Formålet med øvelsen er, at bestemme hvorledes reaktionshastigheden afhænger af koncentrations- og temperaturændringer.

Størrelse: px
Starte visningen fra side:

Download "Formålet med øvelsen er, at bestemme hvorledes reaktionshastigheden afhænger af koncentrations- og temperaturændringer."

Transkript

1 Vejledning til øvelse nr. 1 : Reaktionshastighed Formålet med øvelsen er, at bestemme hvorledes reaktionshastigheden afhænger af koncentrations- og temperaturændringer. Teori: Når man sætter syre til en opløsning af thiosulfat-ioner dannes frit svovl 2H + (aq) + S 2 O 3 2- (aq) S(s) + SO 2 (aq) + H 2 O(l) Det dannede svovl gør opløsningen uklar. Vi skal måle den tid ( t), der går fra reaktionens start, indtil man lige netop ikke kan se igennem opløsningen mere. Da der kun sker en lille ændring af [H + ] og [S 2 O 3 2- ], i tidsintervallet indtil svovl gør opløsningen uklar, kan der antages, at disse koncentrationer forbliver konstant. Vi måler altså lige efter starten af reaktionen, hvor koncentrationerne af de to reagerende ioner praktisk talt er lig deres begyndelseskoncentrationer i reaktionsblandingen. Reaktionshastigheden, v, kan udtrykkes som faldet i thiosulfationkoncentrationen pr. tid: v = - [S 2O 3 2- ] t Under de tre målinger dannes der samme mængde svovl, d.v.s. at faldet i thiosulfationkoncentrationen er det samme i alle tre forsøg. Reaktionshastigheden, v, er altså proportional med 1/ t. I den lille forsøgsrække A skal vi undersøge reaktionshastighedens afhængighed af [H + ] og [S 2 O 3 2- ]. Afhængigheden af [S 2 O 3 2- ] undersøges ved at anvende halvt så stor [S 2 O 3 2- ] i 2. forsøg sammenlignet med 1. forsøg, medens [H + ] er den samme i de to forsøg. Derefter undersøges afhængigheden af [H + ] ved i 3. forsøg at halvere denne koncentration sammenlignet med 1. forsøg, medens [S 2 O 3 2- ] er den samme i 1. og 3. forsøg. Det antages, at temperaturen holdes konstant. I den lille forsøgsrække B skal vi undersøge reaktionshastighedens afhængighed af temperatur, mens vi holder startkoncentrationerne konstant. Apparatur: Reagensglas i stativ, bægerglas, 50 ml, stopur, spatel, termometer, bunsenbrænder, trefod med trådnet, to buretter. Kemikalier: 0,4 M HCl (saltsyre), 0,4 M Na 2 S 2 O 3 (natriumthiosulfat) A. Reaktionshastighedens koncentrationsafhængighed. 1. Forsøgene udføres i et 50 ml bægerglas, høj form. Det placeres på et stykke papir, hvorpå der er tegnet en mørk plet på 5-7 mm. 2. Til 1. forsøg aftappes 20,0 ml 0,4 M HCl og 20,0 ml 0,4 M Na 2 S 2 O 3 ned i hvert sit rene reagensglas fra hver sin burette. Lige idet et stopur startes, hældes indholdet af de to reagensglas samtidigt ud i bægerglasset. Rør rundt med en spatel i et par sekunder og iagttag derefter pletten ved at se lodret ned gennem væsken. Mål tiden indtil man netop ikke kan se pletten mere. 3. Forsøg 2 og 3 gennemføres på samme måde med de væskemængder, som står angivet i skemaet. Start med at hælde 10,0 ml vand op i bægerglasset, inden reaktionen startes ved 1

