Projekt 0.5 Euklids algoritme, primtal og primiske tal

Størrelse: px
Starte visningen fra side:

Download "Projekt 0.5 Euklids algoritme, primtal og primiske tal"

Transkript

1 Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele tal, abî, kan vi dividee a op i b ved den metode, vi læte i folkeskolen. Resultatet skives således: b= q a+, hvo qî Z, og 0 < a (*) Vi vil altid skive esultatet således, at esten ligge i dette inteval. Denne est kaldes den pincipale est. Opskivningen af (*) kaldes divisionsligningen. Hvis a gå op i b, dvs hvis esten e 0, sige vi at a e diviso i b, og vi skive: a b. Hvis a ikke gå op i b skive vi det af og til således: ałb, men det e ikke en del af det fælles intenationale matematiske spog. Eksempel a = 5, b = 32: 32= a = 3, b = 6: 6= 5 3+ a = 3, b = -6: - 6= Bemæk at kavet om 0 < a give en lidt anden divisionsligning fo negative tal. Eksempel ł Sætning Fo vilkålige tal abî e, divisionsligningen éntydig. Bevis. Antag at vi ha to opskivninge af divisionsligningen: b= q a+ = 2 + 2, og lad os sige 2 b q a Tæk fa og få: q - q a= - ( ) 2 2 Da 0 < a og 0 2 < a vil 0 2- < a Defo må de gælde: q- q2 = 0, dvs q = q2. Indsæt nu dette i de to føste ligninge: b= q a+ = + 2, hvoaf vi let se at også 2 b q a =. Konklusion: De to opskivninge af divisionsligningen va i vikeligheden ens. Definition. Støste fælles diviso Givet to tal abî., Det støste tal blandt alle de fælles divisoe i a og b kaldes den støste fælles diviso i a og b og betegnes med ( ab,).

2 Bemækning. Man møde ofte betegnelsen SFD ( ab,), men vi nøjes med (,) Bemækning 2. Undesøg hvilken notation dit væktøjspogam anvende. ab. Eksempel 3 (0,25) = 5 (42,4) = 4 (56,5) = Øvelse a) Hvilken stategi vil du anvende til at bestemme følgende, uden bug af dit væktøjspogam: ) (34,665) 2) (3026,489) b) Løs som kontol opgavene med bug af dit væktøjspogam Nå vi ha to ikke alt fo stoe tal, som i øvelsen ovenfo, e det en ovekommelig opgave at finde den støste fælles diviso uden bug af væktøjspogamme, selvom det godt kan tage lidt tid. Specielt hvis man usystematisk gætte løs. Den hutigste metode, nå vi ha med oveskuelige tal at gøe, e at finde de to tals fælles pimfaktoe. Og vi kan jo nøjes med at finde det ene tals pimfaktoe, og se hvilke de gå op i det andet. Støste fælles diviso e så poduktet af disse pimfaktoe. Men hvad gø vi, hvis opgaven e at finde støste fælles diviso mellem tallene: og ? De findes en metode til at egne sig fem til ( ab,) fo vilkålige tal a og b. En egnemetode kaldes også en algoitme. Vi kende en hel del algoitme: I folkeskolen læte vi fx multiplikations- og divisionsalgoitme, så vi kan gange og dividee vilkålige tal med hinanden. Måske ha du i gymnasiet læt algoitmen til at udføe polynomies division, elle en algoitme til bestemmelse af nulpunkte, i tilfælde, hvo vi ikke ha en fomel. Euklids algoitme Metoden til at finde støste fælles diviso ha væet kendt siden oldtiden og kaldes Euklids algoitme. Den vike på følgende måde ovefo tallene a og b, hvo vi antage at a e støe end b : Føst opskives divisionsligningen fo a divideet med b: a= q b+ 0 0 Denæst dividees esten 0 op i b: b= q + 0 Således fotsættes. Næste tin e at dividee op i 0 : 0 = q2 + 2 osv så vi få følgende system af ligninge:

3 a= q b+ 0 0 b= q = q = q +... n- n+ n n+ 3 = q + = q n n+ 2 n+ (**) På et tidspunkt vil divisionen gå op og esten blive 0, fodi alle este e ³ 0 og: 0 > > 2 >... > n + (Ovevej selv hvofo dette e tilfældet). Sætning 2 a, b = n + Det tal vi finde ved Euklids algoitme e den støste fælles diviso: ( ) Fø vi agumentee fo denne påstand se vi på hvodan Euklids algoitme vike i paksis. Eksempel 4 Vi ønske at finde den støste fælles diviso af to stoe tal, som fx og Vi opskive tin fo tin divisionsligningene efte systemet i (**): = = = = = = = = = 9 8 Altså e de to stoe tals støste fælles diviso ifølge Euklids algoitme lug med 8. Et lille teknisk åd: Ved de enkelte divisione fås decimaltal fx: : = 30, De fleste væktøjspogamme kan udføe heltals division med est undesøg om dit kan. Hvis ikke, så kan heltalsdelen 30 let aflæses kvotienten. Resten findes lettest ved at gange decimalesten 0, med Det give den søgte est: Bevis fo sætning 2, dvs fo at Euklids algoitme vike Føst vises, at n + e en diviso i a og b. Se igen på ligningssystemet (**) (og sammenlign evt med taleksemplet). Gennemgå det nedefa og op:

4 Sidste ligning fotælle, at n + gå op i Næstsidste ligning give defo, at n n. + gå op i begge led på høje side, defo også op i venste side, dvs n + gå op i n -. Tedjesidste ligning give defo... Og næstøveste ligning give defo at n+ gå op i begge led på høje side, defo også op i venste side, dvs + gå op i b. n Øveste ligning give defo at n+ gå op i begge led på høje side, defo også op i venste side, dvs n op i a. Konklusion: n + e en diviso i a og b. + gå Denæst vises, at n + e den støste diviso i a og b. Dette gø vi ved at vise, at såfemt et tal t gå op i både a og b, så gå tallet t også op i n +. Men så vil t specielt væe minde end n +. Detil lave vi følgende lille ænding i ligningssystemet (**): a- q b= 0 0 b-q = 0 - q = q3 2 = q = n- n+ n n+ n - qn+ 2 n+ = 0 Læs disse ligninge oppe fa og ned igennem: Føste ligning fotælle, at hvis et tal t e diviso i a og b, gå det op i begge led på venste side, defo også op i høje side, dvs t e diviso i 0. Anden ligning fotælle, at hvis t e diviso i b og i 0, så gå det op i begge led på venste side, defo også op i høje side, dvs t e diviso i. Tedje ligning fotælle... Og næstsidste ligning give endelig, at t gå op i n +. Konklusion: Hvis et tal t e en diviso i a og b e det også en diviso i n +. Denne må defo væe den støste fælles diviso: ( a, b) = n +. (Slut på beviset!) (***) Euklids algoitme e et vigtigt væktøj i modene kyptogafiske systeme som RSA. Den anvendes bl.a. til at konstuee nøglen, de kan låse en smæklås op. Følgende sætning, de e en af hovedsætningene i talteoien, og som vi få ud fa Euklids algoitme, e et af de centale væktøje he: Sætning 3 Den støste fælles diviso d af to tal a og b ( (,) a b = d)) kan skives på fomen: d= s a+ t b, hvo stî, Vi sige også, at d e skevet som en lineakombination af a og b. (Bemæk, at et af tallene s og t natuligvis vil væe negativt)

5 Bevis. Se på ovenstående udgave (***) af ligningssystemet, hvo alle 'ene e isoleet til høje. n + e den støste fælles diviso, som vi nu kalde d. Stat med den næstnedeste: d= - q, n- n+ n og indsæt hei n fa den tedjenedeste, (de hedde n-2- qn n- = n) d = - q n- n+ n n- qn+ ( n-2 qn n-) ( q q ) q = - - = + - n+ n n- n+ n-2 Nu e d skevet som en kombination af n- og n- 2. Indsæt hei n - fa den fjedenedeste, (opskiv selv hvad denne hedde:... = n- ), educe og få d skevet som en kombination af n-2 og n- 3. Vi fotsætte nu med at indsætte ligning efte ligning op gennem ækken. Fo hvet tin skives d som en kombination af 'ene, indtil vi til sidst indsætte og 0. Tilbage på høje side e så 'et elle andet tal' gange a + 'et elle andet tal' gange b: d= s a+ t b, hvo stî, Øvelse 2 8 kan altså skives som en sådan kombination af de to stoe tal fa eksemplet ovenfo. Det kæve lidt egneabejde. Men uden Euklids algoitme ville opgaven nok have viket uovekommelig. a) Undesøg om dit væktøjspogam kan løse opgaven. b) De 4 nedeste divisionsligninge va: = = = = ,2898 = 8. og he stå jo, at de4 også gælde at ( ) Bestem ved håndkaft s og t så 8 = s t 2898 Øvelse 3 a) Bestem støste fælles diviso af tallene 5375 og 0465, og skiv den støste fælles diviso som en lineakombination af de to tal, som angivet i sætning 3. b) Vis, at støste fælles diviso af tallene 309 og 235 e tallet, og bestem s og t så = s t 235 Pimiske tal og pimtal

6 Øvelse 4. Fo ethvet pa af tal s og t vil s a+ t b væe et helt tal. d= ( ab,) e et af disse tal ifølge sætning 3. De gælde ydeligee, at det e lige pæcis det mindste positive tal, de kan skives således. Vis dette. (Hint: De må findes et mindste positivt tal e, på fomen: s a+ t b. Vis at e = d) Definition. Indbydes pimisk Hvis den støste fælles diviso fo a og b e, kaldes a og b fo indbydes pimiske. Nå ( ab,) = findes ifølge sætning 3 tal s og t, så s a+ t b= Dette kan vi nu udnytte til at vise en vigtige sætning i talteoien: Sætning 4 Hvis p½ ( a b) og p e pimisk med a (dvs ( ) Bevis Nå p e pimisk med a, findes hele tal s og t, så: s a+ t p= Gange ligningen igennem med b: s a b+ t p b= b p gå op i tallene på venste side af lighedstegnet. Defo gå p også op i høje side: pb ½. ap, = ), så gælde: pb ½ To foskellige pimtal e altid pimiske. Og hvis et pimtal gå op i et andet pimtal, må de væe tale om det samme pimtal. Sætning 4 give defo umiddelbat også: Sætning 5 Antal tallet N e skevet som et podukt af pimtal: N= p p2 p3... pn. Hvis p e et pimtal, og pn ½, så gælde, at : p= pi fo et af pimtallene i faktoiseingen af N. Øvelse 5 Anvend sætning 5 til at bevise aitmetikkens fundamentalsætning: Sætning 6 (Aitmetikkens fundamentalsætning) Ethvet helt tal kan skives på en og kun en måde som et podukt af pimtal, dvs pimtalsfaktoiseingen af et helt tal e entydig. (Hint: Føste del, nemlig at de findes en pimtalsfaktoiseing af ethvet helt tal, e simpelt: Enten e det selv et pimtal, elle det e et sammensat tal, dvs det kan skives som et podukt. Hve af disse tal e enten pimtal elle sammensatte tal osv, indtil vi nå fem til, at alle faktoe e pimtal. Anden del, entydigheden: Antag, at de to pimtalsfaktoiseinge af et tal: p p p... p = q q q... q, 2 3 n 2 3 m

7 hvo alle faktoe e pimtal. Anvend nu sætning 5 til at vise, at p må væe lig med et af q ene. Fokot væk og tag fat på det næste p osv.) Vi kalde denne opskivning fo pimfaktoopløsningen af N. Sætningen sige altså at pimfaktoopløsningen e éntydig. Eksempel 4. Pimfaktoopløsninge a) 230 = b) = Øvelse 6 Opskiv uden bug af væktøj en pimfaktoopløsning af : a) 42 b) 8 c) 225 d) 7 e) 368 f) 2093 g) 024 h)025 Øvelse 7 Anvend dit væktøj til at opskive en pimfaktoopløsning af: 32 a) 3397 b) c) d) 2 + Sætning 7 Den støste fælles diviso fo to hele tal a og b e poduktet af dees fælles pimfaktoe. Bevis: Vi opskive en pimfaktoopløsning af de to tal således: a= p p2 p3... pk q q2 q3... qs b= p p2 p3... pk t hvo q'ene og 'ene alle e foskellige. Ovevej selv hvofo vi kan gøe det! Sætningen sige: d= ( a, b) = p p2 p3... pk Det e klat at d e en diviso i a og b. Lad os nu sige vi ha et tal e, de e diviso i a og b. Opskiv så fo e: Alle e= e e2 e3... en e 'ene e diviso i a og b. i Hvis e gå op i a, må det gå op i en af pimfaktoene; men e e selv et pimtal, så e må væe lig med en af a's pimfaktoe. Det samme må gælde fo b. Så e må væe lig en af de fælles pimfaktoe, altså netop lig en af d's pimfaktoe. Således se vi, at e gå op i d. Dette kan vi fotsætte, og få defo, at e gå op i d, så d e den støste fælles diviso. Øvelse 8 Nå vi bevæge os op gennem talækken til stadigt støe tal, og på voes vej lede efte pimtal, så smide vi undevejs alle sammensatte tal væk, dvs alle tal i 2-tabellen, alle tal i 3-tabellen, alle tal i 5-tabellen osv. Man

8 kunne få den tanke, at vi på et tidspunkt få smidt alle tale væk, dvs at de ikke findes flee pimtal. Men det gø de. Alleede hos Euklid finde vi den næste sætning, de i voes fomuleing lyde: Sætning 7 De findes uendeligt mange pimtal. Bevis: Vi vise det indiekte. Antag de kun va endeligt mange pimtal: p, p2, p3,..., p k. Vi vil bevise, at dette føe til en modstid. Demed må vi så få, at antagelsen e foket. Betagt tallet: N= p p2 p3... p k + N e støe end alle p'ene. Hvis N e et pimtal ha vi alleede en modstid, fo så ha vi fundet endnu et pimtal. Hvis N e sammensat ha det en pimfakto q. Hvis q e et af tallene p, p 2, p 3,..., pk vil q gå op i tallet p p2 p3... pk. Men så kan q jo ikke også gå op i N= p p2 p3... p k +. (q e støe end, så "q-tabellens" skidt femad på talaksen e støe end ). Defo kan q ikke væe et af tallene p, p 2, p 3,..., p k. Altså ha vi fundet et nyt pimtal q. Men det va i modstid med antagelsen. De findes således uendeligt mange pimtal. Man ha gennem tidene væet fascineet af disse mækelige tal, og søgt at finde et system i dem. Men man egne i dag med, at de ikke kan findes en fomel elle en algoitme, de give os pimtallene. Hvet nyt pimtal må vi lede efte. Men nøjes vi med at se statistisk på sagene findes de et mækeligt system i pimtallene. Man ha i matematikhistoien indføt en funktion, de betegnes π( n ), og som angive antallet af pimtal de e minde end n. Det vise sig nu, at de gælde følgende mækelige fomel (hvo tegnet» betyde, det e en tilnæmelse: π ( n)» n ln( n) Det va Gauss ( ), en af de støste matematikee, de ha levet, de ha æen af fomlen. En dag, han som 4 åig sad og kiggede i en logaitme-tabel fik han ideen, og kadsede den ned i magenen. Et egentlig bevis blev føst givet sidst i 800-tallet, og beviset e meget vanskeligt. Men faktisk kan vi alleede hos Eule finde noget, de minde om denne fomel. Leonad Eule ( ) e den mest poduktive matematike, de ha levet - han skev atikle og bøge, og en sto del af dem i de sidste 20 å af sit liv, hvo han va blind. Øvelse 8 a) Giv en fotolkning af tallet π( n) n (Hint: Husk fomlen fa sandsynlighedsegningen: Antal gunstige divideet med Antal mulige). b) Vi tække et tilfældigt tal minde end million. Vis, at sandsynligheden fo, at det e et pimtal e ca 7,2%. c) Vis, at sandsynligheden fo, at et tilfældigt valgt tal unde mia e et pimtal, e ca 4,8%. Øvelse 9

9 Kyptosystemet RSA, som vi undesøge i pojekt 0.6, bygge netop på det manglende system i pimtallene. Fo at undgå at koden kan knækkes ved at state fofa med pimtallene 2,3,5,... skal vi have nogle gigantiske pimtal til ådighed. I RSA deje det sig om pimtal med et antal cife på flee hundede. E det nu muligt ovehovedet at finde pimtal med feks 00 cife? Kan du afgøe, hvad sandsynligheden e fo, at et tilfældigt tal mellem 0 99 og 0 00 e pimtal?

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Dimittendundersøgelse, 2009 Dato: 3. juni 2009

Dimittendundersøgelse, 2009 Dato: 3. juni 2009 Dimittendundesøgelse 2008-2009 Afspændingspædagoguddannelsen Dimittendundesøgelse, 2009 Dato: 3. juni 2009 Opsummeing af undesøgelse foetaget blandt dimittende fa Afspændingspædagoguddannelsen Datagundlag

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år.

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år. 16. septembe 8 Afdagsfie lån og pisstigninge på boligmakedet Den stigende populaitet af de afdagsfie lån ha ad flee omgange fået skylden fo de kaftigt stigende boligpise de senee å. Set ove en længee peiode

Læs mere

Erhvervs- og Selskabsstyrelsen

Erhvervs- og Selskabsstyrelsen Ehvevs- og Selskabsstyelsen Måling af viksomhedenes administative byde ved afegning af moms, enegiafgifte og udvalgte miljøafgifte Novembe 2004 Rambøll Management Nøegade 7A DK-1165 København K Danmak

Læs mere

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

Hverdagsliv før og nu. fortalt gennem Børnenes Arbejdermuseum. Arbejdsbog

Hverdagsliv før og nu. fortalt gennem Børnenes Arbejdermuseum. Arbejdsbog Hvedagsliv fø og nu fotalt gennem Bønenes Abejdemuseum Abejdsbog Hvedagsliv fø og nu fotalt gennem Bønenes Abejdemuseum Denne bog tilhøe Navn: Klasse: 1 Hvedagsliv fø og nu fotalt gennem Abejdemuseets

Læs mere

p o drama vesterdal idræt musik kunst design

p o drama vesterdal idræt musik kunst design musik dama kunst design filmedie idæt pojektpocespobieenpos itpoblempovokationpodu kt p on to p ot estpobablypogessivpodu ktionpovinspomotionp otesepologpoevefipofil Vestedal Efteskole // Gl. Assensvej

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet Pension og Tilbagetækning - Ikke-paametisk Estimation af Heteogenitet Søen Anbeg De Økonomiske Råds Sekataiat, DØRS Pete Stephensen Danish Rational Economic Agents Model, DREAM DREAM Abedspapi 23:2 foeløbig

Læs mere

VORDINGBORG KOMMUNE. Boligområde ved Kalvøvej LOKALPLAN NR. B-24.2. 20 kr. Færgegårdsvej Bogøvej. Kalvøvej

VORDINGBORG KOMMUNE. Boligområde ved Kalvøvej LOKALPLAN NR. B-24.2. 20 kr. Færgegårdsvej Bogøvej. Kalvøvej VORDINGBORG KOMMUNE N Fægegådsvej Bogøvej Kalvøvej LOKALPLAN NR. B-24.2 Boligomåde ved Kalvøvej Vodingbog apil 2005 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets et og pligt til at

Læs mere

Ønskekøbing Kommune - netværksanalyse i den administrative organisation

Ønskekøbing Kommune - netværksanalyse i den administrative organisation Ønskekøbing Kommune - netvæksanalyse i den administative oganisation Hvodan vike det i paksis? Elektonisk spøgeskemaundesøgelse Svaene fa undesøgelsen kombinees med alleede eksisteende stamdata i minde

Læs mere

Danmarks Tekniske Museum. Det kunstige øje - om mikroskopet og dets verden

Danmarks Tekniske Museum. Det kunstige øje - om mikroskopet og dets verden Danmaks Tekniske Museum O P T I K & L Det kunstige øje - om mikoskopet og dets veden Y S Til læeen At bille både e fysik og kultuhistoie, e fo mange bøn en velbevaet hemmelighed. Dette til tods fo at alle

Læs mere

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Modul 0: Speciale 0. semeste, cand.oecon Aalbog Univesitet Afleveet d. 30. maj 202 VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Vejlede: Finn Olesen Skevet af Henik Hanghøj

Læs mere

Cisgene bygplanter. planteforskning.dk Bioteknologi

Cisgene bygplanter. planteforskning.dk Bioteknologi plantefoskning.dk Cisgene bygplante Nyttige egenskabe kan tilføes til femtidens afgøde ved hjælp af genetisk modifikation uden indsættelse af atsfemmede gene. Den nye stategi anvendes bl.a. til udvikling

Læs mere

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt.

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt. VORDINGBORG KOMMUNE NÆSTVEDVEJ N ALGADE MARIENBERGVEJ LOKALPLAN NR. C-2.2 Banegådsomådet, Vodingbog By Vodingbog august 2006 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets et og pligt

Læs mere

diagnostik Skulder fysioterapeuten nr. 05 marts 2009

diagnostik Skulder fysioterapeuten nr. 05 marts 2009 side 08 fysioteapeuten n. 05 mats 2009 diagnostik Skulde Mogens Dam e oplægsholde på fagfestivalen d. 26.-28. mats 2009. Fysioteapeut Mogens Dam ha udvalgt en ække gængse diagnostiske test fo skuldepobleme.

Læs mere

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen Hvolis Jenaldelandsby og Kultuavsfobindelsen, Skive Heedsvejen 135 Veste Bjeegav 9632 Møldup www.jenaldelandsby.dk hvolis@vibog.dk A13 Hobo Løgstø Bjeegav Hjabæk Fjod Skals OL Kontakt: - en anden tid et

Læs mere

1. Indledning... 1 2. Lineær iteration... 2

1. Indledning... 1 2. Lineær iteration... 2 Hvad e matematik? B, i og ISBN 978 87 766 494 3 Pojekte: Kapitel Pojekt.3 Lieæe Iteatiospocesse Idhold 1. Idledig... 1 2. Lieæ iteatio... 2 2.1 Lieæ vækst... 2 2.2 Ekspoetiel vækst... 2 2.3 Foskudt ekspoetiel

Læs mere

Om Gear fra Technoingranaggi Riduttori Tilføjelser til TR s katalogmateriale

Om Gear fra Technoingranaggi Riduttori Tilføjelser til TR s katalogmateriale ...when motos must be contolled Om Gea fa Technoinganaggi Riduttoi Tilføjelse til TR s katalogmateiale ISO 9 cetificeing: Technoinganaggi Riduttoi følge ISO 9 pincippene i dees kvalitetsstying. Alle dele

Læs mere

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1 Mtemtisk fomelsmling til A-niveu - i fosøget med netdgng til skiftlig eksmen Food Mtemtisk fomelsmling til A-niveu e udejdet fo t give et smlet ovelik ove de fomle og det symolspog, de knytte sig til kenestoffet

Læs mere

Praksis om miljøvurdering

Praksis om miljøvurdering Paksis om miljøvudeing Miljøvudeingsdage 2015 Nyee paksis på miljøvudeingsomådet Flemming Elbæk Flemming Elbæk, advokat, HD(Ø) Ansættelse: Advokatfuldmægtig, 2006-2008 Juist, Miljøministeiet, 2008-2012

Læs mere

MATEMATIK på Søværnets officerskole

MATEMATIK på Søværnets officerskole MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

Wear&Care Brugervejledning. A change for the better

Wear&Care Brugervejledning. A change for the better A change fo the bette Intoduktion Wea&Cae e en smat løsning, de give mulighed fo at følge fugtniveauet i bleen, så den kan skiftes efte behov. Infomationen gå fa en sende på bleen til modtageens smatphone

Læs mere

NEWS DID YOU KNOW... POLEN: LANDMECO starter salgsafdeling op i Polen MAJ 2015

NEWS DID YOU KNOW... POLEN: LANDMECO starter salgsafdeling op i Polen MAJ 2015 MAJ 205 Alex Dybdal & Tomasz Wróblewski besøger LANDMECO kunde Gospodarstwo olno-hodowlane, hvor de første 5 huse ud af 5 snart vil være klar til produktion. POLEN: LANDMECO starter salgsafdeling op i

Læs mere

Tredimensional grafik

Tredimensional grafik Teimensionl gfi 6 Ksten Juul Inhol I Homogene oointsæt og gngning f mtie sie Vi vil fose og eje figue i ummet og æne ees støelse Defo inføe vi homogene oointsæt og gngning f mtie II th sie Et olsninge

Læs mere

elevblad Tommerup Efterskole Hvad bruger man en orlov til? Lærer Mark Bradford har været et år i UK sammen med hele familien.

elevblad Tommerup Efterskole Hvad bruger man en orlov til? Lærer Mark Bradford har været et år i UK sammen med hele familien. Toeup Efteskole www.th-te.dk Udgivet af elevfoeningen N. 3 septebe 2013 106. ågang elevblad Hvad buge an en olov til? Læe Mak Badfod ha væet et å i UK saen ed hele failien. NY igen So 2. åselev pøve an

Læs mere

MuligHeden. www.ikast-brande.dk. Vær med!

MuligHeden. www.ikast-brande.dk. Vær med! www.ikast-bande.dk Væ med! Vi vil godt væe med I te månede ha bogee i Nøe Snede taget skald og skidt i eg hånd. Det e histoi om by, de også e ved at tage ejeskab fo at tage sig godt ud. Skald på bys offtlige

Læs mere

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard RSA-kryptosystemet RSA-kryptosystemet Erik Vestergaard Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 007. Billeder: Forside: istock.com/demo10 Erik Vestergaard www.matematikfysik.dk 3 1. Indledning

Læs mere

LØSNINGER FRA OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER

LØSNINGER FRA OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER MASKIN- LØSNINGER FRA He finde du voes sotiment f mskine OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER 94 Omsnøingsmskine og stækfilmsomviklee

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning)

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning) Fagstudieodning fo tilvalgsuddannelsen i Ehvevsøkonomi (2012-odning) 1 Indledning Til denne uddannelsesspecifikke fagstudieodning knytte sig også Rammestudieodning fo Det Samfundsvidenskabelige Fakultet,

Læs mere

Affine - et krypteringssystem

Affine - et krypteringssystem Affine - et krypteringssystem Matematik, når det er bedst Det Affine Krypteringssystem (Affine Cipher) Det Affine Krypteringssystem er en symmetrisk monoalfabetisk substitutionskode, der er baseret på

Læs mere

Vi ser altså, at der er situationer, hvor vi ikke kan afgøre, om vi befinder os i et tyngdefelt eller langt ude i rummet fjernt fra alle kræfter:

Vi ser altså, at der er situationer, hvor vi ikke kan afgøre, om vi befinder os i et tyngdefelt eller langt ude i rummet fjernt fra alle kræfter: 5 Tyngdekaften Nu hvo vi (fohåbentlig) ha fået et begeb om ummets og tidens sammenflettede natu, skal vi vende tilbage til en ting, som vi ganske kot blev konfonteet med i begyndelsen af foige kapitel.

Læs mere

Honeywell Hometronic

Honeywell Hometronic Honeywell Hometonic Komfot + Spa enegi Gulvvame Lysstying Lys Sikkehed Sikkehed Andet Andet Radiato Insight Building Automation 1 MANAGER Hometonic Manageen HCM200d e familiens oveodnede buge-inteface.

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

2012 NYE TIDER, NYE IDÉER OG NYE MÅDER 2 DIN STØTTE BETYDER ALVERDEN... 4 50% DÆMON OG 50% ENGEL 6 INSPIRATION TIL SOCIALMINISTEREN

2012 NYE TIDER, NYE IDÉER OG NYE MÅDER 2 DIN STØTTE BETYDER ALVERDEN... 4 50% DÆMON OG 50% ENGEL 6 INSPIRATION TIL SOCIALMINISTEREN Decebe 2012 NYE TIDER, NYE IDÉER OG NYE MÅDER side 2 DIN STØTTE BETYDER ALVERDEN side 4 50% DÆMON OG 50% ENGEL side 6 INSPIRATION TIL SOCIALMINISTEREN side 9 NYE tide, NYE idée og NYE åde! Hve dag kan

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 3. april 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

SUNDHEDSHUS TOLDBODEN, VIBORG

SUNDHEDSHUS TOLDBODEN, VIBORG SUNDHEDSHUS TOLDODEN, VIORG [Et modene flebugehus med suveæn placeing] OK GROUP OFFIEPRK TOLDODEN SPRRE GDE Inde ingvej Tog busstation Toldbodgade Regionshospital, Vibog E47 Udendøs ophold foan kantinen

Læs mere

Husk Hovedvejens Auto er flyttet til Grønnemosevej 12, 5700 svendborg v/niels Thue sørensen Tirsdag den 9. JULI 2013. 103. Årgang - nr.

Husk Hovedvejens Auto er flyttet til Grønnemosevej 12, 5700 svendborg v/niels Thue sørensen Tirsdag den 9. JULI 2013. 103. Årgang - nr. Husk Hovedvejens Auto e flyttet til Gønnemosevej 12, 5700 svendbog v/niels Thue søensen Tisdag den 9. JULI 2013 Tlf. 6221 0786 103. Ågang - n. 28 - siden 1910 home Svendbog Susanne s Folkekøkken e et tilløbsstykke

Læs mere

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi Faskalkulatoe Sde /9 Stee Toft Jøgese Faskalkulatoe avaceet etesegg matematske modelle økoom Idholdsfotegelse: Kaptel : Rete Retebegebet Omkostge Retefomle Effektv ete Kotuet foetg Tdsdagam Flytg af kaptal

Læs mere

MEDIA OG MARKED 2005/2

MEDIA OG MARKED 2005/2 MEDIA OG MARKED 2005/2 Til lands, til vands og i luften Aguketid - nej tak Step by Stepstone Mød Si Richad Banson i København Henley - MBA med muskle Duften af tang og levepostej KUNDECASE Til lands, til

Læs mere

Detaljeret information om cookies

Detaljeret information om cookies Detaljeet infomation om cooies Website: Kontoldato: 2015-08-03 Kontolleet af: https://casino.dansesp/ https://dansesp/ https://poe.dansesp/ Cooie Repots Limited http://www.cooieepots.com/ Dette doument

Læs mere

Universitetsavisen. der protesterer mod markedsgørelsen af uni- Vi har også været bag murene og mødt tre studeren-

Universitetsavisen. der protesterer mod markedsgørelsen af uni- Vi har også været bag murene og mødt tre studeren- R 1 Månedligt på museum Medieinfo 2010 6 Rejst med utefly til Euopa 6 Fie i Euopa (ekskl. Noden) 4 Fie i Noden Stobyfie/kultufie a kottidsfie i udlandet en) Fie i Syd- og Nodamika 1 Aktiv-/spotsfie ka

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

ELVISK. It-supporter, Datatekniker infrastruktur. & Datatekniker programmering. Brug e r. er v. jl f. ve r løs. af Ne. Elev Virksomhed Skole.

ELVISK. It-supporter, Datatekniker infrastruktur. & Datatekniker programmering. Brug e r. er v. jl f. ve r løs. af Ne. Elev Virksomhed Skole. Po amu dvik lin Desin up k c Ba ed Sikkeh S e v el øs nin af Ne t m Poam væ k Da ta e e i n se ba Bu e s e vi ce Se m Poam ve løs nin e Fe e i n n di jl f in Softwae ae Hadw D at aba se Si k he d ERHVERVSUDDANNELSER

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Indhold. Standnr. B1062. Mød os på. 18. årgang Efterår 2004 Nr. 2.

Indhold. Standnr. B1062. Mød os på. 18. årgang Efterår 2004 Nr. 2. Mød os på Standn. B1062 OPTIFLUX, den nye MI måle fa Kohne Med denne nye seie af magnetisk induktive flowmålee fa Kohne kan Fagebeg klae stot set alle flowmåleopgave. Kohne ha i mange å leveet magnetisk

Læs mere

Wor King Papers. Management Working Papers. Højere kapitalkrav løfter krav til indtjening i den finansielle sektor en replik 2013-02

Wor King Papers. Management Working Papers. Højere kapitalkrav løfter krav til indtjening i den finansielle sektor en replik 2013-02 Wo Kng Papes Management Wokng Papes 2013-02 Højee kaptalkav løfte kav tl ndtjenng den fnanselle sekto en eplk Ken L. Bechmann, Andes Gosen and Johannes Raaballe Højee kaptalkav løfte kav tl ndtjenng den

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Kædebrøker. b 0 f.eks. 3 b 0 + a 1. f.eks. 3 + 1 b 1 7. a 1. b 1 + a f.eks. 3 + 1 7 + 1. f.eks. 3 + b 1 + a 2 7 + Notation: a 2 b 2 + an.

Kædebrøker. b 0 f.eks. 3 b 0 + a 1. f.eks. 3 + 1 b 1 7. a 1. b 1 + a f.eks. 3 + 1 7 + 1. f.eks. 3 + b 1 + a 2 7 + Notation: a 2 b 2 + an. Kædebrøker Naturvidenskabsfestivalen 2006 foredrag på Herning htx, 26. september Flemming Topsøe Institut for Matematiske Fag, Københavns Universitet b 0 f.eks. 3 b 0 + a 1 f.eks. 3

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Komplekse tal og rækker

Komplekse tal og rækker Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

En forståelsesramme for de reelle tal med kompositioner.

En forståelsesramme for de reelle tal med kompositioner. 1 En forståelsesramme for de reelle tal med kompositioner. af Ulrich Christiansen, sem.lekt. KDAS. Den traditionelle tallinjemodel, hvor tallene svarer til punkter langs tallinjen, dækker fornuftigt (R,

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b 3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Livstidssundhedsomkostninger for rygere og aldrig-rygere. Årlige omkostninger ved passiv rygning

Livstidssundhedsomkostninger for rygere og aldrig-rygere. Årlige omkostninger ved passiv rygning Livstidssundhedsomkostninge fo ygee og ldig-ygee Ålige omkostninge ved pssiv ygning Konsulentppot udbejdet til Hjetefoeningen f pojektlede Susnne Reindhl Rsmussen, egotepeut, MPH DSI Institut fo Sundhedsvæsen,

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Oplevelser for alle! Bowl n Fun Horsens Strandkærvej 87 8700 Horsens Tlf. 75 64 56 55 Vi har online booking - læs mere på www.bowlnfun.

Oplevelser for alle! Bowl n Fun Horsens Strandkærvej 87 8700 Horsens Tlf. 75 64 56 55 Vi har online booking - læs mere på www.bowlnfun. Oplevelse fo alle! Bowl n Fun Hosens Standkævej 87 8700 Hosens Tlf. 75 64 56 55 Vi ha online ooking - læs mee på www.owlnfun.dk 2 Familieuffet & Bowling Søndag fa kl. 17.00 Bøn unde 12 å ½ pis TILBUD Hve

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste at mestre for at kunne begå sig i (samt

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen

Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen Introduktion til Kryptologi Mikkel Kamstrup Erlandsen Indhold 1 Introduktion 2 1.1 Om Kryptologi.......................... 2 1.2 Grundlæggende koncepter.................... 2 1.3 Bogstaver som tal........................

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Oversigt [S] App. I, App. H.1 Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Test komplekse tal Komplekse rødder Kompleks eksponentialfunktion

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Repræsentation af tal

Repræsentation af tal Repræsentation af tal DM526 Rolf Fagerberg, 2009 Bitmønstre 01101011 0001100101011011... Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, kommatal) Bogstaver Computerinstruktion (program)

Læs mere

Kvadratrodsberegning ved hjælp af de fire regningsarter

Kvadratrodsberegning ved hjælp af de fire regningsarter Kvadratrodsberegning ved hjælp af de fire regningsarter Tidligt i historien opstod et behov for at beregne kvadratrødder med stor nøjagtighed. Kvadratrødder optræder i forbindelse med retvinklede trekanter,

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

1.1. Disse betingelser anvendes i alle forhold imellem Kunden og Xenos, medmindre andet er skriftligt aftalt.

1.1. Disse betingelser anvendes i alle forhold imellem Kunden og Xenos, medmindre andet er skriftligt aftalt. SANDARDBEINGELSER 1 GENERELLE BESEMMELSER 11 Disse beingelse nendes i lle fohold imellem Kunden og X, mminde nde e skiflig fl 12 Fo indgå fle m X skl undeskieen/ undeskiene fo Kunden æe egningsbeeige De

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33 Indhold Bind 1 del I: Eksperimenterende geometri og måling 1 Eksperimentel geometri 3 Hvorfor eksperimenterende undersøgelse? 4 Eksperimentel undersøgelse: På opdagelse med sømbrættet 6 Geometriske konstruktioner

Læs mere

Talproblemer set med matematiklærerens øjne

Talproblemer set med matematiklærerens øjne Talproblemer set med matematiklærerens øjne Talskæbner: Du er dum, og du er doven! Man kan, hvis man vil. Og du vil åbenbart ikke! Matematiklæreren h

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. I. De komplekse tals historie. Historien om 3. grads ligningerne

Institut for Matematik, DTU: Gymnasieopgave. I. De komplekse tals historie. Historien om 3. grads ligningerne De komplekse tals historie side 1 Institut for Matematik, DTU: Gymnasieopgave I. De komplekse tals historie Historien om 3. grads ligningerne x 3 + a x = b, x 3 + a x 2 = b, - Abraham bar Hiyya Ha-Nasi,

Læs mere