel 5 1 Løsninger til kapitel 5 Opgave 51 Det nemmeste er her at omskrive alle sandsynlighederne til differenser mellem kumulerede sandsynligheder, dvs af sandsynligheder af formen, og derefter beregne disse

Læs mere

Lad os som eksempel se på samtidigt kast med en terning og en mønt:

Lad os som eksempel se på samtidigt kast med en terning og en mønt: SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve

Læs mere

www.evalueringssystem.dk

www.evalueringssystem.dk Brugervejledning Indledning... 3 Log på evalueringssystemet... 4 Afprøv en evaluering... 8 Åbn en evaluering eller en øvelse... 10 Gennemfør en evaluering og en øvelse... 13 Luk en evaluering... 15 Se

Læs mere

SPAM-mails. ERFA & Søren Noah s A4-Ark 2010. Køber varer via spam-mails. Læser spam-mails. Modtager over 40 spam-mails pr. dag. Modtager spam hver dag

SPAM-mails. ERFA & Søren Noah s A4-Ark 2010. Køber varer via spam-mails. Læser spam-mails. Modtager over 40 spam-mails pr. dag. Modtager spam hver dag SPAM-mails Køber varer via spam-mails Læser spam-mails Modtager over 40 spam-mails pr. dag Modtager spam hver dag 0 10 20 30 40 50 60 70 80 90 ERFA & Søren Noah s A4-Ark 2010 Datapræsentation: lav flotte

Læs mere

Google Pagerank Hvordan man finder en nål i en høstak

Google Pagerank Hvordan man finder en nål i en høstak Google Pagerank Hvordan man finder en nål i en høstak Georg Mohr, 4. marts 2008 Kim Knudsen kim@math.aau.dk Institut for Matematiske Fag Aalborg Universitet http://www.math.aau.dk/ kim/georgmohr2008.pdf

Læs mere

Sprog L : mængden af instanser for et afgørlighedsproblem

Sprog L : mængden af instanser for et afgørlighedsproblem 26. marts Resume sidste to gang Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret er 1. P NP L : L genkendes af en algoritme i polynomiel tid L : L verificeres af en polynomiel tids

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Introduktion til DM507

Introduktion til DM507 Introduktion til DM507 Rolf Fagerberg Forår 2017 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA Forskningsområde: algoritmer og datastrukturer 2 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere