Lektion 7s Funktioner - supplerende opgaver

Størrelse: px
Starte visningen fra side:

Download "Lektion 7s Funktioner - supplerende opgaver"

Transkript

1 Lektion 7s Funktioner - supplerende opgaver Omvendt proportionalitet og hperbler.gradsfunktioner og parabler Eksponentialfunktioner Eksponentialfunktioner og lineære funktioner Andre funktioner og blandede opgaver Potensfunktioner Lektion 7s Side 17

2 Omvendt proportionalitet og hperbler 1: Olferts høns a: Hvor bred bliver indhegningen, hvis den skal være 6 m lang? b: Hvor bred bliver indhegningen, hvis den skal være 8 m lang? c: Tegn og udfld en tabel som denne: Olfert skal lave en indhegning på m til sine høns. Indhegningen skal være firkantet (rektangel eller kvadrat). Den ene side i meter () Den anden side i meter () d: Tegn en graf ud fra tallene i tabellen. 1 cm = 1 m på begge tal-akser. e: Hvilken af disse funktioner passer til tabellen og grafen: f: Hvad bliver sidelængden, hvis indhegningen er kvadratisk? Marker det sted på grafen, som svarer til en kvadratisk indhegning. g: Er og omvendt proportionale? h: Tegn evt. også en graf, der passer til en indhegning på 15 m. Graferne skal være bløde buer. Du må ikke tegne med lineal fra punkt til punkt. : Brian betaler tilbage a: Hvor meget skal Brian betale om måneden, hvis lånet skal betales tilbage på et år? b: Hvor meget skal Brian betale om måneden, hvis lånet skal betales tilbage på to år? c: Tegn og udfld en tabel som denne: Brian har lånt kr. af sin mor. Lånet er rentefrit. Brian skal betale et fast afdrag hver måned. Antal måneder () Afdrag pr. måned () d: Tegn en graf ud fra tallene i tabellen. 1 cm = måneder på -aksen. 1 cm = 00 kr. på -aksen e: Opstil en funktion der passer til tabellen og grafen. f: Er og omvendt proportionale? g: Hvor lang tid tager det at betale lånet tilbage, hvis Brian betaler 750 kr. pr. måned? Marker dit svar på grafen. Lektion 7s Side 18

3 3: Inter-Netto (I denne opgave skal du sætte en måned til 30 dage) a: Hvad er prisen pr. time, hvis man er koblet på nettet i en time om dagen? b: Hvad er prisen pr. time, hvis man er koblet på nettet i to timer om dagen? c: Hvad er prisen pr. time, hvis man er koblet på nettet i en halv time om dagen? d: Hvad er prisen pr. time, hvis man er koblet på nettet i 0 timer på en måned? e: Tegn og udfld en tabel som denne: INTER-NETTO Din ne super billige internet-udbder. Du kan være på nettet lige så længe du vil for kun 198 kr. pr. måned. Timer pr. måned () Pris pr. time () f: Tegn en graf ud fra tallene i tabellen. 1 cm = 5 timer på -aksen. 1 cm = 1 kr. på -aksen. g: Opstil en funktion der passer til tabellen og grafen. h: Hvad er prisen pr. time, hvis man er koblet på nettet i halvanden time om dagen? Marker dit svar på grafen. i: Marker det sted på grafen, som svarer til en minut-pris på 10 øre. Hvor mange timer skal man være koblet på, for at opnå denne minut-pris? : Antons køretur. a: Anton overvejer at ckle. Hvor lang tid tager turen, hvis han kører 0 km/time? b: Hvor lang tid tager turen, hvis han kører i bil med en gennemsnitsfart på 80 km/time? Anton bor i Udb. Han skal besøge sin mor i Smalballe. Turen er på 10 km. c: Tegn og udfld en tabel som denne: Km/time () o.s.v Antal timer () d: Tegn en graf ud fra tallene i tabellen. 1 cm = 10 km/time på -aksen. 3 cm = 1 time kr. på -aksen (1 cm = 0 min). (Hvis punkterne er svære at afsætte, kan du omregne dine -værdier til timer og minutter) e: Begge disse funktioner kan passe til grafen. Forklar hvorledes: Lektion 7s Side 19

4 5: Tegn grafen for denne funktion:. Start med at udflde en tabel som denne: ,5 0,5 1 8 Bemærk: Grafen består af to dele, som ikke hænger sammen. 6: Tegn graferne for disse funktioner: 1 Du må gerne bruge det samme koordinatsstem som du brugte i opgave 5. 8 Alle graferne fra opgave 5, 6 og 7 har smmetriakser. Kan du finde akserne? 7: Tegn graferne for disse funktioner: 1 8 8: To taa-firmaer tager de viste priser. a: Hvad koster det at køre km med Henr? b: Hvad bliver prisen pr. km, når man kører km? c: Lav og udfld en tabel, som denne: Henrs Hrevogne 8 kr. pr. km 35 kr. i startgebr Antal km () 3 o.s.v. 10 Pris pr. km hos Henr () 5,50 d: Tegn en graf for Henr i et koordinatsstem. På -aksen er 1 cm = 1 km. På -aksen er 1 cm = kr. e: Hvilken af disse funktioner passer til tabellen og grafen: f: Lav også en tabel og en graf for Toms Taa g: Opstil en funktion for Toms Taa. h: Er og omvendt proportionale (undersøg begge funktioner)? i: Hvor skærer graferne hinanden? og hvad betder skæringspunktet? j: Forestil dig, at du kører en meget, meget, meget lang tur. - hvor lav kan prisen pr. km blive hos Henrs Hrevogne? - hvor lav kan prisen pr. km blive hos Toms Taa? Toms Taa 1 kr. pr. km 15 kr. i startgebr Lektion 7s Side 0

5 9: Tegn - i samme koordinatsstem - graferne for disse funktioner: 1 6 Undersøg også hvor graferne skærer hinanden. 10: Tegn - i samme koordinatsstem - graferne for disse funktioner: 0 Undersøg også hvor graferne skærer hinanden. 11: Tre Internet-firmaer tager de viste priser. a: Sammenlign udgifterne ved at bruge de tre firmaer for en person, der er koblet på nettet i 0 min. om dagen. b: Hvad koster det pr. måned at bruge Web World, hvis man i gennemsnit er koblet på nettet i en time om dagen? (regn med 30 dage i en måned) c: Hvad bliver prisen pr. time, når man bruger Web World en time om dagen? d: Lav og udfld en tabel, som denne: Antal timer pr. måned () 5 10 o.s.v. 60 Pris i kr. pr. time hos Web World () 6 Web World Kun 10 øre pr. minut. Dertil kommer en beskeden fast afgift på 100 kr. pr. måned. Dag & Net Ingen faste afgifter. Du betaler kun for den tid, du er koblet på. Pris: 0 øre pr. minut. e: Tegn ud fra tabellen en graf i et koordinatsstem. På -aksen er 1 cm = 5 timer. På -aksen er 1 cm = kr. f: Lav også tabeller og grafer for Dag & Net og NET-OP. (en af graferne bliver ikke en hperbel) g: Hvor skærer graferne hinanden? h: Opstil evt. funktioner for graferne. i: Vurder ud fra graferne: - hvilket firma skal man vælge, hvis man bruger Internettet i 0 min. om dagen? - hvilket firma skal man vælge, hvis man bruger Internettet i timer om dagen? Du kan også sammenligne Internet-priserne ved at tegne tre rette linier i et koordinatsstem, hvor er antal timer pr. måned, og er den samlede udgift pr. måned. j: Tegn i et nt koordinatsstem disse linier. En for hvert af firmaerne. NET-OP k: Sammenlign de ne skæringspunkter med de gamle skæringspunkter. For storforbrugere. Du betaler altid en fast afgift på 399 kr. pr. måned. Lektion 7s Side 1

6 1: Tegn - i forskellige koordinatsstemer - graferne for disse funktioner: Bemærk at: - -værdierne er ikke ens i alle tabeller (tænk over hvorfor). - alle graferne skal ligne hinanden, men dog være lidt forskellige. a: ,5 0,5 1 8 b: ,5 0,5 1 8 c: ,5 0,5 1 8 d: ,5 0,5 1 8 e: ,5, f: ,5-1, g: ,5, h: Kan du - uden at beregne støttepunkter - tænke dig til, hvorledes graferne for disse funktioner vil se ud: - Lektion 7s Side

7 50 cm Matematik på Åbent VUC. gradsfunktioner og parabler 13: Fliser Forestil dig, at du lægger fliser. Fliserne er kvadratiske, og det område, som fliserne dækker, er også kvadratisk. a: Hvor mange fliser skal du bruge i alt, hvis du lægger fliser på hver led? b: Hvor mange fliser er der på hver led, hvis der i alt er lagt 100 fliser? c: Tegn og udfld en tabel som denne: Antal fliser på hver led () o.s.v. Antal fliser i alt () Det er lidt fjollet at regne med 0 fliser, men tallet er med for sstemets skld d: Tegn i et koordinatsstem en graf ud fra tallene i tabellen. Grafen skal være en blød bue. Bestem selv hvorledes du vil inddele dine akser. e: Hvilken af disse funktioner passer til tabellen og grafen: 1: Fliser (fortsat) Fliserne er 50 cm på hvert led. Du skal stadig forestille dig, at du lægger fliserne på et kvadratisk område. a: Hvad er arealet ( i m ) af en flise? a: Hvad er arealet af hele området, hvis der er lagt 3 fliser på hver led? b: Tegn og udfld en tabel som denne: 50 cm Antal fliser på hver led () o.s.v. 10 Antal m med fliser () c: Tegn i et koordinatsstem en graf ud fra tallene i tabellen. Bestem selv hvorledes du vil inddele dine akser. d: Hvilken af disse funktioner passer til tabellen og grafen: 0,5 Lektion 7s Side 3

8 I opgaverne 15-17, skal du fortsat tegne grafer. Brug et helt stkke ternet papir eller mm-papir til hver opgave. Placer dit koordinatsstem midt på papiret som vist. Hvis nogle af støtte-punkterne falder uden for pairet, skal du blot tegne så meget af grafen, som der er plads til. 15: Tegn - i samme koordinatsstem - graferne for disse funktioner: 3 Inden du tegner skal du - for hver funktion - lave og udflde en --tabel som denne: : Tegn - i samme koordinatsstem - graferne for disse funktioner: 6 Start med at lave --tabeller som i opgave : Tegn - i samme koordinatsstem - graferne for disse funktioner: Start med at lave --tabeller som i opgave 15 og : Hvilke funktioner hører sammen med hvilke sæt værdier af a, b og c? a: b: c: 3 d: 0,5 a b c A: B: - C: 0,5 1 - D: 1 0 Hvis en funktion kan skrives få formen: a kaldes funktionen en.gradsfunktion. Grafen er altid en smmetrisk bue, som kaldes en parabel. Bemærk: b og c kan godt være 0. a må ikke være 0 (a 0). b c 19: Tegn - i samme koordinatsstem - graferne for funktionerne fra opgave 18. Lektion 7s Side

9 0: Skriv funktionsforskriften for en.gradsfunktion, a: hvor a = 1, b = - og c = -1 b: hvor a =, b = 6 og c = -10 e: Tegn også graferne for funktionerne. c: hvor a = -0,5, b = 0 og c = 3 d: hvor a = -,5, b = 0 og c = 0 1: Hvilke udsagn om.gradsfunktioner og parabler passer sammen? a: a er et positivt tal. b: a er et negativt tal. c: a er stort (uanset fortegn; altså langt fra 0) d: a er lille (uanset fortegn; altså tæt på 0) A: Parablen vender benene nedad. B: Parablen vender benene opad. C: Parablen er flad. (buer ikke så meget) D: Parablen er spids. (buer meget) : Bremselængde Kik på teksten og tabellen til højre. a: Hvilken af disse funktioner kan beskrive sammenhængen mellem hastighed () og bremselængde (): 0,1 0,00 10 b: Når du har fundet den rigtige funktion, skal du tegne en graf i et koordinatsstem. Start med at tegne og udflde en tabel som denne: o.s.v. 150 Bremselængde Bremselængden for en bil vokser, når hastigheden vokser. De helt præcise tal afhænger også af bilen, vejen og vejret, men her er nogle tpiske tal: Hastighed Bremselængde i km/time i meter 5, Lav et koordinatsstem, hvor 1 cm på -aksen svarer til 10 km/time, og 1 cm på -aksen svarer til 10 m. c: Aflæs på din graf (cirka-tal): - bremselængden når hastigheden er 90 km/time. - hastigheden når bremselængden er 50 m. d: Kan du kontrol-beregne svarerne fra c? Bremselængderne i tabellen er for kørsel i tørvejr. Hvis det regner kan bremselængderne godt være dobbelt så lange. e: Tegn i samme koordinatsstem som før en graf for bremselængden i regnvejr. Lektion 7s Side 5

10 3: Standselængde (Fortsættelse af opgaven med bremselængde) Standselængden for en bil består af en reaktionslængde og en bremselænge. Reaktionslængden er den strækning, som bilen når at køre, fra billisten ser en forhindring, til han/hun begnder at bremse. Reaktionslængden afhænger af hastighed og reaktionstid. Bremselængde Reaktionslængde Disse reaktionslængder svarer til en reaktionstid på 1 sekund: Hastighed i km/time: Reaktionslængde i meter: o.s.v. Du kan finde eksempler på bremselængder ved at kikke i opgave. a: Tegn og udfld en tabel som denne: Hastighed i km/time () o.s.v. 150 Reaktionslængde i meter Bremselængde i meter Standselængde i meter () b: Ved hvilken hastighed (cirka-tal) bliver bremselængden længere end reaktionslængden? c: Kontroller at standselængden kan beregnes ved denne funktion: 0,00 0,8 d: Tegn i et koordinatsstem en graf for standselængden. Brug et koordinatsstem, hvor 1 cm på -aksen svarer til 10 km/time, og 1 cm på -aksen svarer til 10 m. e: Aflæs på din graf (cirka-tal): - standselængden ved 30 km/time. - standselængden ved 110 km/time. f: Aflæs på din graf (cirka-tal): - hastigheden når standselængden er 50 m. - hastigheden når standselængden er 10 m. g: Husk at reaktionslængderne i tabellen svarer til en reaktionstid på 1 sekund. Indtegn i samme koordinatsstem en graf for standselængden for en billist med en reaktionstid på et halvt sekund. h: Opstil en funktion for denne graf. Lektion 7s Side 6

11 : Kasteparabler Forestil dig at du kaster en sten. Hvis du kan kaste med en fart på 0 m/s og i en vinkel på 5, så vil stenen følge denne parabel: 0,05 a: Tegn i et koordinatsstem en graf der svarer til stenens bane. Start med at tegne og udflde en tabel som denne: o.s.v. 0 1 cm = m på begge akser. Brug evt. et stkke papir der ligger ned. b: Hvor højt kommer stenen op i luften? c: Prøv at indsætte en -værdi større end 0. Giver resultatet mening? d: Indtegn også grafen for denne parabel: 0,07,1 Parablen svarer til et kast med samme fart og i en vinkel på 65. e: Hvor langt og hvor højt når stenen ved dette kast? f: Indtegn også grafen for denne parabel: 0,015 0,5 Parablen svarer til et kast med samme fart og i en vinkel på 5. g: Hvor langt og hvor højt når stenen ved dette kast? Kasteparabler Hvis man kaster en sten (eller en anden genstand), vil stenen følge en bane, der (stort set) er en parabel-bue. Hvis man kaster for stejlt opad, så kommer stenen højt op, men den når ikke så langt væk Hvis man kaster for fladt, kommer stenen heller ikke så langt væk. Det længste kast fås ved at kaste stenen i vinkel på 5. 8 B 5: I koordinatsstemet til højre er tegnet parabler med disse funktionsforskrifter: a: 5 b: 3 c: 0,5 0,5 6 d: 1 Afgør hvilke funktionsforskrifter og hvilke parabler der passer sammen. NB: Parablerne er nemmere at skelne fra hinanden, hvis du tegner dem op med forskellige farver. 6 C A D -8 Lektion 7s Side 7

12 6: Papir Man kan beregne, hvor meget papir der er på rullen til højre, med denne funktion: 1, hvor er radius målt i cm og er papirets længde målt i meter. a: Hvor meget papir er der på rullen, når radius er 0 cm? b: Hvor meget papir er der på rullen, når den er helt fuld? (pas på enhederne). c: Tegn i et koordinatsstem en graf, der viser hvor meget papir der er på rullen. Start med at tegne og udflde en tabel som denne: Skitsen herunder forestiller en stor rulle med papir, som bruges på et trkkeri. Papiret er rullet på et rør med en radius på 10 cm. Hele rullens radius kaldes. Papirets tkkelse svarer til 50 lag pr. cm. Når rullen er n (helt fuld) måler den en meter i diameter. 10 cm o.s.v. 50 Lav et koordinatsstem, skal alle hvor 1 cm på -aksen svarer beregnes til 5 cm på rullen, og 1 cm på -aksen svarer til 00 m papir. d: Aflæs (cirka-tal) på grafen, hvor tk rullen er (radius), når halvdelen af papiret er brugt. e: Kan du beregne tallet fra opgave d? f: Hvad sker der, hvis man indsætter en -værdi mindre end 10? (F.eks. = 5 cm) Giver denne beregning mening? Nu skal du - for en stund - glemme alt om.gradsfunktioner og parabler. Du skal blot tænke på papir-rullen, som den er beskrevet ovenfor til højre. g: Hvad er omkredsen af det inderste lag papir? h: Hvad er omkredsen af det derste lag papir, når rullen er fuld? i: Hvad er gennemsnittet af de to tal? j: Hvor mange lag papir er der på rullen, når den er fuld? k: Hvor meget papir er der i alt på rullen, når den er fuld? (Brug dine svar fra i og j) l: Sammenlign dine svar fra b og k. Lektion 7s Side 8

13 Når du laver opgaverne på denne side, skal du lægge mærke til, at parablerne i de enkelte opgaver ligner hinanden. Alle parablerne i opgaver 7 ligner hinanden, alle parablerne i opgave 8 ligner hinanden o.s.v. 7: Tegn - i samme koordinatsstem - graferne for disse funktioner: 6 Inden du tegner skal du - for hver funktion - finde -koordinaten til parablens top-punkt. Derefter skal du udflde en --tabel, hvor toppunktet er i midten. top Vurder selv hvor brede du behøver at lave dine tabeller. Når du har tegnet parablerne, skal du finde deres nul-punkter (skæringspunkter med -aksen) Sådan finder du toppunktet: b top a 8: Tegn - i samme koordinatsstem - graferne for disse funktioner: 3 Start med at finde -koordinaten til parablens top-punkt (ligesom i sidste opgave ). Find også nul-punkterne : Tegn - i samme koordinatsstem - graferne for disse funktioner: Start med at finde -koordinaten til parablens top-punkt (ligesom i sidste opgave ). Find også nul-punkterne : Tegn - i samme koordinatsstem - graferne for disse funktioner: 0,5,5 0,5 7 0,5 Start med at finde -koordinaten til parablens top-punkt (ligesom i sidste opgave). Find også nul-punkterne. Lektion 7s Side 9

14 31: Tegn - gerne i samme koordinatsstem - graferne for disse funktioner: , Når du tegner parablerne, skal du lægge mærke til, hvor mange nul-punkter de har. Kan springes over! 3: Til højre er beskrevet hvorledes man ud fra funktionsforskriften a b c kan undersøge, hvor mange nul-punkter en parabel har. Kontroller at metoden passer på de parabler, som du tegnede i opgave 31. Kan springes over! 33: Til højre er beskrevet hvorledes man kan beregne nul-punkter for parabler. Kontroller at metoden passer på (nogle af) de parabler, som du har tegnet i de foregående opgaver. Antal nul-punkter for en parabel: Beregn: D b Hvis: D > 0 har parablen to nul-punkter D = 0 har parablen et nul-punkt D < 0 har parablen ingen nul-punkter Beregning af nul-punkter for en parabel: Hvis en parabel har to nul-punkter, kan de beregnes således: a b D nul og a c nul b D a Hvis en parabel kun har et nul-punkt, er nul-punkt og top-punkt ens. Det beregnes således: b nul a 3: Tegn - gerne i samme koordinatsstem - graferne for disse funktioner: 6, ,5 7 6 Prøv om du både kan aflæse og beregne parablernes nul-punkter. Lektion 7s Side 30

15 Eksponentialfunktioner 35: Lønstigning I tabellen herunder er vist Kurts timeløn i år og de næste to år. a: Vis hvorledes tallene er beregnet. Kurt arbejder på Udb Marmeladefabrik. Han tjener 80 kr. i timen. Han bliver lovet en lønstigning på 5% hvert år de kommende år. b: Tegn hele tabellen og udfld den. Hop evt. nogle af -værdierne over. (Det er helt urealistisk at regne med en fast lønstigning i 15 år, men find tallene alligevel). Antal år () Timeløn i kr. () 80,00 8,00 88,0... c: Tegn ud fra tallene en graf i et koordinatsstem, hvor 1 cm på -aksen svarer til 1 år, og 1 cm på -aksen svarer til 10 kr. (Grafen er ikke en ret linie - den buer en lille smule) d: Hvilken af disse funktioner kan beskrive sammenhængen mellem og : , ,05 Nu skal du regne på Olferts løn. e: Lav en tabel og en graf for Olferts løn 15 år frem. f: Hvilken af disse funktioner kan beskrive Olferts løn: Olfert arbejder på Udb Margarinefabrik. Han tjener 10 kr. i timen. Han bliver lovet en lønstigning på % hvert år de kommende år., ,0 10 1,0 g: Hvor mange år skal der gå, før Kurt og Olfert tjener det samme? 36: Lønstigning (fortsat) Forestil dig, at Kurt og Olferts lønninger fortsat stiger med de samme procenttal hvert år. a: Tegn og udfld en tabel som vist herunder: Antal år Kurts timeløn 80,00 Olferts timeløn 10,00 b: Lav ud fra tallene i tabellen to grafer i et koordinatsstem. 1 cm = 5 år på -aksen og 1 cm = 50 kr. på -aksen. c: Hvor længe varer det, inden Kurt når en timeløn på 00 kr. i timen? d: Og hvor længe varer det, inden Olfert når en timeløn på 00 kr. i timen? e: Hvor mange år går der før Kurt tjener 500 kr. i timen? Lektion 7s Side 31

16 37: Fadøl Kurt og Olfert drikker fadøl på Den Gldne Giraf. For at spare penge drikker de øllet langsomt. Kurt køber en stor fadøl. Hver time drikker han halvdelen (50%) af det øl, som er tilbage i glasset. a: Hvor meget øl har Kurt tilbage efter en time? b: Hvor meget øl har Kurt tilbage efter to timer? c: Tegn og udfld en tabel som denne: Den Gldne Giraf Stor Fadøl 500 ml kr. Lille Fadøl 00 ml kr. - en Fad gør glad - Antal timer () Øl (ml) i Kurts glas () d: Tegn ud fra tallene en graf i et koordinatsstem, hvor 1 cm på -aksen svarer til 1 time, og 1 cm på -aksen svarer til 0 ml øl. e: Hvilken af disse funktioner kan beskrive sammenhængen mellem og : ,50 Olfert køber en lille fadøl. Hver time drikker han en fjerdedel (5%) af det øl, som er tilbage i glasset. f: Hvor meget øl har Olfert tilbage efter en time? g: Lav også en tabel og en graf for Olfert. h: Hvilken af disse funktioner passer på Olferts øl: ,5 00 0,75 i: Aflæs på graferne hvornår der er lige meget øl i Kurts og Olferts glas? 38: Biler a: Hvor meget er en n Renaudi drere end en n Skoota? Giv både et svar i kr. og et svar i procent. Begge biler taber 0% i værdi om året. b: Tegn og udfld - for begge biler - en tabel som denne: Udb Auto Fabriksne modeller Skoota Renaudi Alder i år () Værdi i kr. () c: Tegn grafer i et koordinatsstem. (-aksen: 1 cm = 1 år; -akse: 1 cm = kr.) d: Opstil funktioner for begge biler. e: Hvor meget er en 10 år gammel Renaudi mere værd end en 10 år gammel Skoota? Giv både et svar i kr. og et svar i procent.. Lektion 7s Side 3

17 39: Tegn - for 0 og i samme koordinatsstem - graferne for disse funktioner: f() 1, g() 8 1,1 Aflæs også skæringspunktet (cirka-tal) mellem f og g. h() 1,1 0: Tegn - for 0 og i samme koordinatsstem - graferne for disse funktioner: f() 0 0,8 g() Aflæs også grafernes skæringspunkt (cirka-tal). 10 0,9 1: Flere i arbejde a: Kontroller at der er blevet 15% flere ansatte Flere i arbejde i Udb på Udb Margarinefabrik på et år. På Udb Margarinefabrik er der nu Hvis stigningen fortsætter kan antallet af ansatte ansat 5 medarbejdere. Sidste år var på Udb Margarinefabrik beregnes med denne der kun 7 ansatte, så der er sket en funktion: stigning på 15% på et år. 7 1,15 På Udb Marmeladefabrik er der nu er antal år, og er antal ansatte. ansat 8 medarbejdere. Sidste år var b: Lav en tabel og en graf der viser antal der kun 0 ansatte, så der er sket en medarbejdere 10 år frem. stigning på 0% på et år. c: Lav også en funktion, en tabel og en graf for antal ansatte på Udb Marmeladefabrik. (gå ud fra, at der fortsat sker en stigning på 0% om året) d: Hvornår vil der være flest medarbejdere på Udb Marmeladefabrik? : Hvad passer sammen? a: b: c: d: e: 5 1,0 A: En startværdi på,5 og et fald på % (f om året).,5 0,98 B: En startværdi på 5 og en stigning på 0,% (f om året). 5 1, C: En startværdi på 5 og en stigning på % (f om året).,5 0,8 D: En startværdi på 5 og en stigning på 0 % (f om året). 5 1,00 E: En startværdi på,5 og et fald på 0% (f om året). 3: Tegn evt. grafer for nogle af de funktioner, som er nævnt i opgave. Lektion 7s Side 33

18 Eksponentialfunktioner og lineære funktioner : Indbggertallet i Gedebjerg Tallene i teksten til højre er fra år 000. a: Hvor mange indbggere vil der være i år 00, hvis model 1 passer? b: Hvor mange indbggere vil der være i år 001, hvis model passer? c: Hvor mange indbggere vil der være i år 00, hvis model passer? d: Tegn og udfld en tabel som den viste: Indbggertallet vokser voldsomt i landsben Gedebjerg. Der bor lige nu 800 mennesker i ben, og man har to modeller til beregning af befolkningen de kommende år. Model 1: Indbggertallet vokser med 50 personer om året. Model : Indbggertallet vokser med 5% om året. År (efter 000) Indbggertal efter model Indbggertal efter model 800 e: Tegn i samme koordinatsstem grafer for begge modeller (-aksen: 1 cm = 1 år; -akse: 1 cm = 100 personer) Graferne ligger tæt på hinanden. Brug evt. to forskellige farver. f: Hvilken af disse funktioner passer til model 1 ( er antal år, og er indbggertallet)? , ,05 g: Hvilken af disse funktioner passer til model? , ,05 h: Beregn også v.h.a. begge modeller indbggertallene for årene 015, 05 og 050. i: Afsæt tallene for år 015 i koordinatsstemet og forlæng graferne. j: Hvor skærer graferne hinanden? 5: Trafikale problemer En prognose siger, at antallet af biler på ringvejen vil vokse med 8% om året. En anden prognose regner med en stigning på 50 biler om året. a: Lav ud fra prognoserne tabeller og grafer der viser trafikken de kommende 10 år? b: Undersøg for begge modeller hvornår trafikken vil være fordoblet. c: Hvor skærer graferne hinanden? Trafikale problemer Trafikken på Udb Ringvej stiger støt. Der er ofte kødannelse, og der kører ca..500 biler i døgnet. Amtets vejvæsen oplser, at der først kan blive tale om at udvidde vejen, når trafikken er fordoblet. d: Opstil funktioner for begge modeller ( er antal år, og er antal biler i døgnet) Lektion 7s Side 3

19 6: Afskrivning af pakke-maskine a: Find maskinens værdi om et år, hvis den nedskrives med 0% om året. b: Find maskinens værdi om et år, hvis den nedskrives med kr. om året? c: Find maskinens værdi om tre år, hvis den nedskrives med 0% om året. d: Find maskinens værdi om tre år, hvis den nedskrives med kr. om året? e: Tegn og udfld en tabel som den viste: Udb Margarinefabrik har Købt en n pakke-maskine til kr. Investeringer i den størrelse skal afskrives over en årrække, og direktør Regner Skab oplser, at man kan vælge imellem at: nedskrive værdien med 0% om året nedskrive værdien med kr. om året Maskinens alder i år Maskinens værdi ved afskrivning: med 0% om året med kr. om året f: Tegn i samme koordinatsstem grafer for begge afskrivningsmodeller. (-aksen: 1 cm = 1 år; -akse: 1 cm = kr.) g: Hvor skærer graferne hinanden? h: Hvornår er værdien halveret ved hver af afskrivningsmetoderne? i: Hvilken af disse funktioner passer til afskrivning med 0% om året? , j: Hvilke af disse funktioner passer til afskrivning med kr. om året? Forestil dig at man vælger afskrivning med 0% om året , k: Hvor mange år går der, før maskinens værdi er nede på kr? l: Hvor mange år går der, før maskinens værdi er nede på 0 kr? 7: Tegn - for 0 og i samme koordinatsstem - graferne for disse funktioner: f() 1,5 5 g() 5 1, Aflæs også grafernes skæringspunkt (cirka-tal). 8: Tegn - for 0 og i samme koordinatsstem - graferne for disse funktioner: f() 0,8 1 g() 1 0,85 Aflæs også grafernes skæringspunkt (cirka-tal). Lektion 7s Side 35

20 h = 9 cm Matematik på Åbent VUC Andre funktioner og blandede opgaver 9: Tegn - for 0 og i samme koordinatsstem - graferne for disse funktioner: 1,5 f() g() 5 1,5 h(),5 Aflæs også skæringspunkterne (cirka-tal) mellem graferne. 50: Vinglas Tegning til højre viser et kegleformet vinglas. Rumfanget af en kegle kan findes med denne formel: V 1 3 π r a: Vis at glasset kan rumme ca. 150 ml, når det er fldt. Husk at 1 cm 3 = 1 ml (milliliter). Når glasset er delvist fldt, kan indholdet beregnes med denne funktion: 3 0,07 hvor er vinstanden i cm og er rumfanget i ml. b: Hvor meget vin er der i glasset, når = 6 cm? c: Tegn og udfld en tabel som den viste: h r = cm Højde i cm () Vin i ml () d: Tegn ud fra tallene i tabellen en graf i et koordinatsstem. 1 cm = 1 cm på -aksen og 1 cm = 10 ml på -aksen. e: Undersøg vha. grafen: - hvor højt står vinen, når glasset rummer 100 ml? - hvor højt står vinen, når glasset rummer 50 ml? - hvor højt står vinen, når glasset er halvt fldt? f: Overvej hvorledes du kunne have beregnet svarene fra e. g: Vurder om disse påstande er rigtige: - når man fordobler, bliver 8-doblet. - når man 3-dobler, bliver 7-doblet? og hvis ja hvorfor? Lektion 7s Side 36

21 h = 35 cm Matematik på Åbent VUC 51: Spand Tegning til højre viser en spand med form som en keglestub. Rumfanget af en keglestub kan findes med denne formel: V 1 3 π h (R a: Vis at spanden kan rumme ca. 0 liter, når den er fldt. Husk at 1 liter = cm 3 = milliliter. Når spanden er delvist fldt, kan indholdet beregnes med denne funktion: 3 0, ,3 5 hvor er vandstanden i cm og er rumfanget i liter. b: Hvor meget vand er der i spanden, når = 0 cm? c: Tegn og udfld en tabel som den viste: r R r) R = 15 cm r = 1 cm Højde i cm () Vand i ml () d: Tegn ud fra tallene i tabellen en graf i et koordinatsstem. 1 cm (på papiret) = cm (på spanden) på -aksen og 1 cm = 1 liter =1.000 ml på -aksen. OBS: Grafen kan godt ligne en ret linie, men den buer lidt. e: Hvor højt står vandet, når spanden er halvt fldt? 5: Tegn - for > 0 og i samme koordinatsstem - graferne for disse funktioner: f() 1 g() må ikke være 0, men prøv at komme så tæt på = 0 som muligt, når du tegner. Find også grafernes skæringspunkter. 1 h() 1 53: Tegn - i samme koordinatsstem - graferne for disse funktioner: f() 5 1, g() Aflæs også grafernes skæringspunkt (cirka-tal). 1, 5: Tegn - i samme koordinatsstem - graferne for disse funktioner: f() g() 5 Overvej om graferne kan skære hinanden. NB: Disse funktioner er lidt spøjse - tænk dig godt om når du regner og tegner! Lektion 7s Side 37

22 55: Olferts høns (fortsættelse af opgave 1) a: Hvor bred bliver indhegningen, hvis den skal være 6 m lang? b: Hvad bliver omkredsen, hvis indhegningen er 6 m lang? c: Tegn og udfld en tabel som denne: Olfert skal lave en indhegning på m til sine høns. Indhegningen skal være firkantet (rektangel eller kvadrat). Den ene side i meter () Den anden side i meter Omkreds i meter () d: Tegn en graf der viser sammenhængen mellem og. 1 cm = 1 m på -aksen og 1 cm = m på -aksen. (Når du tegner grafen, skal du ikke bruge tallene i den midterste række). Sammenhængen mellem og kan beskrives med denne funktion: e: Prøv af forklare hvorledes funktionen er bgget op. f: Hvilken sidelængde (-værdi), giver den mindste omkreds (-værdi)? Lektion 7s Side 38

23 Potensfunktioner 56: Tegn i samme koordinatsstem graferne for disse funktioner: Start med at udflde en tabel som denne: f() og g() f() g() Hvis du tegner graferne på papir, kan du buge et helt A-ark og vælge disse enheder: På -aksen er 1 cm = 1. På -aksen er 1 cm = : Tegn i samme koordinatsstem graferne for disse funktioner: 3 f() og g() og h() 0,5. Start med at udflde en tabel som denne: f() g() h() Hvis du tegner graferne på papir, kan du buge et helt A-ark og vælge disse enheder: På -aksen er 1 cm = 1. På -aksen er 1 cm = 0. Noget af graferne for g og h vil dog ikke kunne være på papiret. OBS: De tre grafer skærer hinanden i samme punkt. Prøv at forklare hvorfor. 58: Potensfunktioner er funktioner, som kan skrives formen Hvad er a og b i disse potensfunktioner? a: 117 b: 6 c: a b. - 5 d: : Potensfunktioner er funktioner, som kan skrives formen a b. Skriv selv forskrifterne for potensfunktioner med disse værdier af a og b: a: a = 0,5 b = 3 b: a = 10 b = 3 1 c: a = -1 b = 1 d: a = 1 b = Lektion 7s Side 39

24 50 cm Matematik på Åbent VUC 60: Fliser Forestil dig at du lægger fliser. Fliserne er kvadratiske, og det område, som fliserne dækker, er også kvadratisk. a: Hvor mange fliser skal du bruge i alt, hvis du lægger fliser på hver led? b: Hvor mange fliser er der på hver led, hvis der i alt er lagt 100 fliser? c: Udfld en tabel som denne: Antal fliser på hver led () o.s.v. Antal fliser i alt () Det er lidt fjollet at regne med 0 fliser, men tallet er med for sstemets skld d: Tegn i et koordinatsstem en graf ud fra tallene i tabellen. Grafen skal være en blød bue. Bestem selv hvorledes du vil inddele dine akser. e: Hvilken af disse funktioner passer til tabellen og grafen: 61: Fliser (fortsat) Fliserne er 50 cm på hvert led. Du skal stadig forestille dig, at du lægger fliserne på et kvadratisk område. a: Hvad er arealet ( i m ) af en flise? b: Hvor mange fliser skal der til en m? c: Hvad er arealet af hele området, hvis der er lagt 3 fliser på hver led? d: Tegn og udfld en tabel som denne: 50 cm Antal fliser på hver led () o.s.v. 10 Antal m med fliser () e: Tegn i et koordinatsstem en graf ud fra tallene i tabellen. Bestem selv hvorledes du vil inddele dine akser. f: Hvilken af disse funktioner passer til tabellen og grafen: 0,5 Lektion 7s Side 0

25 6: Rumfanget af terning. Rumfanget kan beregnes med formlen V = s 3, hvor V er rumfanget og s er terningens kant-længde. Hvis s måles i cm, får man V i cm 3 (eller ml). a: Udfld en tabel som den viste: s (cm) o.s.v. 10 V (cm 3 ) b: Tegn en graf ud fra tabellen. c: Rumfanget er en potensfunktion af kant-længden. Prøv at forklare hvorfor! d: Hvad skal kantlængden være for at terningens rumfang bliver: - 1 liter = ml = cm 3? - 1 dl = 100 ml = 100 cm 3? - 1 cl = 10 ml = 10 cm 3? 63: Bremselængde Kik på teksten og tabellen til højre. a: Hvilken af disse funktioner kan beskrive sammenhængen mellem hastighed () og bremselængde (): 0,1 0,00 10 b: Når du har fundet den rigtige funktion, skal du tegne en graf i et koordinatsstem. Start med at lave og udflde en tabel som denne: o.s.v. 150 Bremselængde Bremselængden for en bil vokser, når hastigheden vokser. De helt præcise tal afhænger også af bilen, vejen og vejret, men her er nogle tpiske tal: Hastighed Bremselængde i km/time i meter 5, Hvis du tegner i hånden, skal du lave et koordinatsstem, hvor 1 cm på -aksen svarer til 10 km/time, og 1 cm på -aksen svarer til 10 m. c: Aflæs på din graf (cirka-tal): - bremselængden når hastigheden er 90 km/time. - hastigheden når bremselængden er 50 m. d: Kan du kontrol-beregne svarerne fra c? Bremselængderne i tabellen er for kørsel i tør-vejr. Hvis det regner, kan bremselængderne godt være dobbelt så lange. e: Tegn i samme koordinatsstem som før en graf for bremselængden i regn-vejr. Lektion 7s Side 1

26 s = 3 cm s = cm Matematik på Åbent VUC 6: Side-længde på kvadrat Side-længden (s) afhænger af arealet (A). Tegningerne viser et par eksempler. A = cm 3 A = 9 cm 3 a: Udfld en tabel som denne: A (cm ) s (cm) 3 b: Tegn en graf ud fra tabellen. c: Opstil en funktion for s. Altså en funktion hvor arealet er, og side-længden er. d: Det er ikke sikkert, at din funktion ligner en potensfunktion, men det er den! Prøv at forklare hvorfor. Kik tilbage på opgave 7. Den med kant-længden og rumfanget for en terning e: Opstil en funktion, hvor rumfanget er, og kantlængden er. Prøv at forklare hvorfor det er en potensfunktion. 65: Tegn i samme koordinatsstem graferne for disse funktioner: Start med at udflde en tabel som denne: 0,5 og 1 og 1, ,5 1 1,5 Hvis du tegner graferne på papir, kan du vælge disse enheder: På -aksen er 1 cm = 1. På -aksen er 1 cm = 1. Noget af graferne for den sidste funktion vil måske ikke kunne være i dit koordinatsstem. OBS: Funktionerne og graferne opfører sig lidt mstisk for små -værdier. Hvis du har godt tid eller bruger regneark, kan du også udflde denne tabel: 0 0, 0, 0,6 0,8 1 1, 1, 1,6 1,8 0,5 1 1,5 Tegn også grafer ud fra tallene i den sidste tabel. Lektion 7s Side

27 66: Hestefoder Man kan med god tilnærmelse beregne hestes behov for foder med denne funktion: f() 0,0 0,75 er hestens vægt i kg, og f() er antal foderenheder pr. dag. a: Lav og udfld en tabel som denne: Foderenheder Der er ikke lige meget næring i alle slags drefoder. Derfor bruger man foderenheder. En foderenhed svarer f til ca. 1 kg korn eller ca. kg hø eller ca. kg halm f() b: Lav en graf ud fra tallene i tabellen. c: Hvor meget vejer en hest, som har brug for foderenheder pr. dag? d: En hest på 375 kg får 00 g korn om dagen. Resten af foderet er en blanding af hø og halm. Lav et forslag til hvor meget hø og hvor meget halm hesten skal have. e: En hest vejer 50 kg. Hestens ejer køber 0 kg korn, 150 kg hø og 00 kg halm. Hvor lang tid er der foder til? For hunde gælder der en tilsvarende funktion. Den ser sådan ud: h() 53 0,75 er hundens vægt i kg, og h() er energi-behovet pr. dag målt i kilojoule (kj). f: Lav også en tabel og en graf for denne funktion. g: Der er sikkert nogle kursister på jeres hold, som har hund. Undersøg om funktionen passer på jeres hunde. I kan finde antal kj vha. varedeklarationerne på den hundemad, som I bruger. 67: Buket-priser En dame sælger blomster-buketter. Hun tager normalt 60 kr. for en buket, og hun sælger normalt ca. 100 buketter pr. dag. Hun har prøvet at sætte prisen ned til 50 kr. Så solgte hun ca. 110 buketter pr. dag. Hun har også prøvet at sætte prisen op til 75 kr. Så solgte hun ca. 90 buketter pr. dag. Hendes mand, som er matematik-lærer (og derfor meget, meget klog), siger, -0,5 at det tder på, at prisen og antal buketter følger denne funktion 775. er prisen, og er antal solgte buketter pr. dag. Undersøg om hendes meget, meget kloge mand kan have ret. Lav evt. en graf for funktionen. Lektion 7s Side 3

28 68: Dkning Den tid, som en dkker højst må være under vand, afhænger af vand-dbden. Man kan bruge denne funktion til at beregne tiden: ,1 er vand-dbden i meter, og er tiden i minutter. a: I hvor lang tid må en dkker opholde sig i en vanddbde på 15 m? b: Lav og udfld en tabel som denne: c: Lav en graf ud fra tallene i tabellen. d: Hvilken vand-dbde svarer til en tid på 5 min? Hvis dkkere er for lang tid under vand, risikerer de at få dkkersge. Der er også regler for, hvor lang tid dkkere skal bruge på at svømme ned og op. Den tid skal lægges til, hvis man vil finde den samlede neddkningstid. 69: Vindmøller En vindmølle laver meget mere elektricitet, når det blæser kraftigt. For en bestemt tpe vindmølle gælder der denne funktion: 0,6 3,3 er vind-hastigheden i meter pr. sekund (m/s), er elektricitets-mængden målt i kilowatt (kw). kaldes også effekten. a: Lav og udfld en tabel som denne: 0 6 osv. 0 b: Lav en graf ud fra tallene i tabellen. Du kan evt. nøjes med at medtage noget af grafen, da der sjældent blæser mere end 1-15 m/s. NB: Undersøg evt. selv hvad vindhastigheden tpisk er i Danmark. c: Hvad er vindhastigheden, hvis effekten er kw? d: Forstil dig, at al elektriciteten fra vindmølleparken går til lavenergi-pærer. Hvor mange lavenergipærer er der elektricitet til, hvis vindhastigheden er 8 m/s Vindmøllen i denne opgave står i en vindmøllepark med i alt 0 vindmøller. Effekt kan måles i kw eller i W. 1 kw = W. En lavenergi-pære bruger tpisk 9 W. Lektion 7s Side

29 h = 9 cm Matematik på Åbent VUC 70: Vinglas Tegning til højre viser et kegleformet vinglas. Rumfanget af en kegle kan findes med denne formel: V 1 3 π r a: Vis at glasset kan rumme ca. 150 ml, når det er fldt. Husk at 1 cm 3 = 1 ml (milliliter). Når glasset er delvist fldt, kan indholdet beregnes med denne funktion: 3 0,07 hvor er vinstanden i cm og er rumfanget i ml. b: Hvor meget vin er der i glasset, når = 6 cm? c: Udfld en tabel som den viste: h r = cm Højde i cm () Vin i ml () d: Tegn ud fra tallene i tabellen en graf i et koordinatsstem. Hvis du tegner i hånden kan du vælge disse enheder. 1 cm = 1 cm på -aksen og 1 cm = 10 ml på -aksen. e: Undersøg vha. grafen: - hvor højt står vinen, når glasset rummer 100 ml? - hvor højt står vinen, når glasset rummer 50 ml? - hvor højt står vinen, når glasset er halvt fldt? f: Overvej hvorledes du kunne have beregnet svarene fra e. g: Vurder om disse påstande er rigtige: - når man fordobler, bliver 8-doblet. - når man 3-dobler, bliver 7-doblet? og hvis ja hvorfor? Lektion 7s Side 5

Omvendt proportionalitet og hyperbler... 25 Eksponentialfunktioner... 28 Eksponentialfunktioner og lineære funktioner... 31 Potensfunktioner...

Omvendt proportionalitet og hyperbler... 25 Eksponentialfunktioner... 28 Eksponentialfunktioner og lineære funktioner... 31 Potensfunktioner... Funktioner Omvendt proportionalitet og hperbler... 5 Eksponentialfunktioner... 8 Eksponentialfunktioner og lineære funktioner... 31 Potensfunktioner... 33 Funktioner Side 4 Omvendt proportionalitet og

Læs mere

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1 Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

Lektion 7s Funktioner - supplerende opgaver. Omvendt proportionalitet og hyperbler. Matematik på Åbent VUC

Lektion 7s Funktioner - supplerende opgaver. Omvendt proportionalitet og hyperbler. Matematik på Åbent VUC Lektion 7s Funktioner - supplerende opgaver Omvendt proportionalitet og hperbler 1: 4 m m 1; 8; 6; 4, 8 ; 4;..; 4 4,9 m ( = 4 ) : 1.5 kr. 65 kr..5; 1.5; 8;..; 417 Ja mdr. 15. : 6,6 kr., kr. 1, kr. 9,9

Læs mere

Funktioner. Funktioner Side 150

Funktioner. Funktioner Side 150 Funktioner Brug af grafer koordinatsystemer... 151 Lineære funktioner ligefrem proportionalitet... 157 Andre funktioner... 163 Kært barn har mange navne... 165 Funktioner Side 15 Brug af grafer koordinatsystemer

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner koordinatsystemer Brug af grafer koordinatsystemer Lineære funktioner Andre funktioner ligninger med ubekendte Lavet af Niels Jørgen Andreasen, VUC Århus. Redigeret af Hans Pihl, KVUC

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Matematik. på AVU. Opgaver til niveau F, E og D

Matematik. på AVU. Opgaver til niveau F, E og D Matematik på AVU Opgaver til niveau F, E og D Denne opgavesamling er lavet i forlængelse af Matematik på AVU - opgaver til niveau G. Opgavesamlingen omfatter derfor kun det fagstof, som ikke er med på

Læs mere

Matematik på VUC Modul 3a Opgaver. Matematik på VUC. Modul 3a modeller med mere

Matematik på VUC Modul 3a Opgaver. Matematik på VUC. Modul 3a modeller med mere Matematik på VUC Modul a modeller med mere Indholdsfortegnelse Indledende talgymnastik...1 Formler... Reduktion...7 Ligninger...11 Ligninger som løsningsmetode i regneopgaver...17 Simulation... Blandede

Læs mere

Andengradsfunktionen

Andengradsfunktionen Andengradsfunktionen 1. Find først diskriminanten og efterfølgende også toppunktet for følgende andengradsfunktioner. A y = 2 x 2 + 4 x + 3 B y = 1 x 2 + 6 x + 2 C y = 1 / 2 x 2 + 2 x 2 D y = 1 x 2 + 6

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: KUGLESTØD

MATEMATIK, MUNDTLIG PRØVE TEMA: KUGLESTØD MATEMATIK, MUNDTLIG PRØVE TEMA: KUGLESTØD Kuglestød er en af atletikkens kastediscipliner, hvor man skal forsøge at støde en metalkugle længst muligt. Historisk set kan kuglestød føres tilbage til antikkens

Læs mere

Blandede og supplerende opgaver

Blandede og supplerende opgaver Blandede og supplerende opgaver Sammensætning af regnearterne... 60 Geometri... 61 Statistik... 67 Talfølger... 7 Funktioner (1): Formler og funktioner... 76 Funktioner (): Andengradsfunktioner og parabler...

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: STANDSELÆNGDE

MATEMATIK, MUNDTLIG PRØVE TEMA: STANDSELÆNGDE MATEMATIK, MUNDTLIG PRØVE TEMA: STANDSELÆNGDE Når en bilist opdager en fare på vejen - legende børn, en hund, der løber på kørebanen, en kvinde i kørestol eller lignende - vil man forsøge at undgå ulykken.

Læs mere

Lektion 9s Statistik - supplerende eksempler

Lektion 9s Statistik - supplerende eksempler Lektion 9s Statistik - supplerende eksempler Middelværdi for grupperede observationer... Summeret frekvens og sumkurver... Indekstal... Lektion 9s Side 1 Grupperede observationer Hvis man stiller et spørgsmål,

Læs mere

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder.

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder. Parabler En funktion med grundformlen y = ax 2 + bx + c kaldes en andengradsfunktion. Det grafiske billede af en andengradsfunktion er altid en parabel. 1. Hvis a = 0, er det ikke en andengradsfunktion.

Læs mere

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 1 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 1 ISBN: 978-87-92488-11-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt

brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner, G ISBN: 978-87-9288-11-4 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Vejledende løsning. Ib Michelsen. hfmac123

Vejledende løsning. Ib Michelsen. hfmac123 Vejledende løsning hfmac123 Side 1 Opgave 1 På en bankkonto indsættes 30.000 kr. til en rentesats på 2,125 % i 7 år. Beregning af indestående Jeg benytter formlen for kapitalfremskrivning: K n=k 0 (1+r

Læs mere

Procent og eksponentiel vækst

Procent og eksponentiel vækst Procent og eksponentiel vækst Procent og decimaltal...52 Vækst-fomlen; K n er ukendt...54 Vækst-fomlen; K 0 er ukendt...56 Vækst-fomlen; r er ukendt...57 Vækst-fomlen; n er ukendt...58 Når du regner opgaverne

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Regning med enheder. Måleenheder... 11 Kg-priser... 13 Tid og hastighed... 15 Valuta... 17. Regning med enheder Side 10

Regning med enheder. Måleenheder... 11 Kg-priser... 13 Tid og hastighed... 15 Valuta... 17. Regning med enheder Side 10 Regning med enheder Måleenheder... 11 Kg-priser... 13 Tid og hastighed... 15 Valuta... 17 Regning med enheder Side 10 Måleenheder Du skal kende de vigtigste måleenheder for vægt, rumfang og længde. Vægt

Læs mere

Lineære funktioner. Erik Vestergaard

Lineære funktioner. Erik Vestergaard Lineære funktioner Erik Vestergaard Erik Vestergaard www.matematikfsik.dk Erik Vestergaard www.matematikfsik.dk Lineære funktioner En vigtig tpe funktioner at studere er de såkaldte lineære funktioner.

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

grafer og funktioner basis+g brikkerne til regning & matematik preben bernitt

grafer og funktioner basis+g brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner G ISBN: 978-87-92488-11 4 1. udgave som E-bog til tablets 2012 by bernitt-matematik.dk

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Facitliste til MAT X Grundbog

Facitliste til MAT X Grundbog Facitliste til MAT X Grundbog Foreløbig udgave Det er tanken der tæller A Formlen bliver l + b, når l og b er i uforkortet stand. B Ingen løsningsforslag. C Ved addition fås det samme facit. Ved multiplikation

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Hvor hurtigt kan du køre?

Hvor hurtigt kan du køre? Fart Hvor hurtigt kan du køre? I skal nu lave beregninger over jeres testresultater. I skal bruge jeres testark og ternet papir. Mine resultater Du skal beregne gennemsnittet af dine egne tider. Hvilket

Læs mere

koordinatsystemer og skemaer

koordinatsystemer og skemaer brikkerne til regning & matematik koordinatsystemer og skemaer basis preben bernitt brikkerne til regning & matematik Koordinatsystemer og skemaer, basis 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Matematik på VUC Modul 3c Opgaver

Matematik på VUC Modul 3c Opgaver Blandede opgaver (1) 1: Tegningen viser tre byggegrunde, der skal sælges. a: Find arealet af grund nr. 1. b: Find arealet af grund nr. 2 c: Find arealet af grund nr. 3 d: Find omkredsen af hver af de tre

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

Statistik - supplerende eksempler

Statistik - supplerende eksempler - supplerende eksempler Grupperede observationer: Middelværdi og summeret frekv... 82b Indekstal... 82c Median, kvartil, boksplot... 82e Sumkurver... 82h Side 82a Grupperede observationer: Middelværdi

Læs mere

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4 Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat

Læs mere

GUX. Matematik. A-Niveau. Fredag den 29. maj 2015. Kl. 9.00-14.00. Prøveform b GUX151 - MAA

GUX. Matematik. A-Niveau. Fredag den 29. maj 2015. Kl. 9.00-14.00. Prøveform b GUX151 - MAA GUX Matematik A-Niveau Fredag den 9. maj 015 Kl. 9.00-14.00 Prøveform b GUX151 - MAA 1 Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

Potensfunktioner og dobbeltlogaritmisk papir

Potensfunktioner og dobbeltlogaritmisk papir 1 Potensfunktioner og dobbeltlogaritmisk papir OBS: til skriftlig eksamen skal du kun kunne aflæse på en graf, der allerede er indtegnet på dobbeltlogaritmisk papir. Du kan ikke komme ud for at skulle

Læs mere

Blandede opgaver (2) Maler-Biksen. Matematik på VUC Modul 3c Opgaver

Blandede opgaver (2) Maler-Biksen. Matematik på VUC Modul 3c Opgaver Blandede opgaver (2) 1: Tegningen viser et værelse med skråvæg. To af væggene kaldes A og B. a: Find arealet af væg A. b: Find arealet af væg B. A B 1 m 465 cm 4 m c: Tegn væggene i målestoksforhold 1:50.

Læs mere

Oversigt. funktioner og koordinatsystemer

Oversigt. funktioner og koordinatsystemer Et koordinatsystem er et diagramsystem, der har to akser, en vandret akse og en lodret akse - den vandrette kaldes x-aksen, og den lodrette kaldes y-aksen. (2,4) (5,6) (8,6) Et punkt skrives altid som

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

fs10 1 Jordvarme 2 Solenergi 3 Elpærer 4 Vindmøller 5 Papirfoldning Matematik 10.-klasseprøven Maj 2013

fs10 1 Jordvarme 2 Solenergi 3 Elpærer 4 Vindmøller 5 Papirfoldning Matematik 10.-klasseprøven Maj 2013 fs0 0.-klasseprøven Matematik Maj 0 Et svarark er vedlagt som bilag til dette opgavesæt Jordvarme Solenergi Elpærer Vindmøller Papirfoldning Jordvarme På familien Petersens grund er et jordstykke, der

Læs mere

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014

Netværk for Matematiklærere i Silkeborgområdet Brobygningsopgaver 2014 Brobygningsopgaver Den foreliggende opgavesamling består af opgaver fra folkeskolens afgangsprøver samt opgaver på gymnasieniveau baseret på de samme afgangsprøveopgaver. Det er hensigten med opgavesamlingen,

Læs mere

fsa 1 9.A sælger kaffe 2 9.A bygger en skaterrampe 3 9.A planlægger en turnering 4 9.A sælger kalendere 5 Regneopskrifter 6 Romber

fsa 1 9.A sælger kaffe 2 9.A bygger en skaterrampe 3 9.A planlægger en turnering 4 9.A sælger kalendere 5 Regneopskrifter 6 Romber fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2014 Et bilag er vedlagt til dette opgavesæt 1 9.A sælger kaffe 2 9.A bygger en skaterrampe 3 9.A planlægger en turnering 4 9.A sælger kalendere

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

vækst trin 2 brikkerne til regning & matematik preben bernitt

vækst trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik vækst trin 2 preben bernitt brikkerne til regning & matematik vækst, trin 2 ISBN: 978-87-92488-05-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er kun tilladt

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Lektion 8 Geometri Når du bruger denne facitliste skal du være opmærksom på, at: - der kan være enkelte fejl. - nogle af facitterne er udeladt - bl.a. der hvor facitterne er tegninger. - decimaltal kan

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

fsa 1 Gustavs svømmetræning 2 Gustavs klasselokale 3 Gustavs højde 4 Gustavs knallert 5 En ligesidet trekant Matematisk problemløsning

fsa 1 Gustavs svømmetræning 2 Gustavs klasselokale 3 Gustavs højde 4 Gustavs knallert 5 En ligesidet trekant Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning December 2013 Et svarark er vedlagt som bilag til dette opgavesæt 1 Gustavs svømmetræning 2 Gustavs klasselokale 3 Gustavs højde 4 Gustavs knallert

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Figur 1. fs10 Matematik - Tennisklubben

Figur 1. fs10 Matematik - Tennisklubben Figur 1 fs10 Matematik - Tennisklubben 1 Hammel Tennisklub Hammel tennisklub har eksisteret siden år 1904 1.1 Hvor lang tid har klubben eksisteret? Der spilles fra april, til oktober starter. 1.2 Hvor

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2st101-MAT/B-01062010 Tirsdag den 1. juni 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX MATEMATIK NOTAT. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: MAJ 04 Michel Mandi (00).Gradsligningen Side af 9 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... INTRODUKTION:... 3 KOEFFICIENTER...