2 en samtidig tilsætning af de to andre væsker. I forsøg 2 måles reaktionsblandingens temperatur umiddelbart efter måling af reaktionstiden. Forsøg 2 anvendes nemlig også som en del af næste afdeling, hvor reaktionshastighedens temperaturafhængighed undersøges. Tabel til måleresultater og regneresultater Forsøg nr. Volumen (ml) [H + ] (mol/l) [S 2 O 3 2- ] (mol/l) Reaktionstid, t (s) 1 t (s -1 ) H 2 O HCl Na 2 S 2 O ml 20,0 ml 20,0 ml 2* 10,0 ml 20,0 ml 10,0 ml 3 10,0 ml 10,0 ml 20,0 ml * temperatur, T = C B. Reaktionshastighedens temperaturafhængighed. 1. Hæld 10,0 ml vand og 20,0 ml 0,4 M HCl op i bægerglasset og opvarm blandingen noget (absolut ikke til kogning). Mål reaktionstiden efter tilsætning af 10,0 ml 0,4 M Na 2 S 2 O 3. Umiddelbart efter tidsmålingen måles blandingens temperatur. 2. Resultaterne noteres som forsøg 4, og forsøg 2 overføres fra forrige del af øvelsen. Forsøg nr. 2 *) 4 *) overført fra forrige forsøg Temperatur, T ( C) Reaktionstid, t (s) 1 t (s -1 ) 1 1. Beregn for de tre forsøg. t 2. Hvilken sammenhæng ser der ud til at være mellem [S 2 O 2-3 ] og reaktionshastigheden? 3. Er der en tilsvarende sammenhæng mellem [H + ] og reaktionshastigheden? 4. Hvorledes ændres reaktionshastigheden, når temperaturen ændres? 5. For mange reaktioner gælder 10-graders reglen. Gør den også det her? (10-graders reglen siger at en 10-graders forøgelse af temperaturen medfører en fordobling af reaktionshastigheden). 6. Kommentér, hvorledes alle disse resultater stemmer overens med teorien for reaktionshastighed. 2

3 Vejledning til øvelse nr. 2 : Syntese af tetramminkobber(ii)sulfat monohydrat Formålet er at fremstille tetramminkobber(ii)sulfat monohydrat og indøve uorganisk laboratorieteknik. Teori: En del ionforbindelser indeholder krystalvand, hvilket vil sige at det faste stof indeholder vandmolekyler, som sidder bundet i krystalgitteret. Dette gælder således CuSO 4 5H 2 O, hvor hver formelenhed af CuSO 4 har bundet 5 vandmolekyler. Stoffets navn er derfor helt korrekt kobber(ii)sulfat pentahydrat (penta = fem, og hydra = vand). Fire af de fem vandmolekyler sidder bundet direkte til Cu 2+ -ionen, (som derfor mest korrekt skulle skrives Cu(H 2 O) 4 2+ ), mens det femte vandmolekyle er bundet til SO 4 2- ionen. Stoffets formel skulle derfor skrives Cu(H 2 O) 4 SO 4 H 2 O, men man skriver normalt CuSO 4 5H 2 O. Prikken i formlen er ikke et gangetegn, men er et udtryk for, at vandet nok er bundet til stoffet, men ikke kraftigere, end at man godt kan løsrive det igen. Hvis man f.eks. opvarmer det faste kobber(ii)sulfat pentahydrat, afgiver det sit krystalvand, og den blå farve forsvinder, idet den lyseblå farve skyldes Cu(H 2 O) ionen: CuSO 4 5H 2 O(s) CuSO 4 (s) + 5 H 2 O(g) Når kobber(ii)sulfat pentahydrat opløses i vand, vil de fire vandmolekyler, der er bundet til kobber(ii)ionen, stadig være knyttet til denne: CuSO 4 5H 2 O(s) Cu(H 2 O) 4 2+ (aq) + SO 4 2- (aq) + H 2 O(l) Hvor man ikke udtrykkeligt ønsker at redegøre for antallet af vandmolekyler, der er bundet til kobber(ii)ionen i vandig opløsning, skriver man Cu 2+ (aq) i stedet for Cu(H 2 O) 4 2+ (aq). Cu 2+ -ionen kan binde andre polære molekyler end vandmolekyler til sig, fx kan fire molekyler ammoniak NH 3 erstatte de fire molekyler vand. Cu 2+ kan også binde visse negative ioner, fx Cl - og CN -. En del andre metalioner har samme egenskab som kobber(ii)ionen. De polære molekyler eller negative ioner, som et metalatom kan binde til sig, kaldes ligander. Den kemiske binding mellem metalionen og liganderne kaldes en kompleksbinding, og en ion som fx Cu(NH 3 ) 4 2+ kaldes en kompleks ion eller blot et kompleks. Udbytteberegning: Under resultatbehandling skal massen af CuSO 4 5H 2 O omregnes til stofmængde. (Når man skal udregne den molare masse, må man huske krystalvandet. Det vejer jo også med!) Ved hjælp af det færdige reaktionsskema ræsonnerer man sig frem til stofmængden af det færdige stof. Stofmængden af det færdige stof omregnes til masse. Denne masse m teo kaldes det teoretiske udbytte. Udbytteprocenten beregnes ved at dividere m prak, det praktiske udbytte, med det teoretiske udbytte og gange med 100%. (Det praktiske udbytte er den masse, som man finder ved vejning af det færdige stof.) 3

4 Apparatur: 100 ml bægerglas, 10 ml måleglas, filtrerpapir, udstyr til sugefiltrering (kolbe med sidestuds, gummislange, vandluftpumpe, gummikonus, Büchnertragt), porcelænsskål, trefod, bunsenbrænder. Kemikalier: CuSO 4 5H 2 O, koncentreret NH 3 -vand, 96% ethanol, ether. A. Fremstilling af tetramminkobber(ii)sulfat monohydrat. 1. Afvej ca 5 g kobber(ii)sulfat pentahydrat og notér den præcise masse. Opløs de 5 g kobber(ii)sulfat pentahydrat i mindst muligt demineraliseret vand i et 100 ml bægerglas. For at få det til at gå lidt hurtigere, kan man evt. opvarme lidt, men man må så afkøle igen, inden man går videre. 2. Tilsæt 10 ml koncentreret ammoniakvand. Dette foretages i stinkskabet, idet koncentreret ammoniakvand afgiver ammoniakdampe, der er irriterende for åndedrætsorganerne. Tilsæt derefter under omrøring 10 ml 96% ethanol, og lad glasset stå i stinkskabet i ca. en halv time. Mange ionforbindelser har en lille opløselighed i ethanol, og ofte kan man udfælde ionforbindelser i vandig opløsning ved at tilsætte ethanol. 3. Sæt udstyret til sugefiltrering sammen, og filtrér bundfaldet af tetramminkobber(ii)sulfat monohydrat fra på et sugefilter. Vask først stoffet med 2 x 10 ml ethanol og dernæst med 10 ml ether (eksplosionsfare - ingen åben ild i lokalet!). Når man vasker et bundfald med fx ethanol, hælder man ethanol i en tynd stråle ud over bundfaldet. Sug stoffet helt tørt på filteret. 4. Skrab stoffet over i en vejebåd. Lad det stå til fuldstændig tørring, og vej derefter det tørrede stof. B. Opvarmning af kobber(ii)sulfat pentahydrat. 1. Opvarm 2 g kobber(ii)sulfat pentahydrat i en porcelænsskål, der er anbragt på en trefod. Sluk for bunsenbrænderen, når den blå farve er forsvundet. Lad stoffet stå til det er helt afkølet. Tilsæt en lille smule vand fra sprøjteflasken. Iagttag farveskift. 1. Redegør for alt hvad du observerer, når reaktionerne forløber. 2. Opskriv alle relevante reaktionsskemaer. 3. Foretag udbytteberegning i afdeling A. 4

5 Vejledning til øvelse nr. 3 : Bestemmelse af jern(ii)indholdet ved en redoxtitrering Formålet med øvelsen er at bestemme jern(ii)indholdet i jern(ii)sulfat heptahydrat ved en titrering med kaliumpermanganat-opløsning. Teori: Permanganat-ion er et ret kraftigt oxidationsmiddel. I surt miljø reduceres permanganat-ioner til farveløse mangan(ii)-ioner, og i basisk miljø til MnO 2 (brunsten). Permanganat-ion er meget kraftig violet farvet, selv i en meget ringe koncentration. Det er således muligt at følge en reaktion, hvor permanganat-ionen forbruges, visuelt. Hermed ses ækvivalenspunktet i kolben som en farveskift fra farveløs til en svag violet farve. Den nøjagtige koncentrationen af kaliumpermanganat-opløsningen bestemmes i anden del af øvelsen. Denne præcise koncentration, med tre betydende cifre, anvendes i resultatbehandlingen. Apparatur: Burette med klemme og stativ, 250 ml konisk kolbe, 10 ml målecylinder, magnetomrører. Kemikalier: 0.02 M kaliumpermanganat-opløsning jern(ii)sulfat heptahydrat 2 M svovlsyre Risici og affaldshåndtering: Kaliumpermanganat er et kraftigt oxidationsmiddel og brandnærende. Alle opløsninger i denne øvelse hældes i de dertil opstillede affaldsdunke. 1. Kaliumpermanganat-opløsningen fyldes på buretten. 2. Afvej nøjagtigt g jern(ii)sulfat heptahydrat i den rene koniske kolbe. Opløs saltet i ca 50 ml demineraliseret vand og tilsæt 10 ml af 2 M svovlsyre med målecylinder. 3. Tilsætning af kaliumpermanganat-opløsningen foregår dråbevis under forsigtig omrøring. Vent hver gang til reaktionsblandingen i kolben er helt affarvet. Når der er en svag men blivende rødviolet farvning på mindst 30 sekunder, er ækvivalenspunktet nået. Det tilsatte volumen ved ækvivalenspunktet er det volumen aflæst før tilsætning af den dråbe der gav omslaget, som sædvanlig. 4. Der udføres mindst to forsøg. Man kan beregne de procentvise forhold for at kunne se om resultaterne ligger indenfor 2% af hinanden. Du skal gentage indtil du har to forsøg som giver resultater indenfor 2% af hinanden. 1. Opskriv og afstem reaktionsskemaet. Forklar hvorfor der tilsættes svovlsyre. 2. Beregn stofmængden af kaliumpermanganat, og permanganat-ion. 3. Bestem stofmængden af jern(ii) dette ækvivalerer med. Beregn massen af jern(ii). Beregn jern(ii)indholdet i dit afvejede jern(ii)sulfat heptahydrat i masse %. 4. Sammenlign med den teoretiske jern(ii)indholdet i jern(ii)sulfat heptahydrat og kommentér evt. afvigelser. 5. Overvej hvad der kan påvirke procentindholdet af jern(ii) i jern(ii)sulfat heptahydrat med tiden. 5

6 Ekstra forsøg til øvelse nr. 3: Indstilling af kaliumpermangant-opløsningen. Formålet med anden del af øvelsen er at bestemme den nøjagtige koncentration af kaliumpermangant-opløsningen, da den aftager med tiden. Teori: Ved stuetemperatur forløber reaktionen mellem permanganat-ioner og oxalat-ioner ret langsomt. Det er derfor hensigtsmæssigt at opvarme til o C, på en varmeplade med magnetomrøring. Men reaktionen katalyseres af Mn(II)-ioner; da disse ioner produceres undervejs, siger man at reaktionen er en autokatalyse. I stedet for at opvarme kolben, kan man ved starten af titreringen (og efter opfyldning af buretten til 0.0 ml) tilsætte ca. 2 ml permanganat. Efter et par minutters henstand affarves titranden. Nu er der produceret Mn(II)- ioner som virke katalyserende og titreringen kan foregå ved en mere normal hastighed. Apparatur: Det er det samme som i den første del af forsøget. Kemikalier: natriumoxalat, Na 2 C 2 O 4 2 M svovlsyre kaliumpermanganat-opløsningen 1. Der afvejes mellem 0.1 og 0.2 g natriumoxalat, den præcise masse noteres, og det overføres til den koniske kolbe. Ca. 10 ml af 2 M svovlsyre tilsættes og opløsningen opvarmes til o C. 2. Fra buretten tilsættes der ca. 2 ml opløsning til den koniske kolbe. Det varer ofte lidt inden reaktionen kommer i gang, men når der først er dannet mangan(ii)-ioner, katalyserer disse ioner den reaktion de selv er dannet fra, dvs. reaktionen er et eksempel på en autokatalyse. Af hensyn til tid, kan det være praktisk at holde opløsningen varm. Der titreres videre til ækvivalenspunktet. 1. Overvej hvilket stof oxalat-ionen oxideres til: et molekyle der indeholder C, eventuelt med O og/eller H og hvor C har et højere oxidationstrin. Reaktionsskemaet opstilles og afstemmes. 2. Stofmængden af natriumoxalat beregnes. 3. Den ækvivalente stofmængde permanganat-ion bestemmes og koncentrationen af kaliumpermanganat-opløsningen beregnes. Denne koncentration anvendes i hovedforsøget. 4. Overvej hvilke fejlkilder der kan påvirke koncentrationen af permanganat-opløsningen. 6