Læs mere

Statistik. Grupperede observationer og summeret frekvens... 12 Indekstal... 14 Median, kvartiler og boksplot... 17.

Statistik. Grupperede observationer og summeret frekvens... 12 Indekstal... 14 Median, kvartiler og boksplot... 17. Statistik Grupperede observationer og summeret frekvens... 12 Indekstal... 14 Median, kvartiler og boksplot... 17 Statistik Side 11 Grupperede observationer og summeret frekvens 1: Fritidsjobs a: Hvor

Læs mere

Tid og hastighed. Tid...15 Hastighed...19 Blandede opgaver...20. Matematik på VUC Modul 2 Opgaver

Tid og hastighed. Tid...15 Hastighed...19 Blandede opgaver...20. Matematik på VUC Modul 2 Opgaver Tid og hastighed Tid...15 Hastighed...19 Blandede opgaver...20 Udarbejdet af: Niels Jørgen Andreasen, VUC Århus nja@vucaarhus.dk Modul 2,2 - tid og hastighed Side 14 Tid 1: Omregn til sekunder: a: 2 min.

Læs mere

Matematikopgaver 10. kl

Matematikopgaver 10. kl Matematikopgaver 10. kl 1. Algebra og regneregler 1.1 Vær opmærksom på de negative tal a. 2 b. 10 c. -29 d. -11 e. 7 f. -25 g. 0 h. 21 1.2 Lav brøkerne om til rene brøker (f.eks: 3 ¾ = 15 / 4 ) a. 11 /2

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

MAT B GSK august 2007 delprøven uden hjælpemidler

MAT B GSK august 2007 delprøven uden hjælpemidler Opg MAT B GSK august 007 delprøven uden hjælpemidler Funktionen f har forskriften f() = ( + ) ( + ) ( ) Beregn nulpunkterne for f. Svar : f() = 0 = eller = eller = ; L = { ; ; } Polnomiers faktorisering

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel

1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel FP10 10.-klasseprøven Matematik December 2014 1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel 1 Huspriser

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Den pythagoræiske læresætning

Den pythagoræiske læresætning Den pythagoræiske læresætning 1. Udfyld skemaet herunder dvs. find den manglende hypotenuse ved a 2 + b 2 = c 2 : 1 20 21 2 12 35 3 28 45 4 56 33 5 119 120 6 168 95 7 52 165 8 207 224 9 315 572 10 627

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen Matematik A 215 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen skal afleveres renskrevet, det er tilladt at skrive med blyant. Notatpapir

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE I den midtengelske by Liverpool ligger bydelen Sefton med Sefton Park - et parkanlæg, der bl.a. er kendt for det ottekantede palmehus, hvor man kan

Læs mere

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 1 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 1 ISBN: 978-87-92488-17-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI AEU 2 december 2010 syge Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 1265 + 743 = 2. 1024 732 = 3. 38 3150 = Afrund til nærmeste hele tal 14. 0,8 15. 98,3 4. 4860 : 5 = Løs ligningen 5. x - 12 = 68 x = 6. 54x

Læs mere

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

Matematik C. Højere forberedelseseksamen

Matematik C. Højere forberedelseseksamen Matematik C Højere forberedelseseksamen 2hf123-MAT/C-07122012 Fredag den 7. december 2012 kl. 9.00-12.00 Opgavesættet består af 7 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved

Læs mere

IHHHHHHHHHHHHHfli. lll!lp : ~ * i Pff'Pr'i 1. lllll^^ i I 11 > 11< 1' I i 111

IHHHHHHHHHHHHHfli. lll!lp : ~ * i Pff'Pr'i 1. lllll^^ i I 11 > 11< 1' I i 111 IHHHHHHHHHHHHHfli : lll!lp : ~ * i Pff'Pr'i 1 111 11 i I 11 > 11< 1' I i 111 lllll^^ Elever fra 9. A sælger kaffe ved en skolefest. De sælger et lille bæger.kaffe for 6 kr. og et stort bæger kaffe for

Læs mere

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version Rettevejledning, FP9, Prøven med hjælpemidler, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. Den udvidede rettevejledning

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Årsprøve i matematik 1y juni 2007

Årsprøve i matematik 1y juni 2007 Opgave 1 Årsprøve i matematik 1y juni 2007 Figuren viser to ensvinklede trekanter PQR og P 1 Q 1 R 1 a) Bestem længden af siden P 1 Q 1 Skalafaktoren beregnes : k = 30/24 P 1 Q 1 = 20 30/24 P 1 Q 1 = 25

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

gl. Matematik A Studentereksamen

gl. Matematik A Studentereksamen gl. Matematik A Studentereksamen gl-2stx131-mat/a-29052013 Onsdag den 29. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

TAL OG ALGEBRA/GEOMETRI 6 =

TAL OG ALGEBRA/GEOMETRI 6 = AEU Syge Sommer 011 Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 1465 + 87 =. 456-47 =. 16 = 4. 56 : 8 = Løs ligningen 5. x - 8 = 56 x = 6. 1 x = 1 x = Afrund til 4 decimaler 14. 6,7841 15. 16,5686 16. 17. 1

Læs mere

Tabeller, diagrammer og tegninger

Tabeller, diagrammer og tegninger Tabeller, diagrammer og tegninger Udarbejdet af: Niels Jørgen Andreasen, VUC Århus nja@vucaarhus.dk Modul 1,4 - tabeller, diagrammer og tegninger Side 142 1: Buspriser (1) Hvor meget koster et 10-turskort

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Vejr. Matematik trin 2. avu

Vejr. Matematik trin 2. avu Vejr Matematik trin 2 avu Almen voksenuddannelse 10. december 2008 Vejr Matematik trin 2 Skriftlig matematik Opgavesættet består af: Opgavehæfte Svarark Hæftet indeholder følgende opgaver: 1 Klimarekorder

Læs mere

i tredje brøkstreg efter lukket tiendedele primtal time

i tredje brøkstreg efter lukket tiendedele primtal time ægte 1 i tredje 3 i anden rumfang år 12 måle kalender lagt sammen resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn efter bagved foran placering kvart fjerdedel lagkage rationale

Læs mere

fsa 1 Simons fritidsjob 2 Simons opsparing 3 Højden af en silo 4 Simons kondital 5 Fravær i Simons klasse 6 En figur af kvarte cirkler

fsa 1 Simons fritidsjob 2 Simons opsparing 3 Højden af en silo 4 Simons kondital 5 Fravær i Simons klasse 6 En figur af kvarte cirkler fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2012 Et svarark er vedlagt som bilag til dette opgavesæt 1 Simons fritidsjob 2 Simons opsparing 3 Højden af en silo 4 Simons kondital 5 Fravær

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

Matematik Niveau B Prøveform b

Matematik Niveau B Prøveform b GUX Matematik Niveau B Prøveform b Torsdag den 15. maj 2014 Kl. 09.00-13.00 GL141 - MAB - NY 1 GUX matematik B sommer 2014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler

Læs mere

GUX. Matematik Niveau B. Prøveform b

GUX. Matematik Niveau B. Prøveform b GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Eksamensspørgsmål: Eksponentiel vækst

Eksamensspørgsmål: Eksponentiel vækst Eksamensspørgsmål: Eksponentiel vækst Indhold Definition:... Eksempel :... Begndelsesværdien b... Fremskrivningsfaktoren a... Eksempel :... Formlerne for a og b... 3 Eksempel 3:... 3 Bevis for formlen

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 STUDENTEREKSAMEN MAJ 2005 2005-11-2 SPROGLIG OG MATEMATISK LINJE HØJERE FORBEREDELSESEKSAMEN MAJ 2005 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 FRANSK BEGYNDERSPROG

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

matematik grundbog basis preben bernitt

matematik grundbog basis preben bernitt 33 matematik grundbog basis preben bernitt 1 matematik grundbog basis ISBN: 978-87-92488-27-5 2. udgave som E-bog 2010 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk

Læs mere

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal.

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal. Eksponentielle funktioner Indhold Definition:... 1 Om a og b... 2 Tegning af graf for en eksponentiel funktion... 3 Enkeltlogaritmisk koordinatsstem... 4 Logaritmisk skala... 5 Fordoblings- og halveringskonstant...

Læs mere