7 Vejledning til øvelse nr. 4 : Bestemmelse af ethansyreindhold i husholdningseddike. Formålet med øvelsen er at bestemme indholdet af ethansyre i husholdningseddike ved en potentiometrisk titrering. Teori: Husholdningseddike indeholder ethansyre, også kendt som eddikesyre. I denne øvelse skal indholdet bestemmes i masse% først ved en potentiometrisk titrering og i anden del efter passende valg af indikator ved en kolorimetrisk titrering. Ethansyre er en svag syre med formlen CH 3 COOH og reagerer med base efter flg. reaktionsskema: CH 3 COOH (aq) + OH 1- (aq) CH 3 COO 1- (aq) + H 2 O (l) En potentiometrisk titrering er en titrering, hvor ændringen i ph, efterhånden som basen tilsættes, følges v.hj.a. et ph-meter. ph-værdierne indtegnes som funktion af basevolumen, på mm-papir. Grafen kaldes en titrerkurve. Ved ækvivalenspunktet forstås det punkt på titrerkurven, hvor ændringen af ph pr. tilsat milliliter NaOH er størst. Det svarer til det sted, hvor hældningskoefficienten af tangenten i punktet er størst, dvs. hvor hældningskoefficienten fra at være stigende igen bliver aftagende. Ved tilsætning af den halve volumen NaOH af den i ækvivalenspunktets aflæste basevolumen (halvækvivalenspunktet) er halvdelen af syren omsat til ethanoationer dvs. her gælder [CH 3 COOH] = [CH 3 COO 1- ]. Indsættes dette i udtrykket for K s fås, ved at anvende logaritmefunktionen på begge sider, samt at multiplicere med 1. ph = pk s (ved halvækvivalenspunktet) Apparatur: 5,0 ml fuldpipette, pipettebold, 100 ml bægerglas, magnetomrører, ph-meter, pufferopløsning, burette med stativ. Kemikalier: Husholdningseddike, ca. 0,25 M NaOH (den nøjagtige værdi bestemmes i anden del af forsøget). c(naoh) = mol/l. 1. Først skal ph-meteret kalibreres (justeres) med to pufferopløsninger, så det viser pufferens ph-værdi (læreren på kurset vil instruere jer i dette). 2. Med fuldpipette udtages 5,0 ml husholdningseddike, som overføres til bægerglasset. Der tilsættes ca. 20 ml demineraliseret vand og en magnet. 3. Nu stilles bægerglasset på magnetomrøreren. ph-elektroden placeres i bægerglasset så elektroden ikke berøres af magneten når magnetomrøreren er tændt. 4. Buretten fyldes med NaOH-opløsning og nulstilles. NaOH-opløsningen tildryppes til opløsningen i bægerglasset. Fra start tilsættes ca. 1 ml base indtil omkring ækvivalenspunktet, hvorefter der tilsættes base dråbevist. For hver tilsætning noteres volumen af base og ph samtidig med at titrerkurven indtegnes. Fortsæt titreringen til ca. 10 ml tilsat base efter ækvivalenspunktet. 7

8 1. Aflæs den forbrugte volumen NaOH ved ækvivalenspunktet og omregn denne til stofmængden af NaOH. Husk at bruge den præcise molære koncentration af NaOHopløsningen fra 2. del af forsøget. 2. Bestem stofmængden af ethansyre og beregn koncentrationen af ethansyre i husholdningseddike. 3. Omregn koncentrationen af ethansyre fra mol/l til g/l. Omregn til slut dette tal til masse%, idet det antages, at densiteten af husholdningseddike ved 20 o C er 1,0 g/ml, dvs.1l husholdningseddike vejer 1000g. 4. Sammenlign med deklarationen på flasken (denne anføres også i rapporten til sammenligning). 5. Desuden aflæses pks-værdien for ethansyre (som beskrevet ovenfor), og den sammenlignes med tabelværdien. 2. del: Kolorimetrisk titrering Formålet med anden del af øvelsen er at bestemme den nøjagtige koncentration af en natriumhydroxid-opløsning. Teori: En kolorimetrisk titrering er en titrering, hvor ækvivalenspunktet bestemmes v.hj.a. et farveskift fremkaldt af en syre-baseindikator. En syre-baseindikator har den egenskab, at dens farve er ph-afhængig. Bromthymolblåt slår om (det vil sige skifter farve) fra gult til blåt i phintervallet 6,0-7,6, mens phenolphthalein slår om fra farveløs til rød i ph-intervallet 8,2-10,0. Under den potentiometriske titrering så vi en stor ph-ændring omkring titreringens ækvivalenspunkt. Dette medfører, at der i nærheden af ækvivalenspunktet blot skal tilsættes en enkelt dråbe base, for at ph vokser med 2-4 enheder. Det vil sige, at en passende valgt indikator helt skifter farve, når ækvivalenspunktet passeres. Indikatorens farve viser således, hvornår ækvivalenspunktet er nået, hvorefter titreringen stoppes, og baseforbruget aflæses. Apparatur: 10,0 ml fuldpipette, pipettebold, 100 ml konisk kolbe, burette med stativ. Kemikalier: ca. 0,25 M NaOH-opløsning, phenolphthalein som indikator, kaliumhydrogenphthalat (hydrogenphthalat-ionen er en monoprot syre). 1. Afvej ca. 1 g kaliumhydrogenphthalat og notér den præcise masse. Kom saltet i en 100 ml konisk kolbe; vejebåden skal vaskes af ned i kolben med demineraliseret vand for at få det hele med. Der skal tilsættes i alt ca 20 ml demineraliseret vand samt nogle dråber phenolphthalein. Saltet skal være fuldstændigt opløst før titreringen begyndes. 2. Der titreres til ækvivalenspunktet og volumen af tilsat natriumhydroxid aflæses. 3. Forsøget gentages to gange med en ny masse kaliumhydrogenphthalat. Afvigelsen må maximum være 2%. Opskriv reaktionsskemaet for reaktionen mellem hydrogenphthalationen og hydroxidionen. Beregn stofmængden af kaliumhydrogenphthalat. Bestem stofmængden af natriumhydroxid og beregn den præcise molære koncentration af natriumhydroxidopløsningen. Anvend denne præcise koncentration i 1.del. 8

9 Vejledning til øvelse nr. 5: Identifikation af en alkohol. Formålet med øvelsen er at bestemme identiteten af en ukendt alkohol. I praksis ønskes en nummerkodet alkohol blandt 7 kendte "små" alkoholer identificeret. Husk at notere alkoholens nummer i journal og rapport. De 7 alkoholer, der er udvalgt er: ethanol, 1- og 2-propanol, 1- og 2-butanol, 2-methyl-1-propanol og 2-methyl-2-propanol. De egenskaber, der skal sammenholdes for den ukendte og de opgivne alkoholer, er: 1. densitet (eller massefylde) 2. kogepunkt 3. oxidationsproduktets reducerende egenskaber 4. gaschromatografisk analyse. Teori: 1. Angående oxidation med kaliumdichromat i svovlsur opløsning: (1-propanol og 2- propanol fremvises som eksempel). Kaliumionen, K +, deltager ikke i reaktionen det gør kun den orange dichromation Cr 2 O 7 2-, der reduceres til chrom(iii)-ion (grøn). C 2 H 5 CH 2 OH + Cr 2 O H + C 2 H 5 CHO + Cr 3+ + H 2 O (ikke afstemt) CH 3 CHOHCH 3 + Cr 2 O H + CH 3 COCH 3 + Cr 3+ + H 2 O (ikke afstemt) 2. Fehlings væske er en basisk opløsning, der indeholder kobber(ii)ioner bundet komplekst til tartrationer. Kobber(II)ionerne kan reduceres til kobber(i), hvilket viser sig som et rødt bundfald af Cu 2 O. Fehlings væske kan derfor bruges til at undersøge om en given forbindelse virker reducerende. Reaktionen mellem kobber(ii)ioner og aldehydgruppe kan skrives: R-CHO + 2 Cu OH - R-COO - + Cu 2 O + 3 H 2 O ( Cu 2+ - ionerne er som nævnt bundet komplext til tartrationerne) Fehlings væske fremstilles umiddelbart inden brugen ved at blande lige store rumfang Fehling I og Fehling II. Apparatur: slibapparatur som på figuren, et stativ, en 10,0 ml fuldpipette, pipettebold, et lille, rent og tørt bægerglas. Kemikalier: den udleverede, ukendte alkohol med nummer, Beckmanns opløsning, Fehlings I og Fehlings II. 1. Densiteten bestemmes ved at placere et bægerglas på vægten, nulstille og dernæst overføre 10,0 ml alkohol med fuldpipette til bægerglasset (det kan gøres ved siden af vægten af hensyn til evt. spild - vægten husker nulstillingen). Husk at notere alkoholens masse i din rapport. 2. De 10 ml fra punkt 1. hældes i en 100 ml kolbe med slib, og der opstilles et destillations-apparat som vist på figuren på næste side. 3. Alkoholen destilleres for at finde kogepunktet. Bær briller under destillationen. Alkoholen opsamles ved udløbet og kan bruges til oxidationen i pkt. 4. Husk, at vores apparatur kun tillader 2-3 dråber pr. sekund at komme gennem apparatet. Hold hele 9

10 tiden væsken i kog - men kun lige netop i kog. Når temperaturen er konstant i et par minutter, aflæses kogepunktet på termometret. Destillationsopstilling med glasapparatur med slib 4. Oxidationen foregår i destillationskolben. Hæld den destillerede alkohol tilbage i kolben, men gem en ganske lille smule i glasset til senere, hvor den skal køres i gaskromatografen. Dernæst tilsætter læreren forsigtigt 20 ml Beckmanns blanding (den standardiserede opløsning af kaliumdichromat og svovlsyre). Det bliver ganske varmt, så det hele må ikke hældes i på en gang. Køl med et stort bægerglas med vand. Bær beskyttelsesbriller både under ophældning af Beckmanns blanding og destillation. Destillationen skal foregå straks, da oxidationen kan gå videre end ønsket (til carboxylsyre, hvis det er en primær alkohol). Overdestillér ca 2 ml, i et rent reagensglas. Dette anvendes under punkt 5 nedenfor. Stofresterne fra destillationen (den grønne chrom(iii)-opløsning) hældes i affaldsbeholderen mærket "Uorganisk affald - surt". Bemærk evt. forskel i lugt på oxidationsproduktet og alkoholen. 5. Fehlings prøve på oxidationsproduktet: Bær beskyttelsesbriller. I et reagensglas kommes 1 ml Fehling I og 1 ml Fehling II (med de pipetter, der findes i flasken, fås 1 ml når gummiproppen klemmes helt sammen og forsigtigt slippes - altså ingen supernøjagtig afpipettering). Dernæst tilsættes 1 ml af oxidationsproduktet med en engangspipette. Anbring reagensglasset i et 200 ml bægerglas halv fyldt med vand - anbragt på trefod med trådnet. Bring vandet i kog og vent 2-3 minutter og konstatér, om der sker en reaktion (rødt bundfald betyder at Fehlings prøve er positiv - det kan kun fjernes fra reagensglasset til sidst med konc. HCl - husk det - og gør det). 6. Ved kurset udleveres materiale om gaskromatografen. Der køres kromatogrammer af de opgivne alkoholer og af de enkelte nummererede alkoholer. Udmål retentionstiden for hver af dem og den ukendte alkohol, og sammenlign din egen alkohols retentionstid med de kendte alkoholers rententionstider. Passer resultatet med dine laboratorieforsøg? 1. Benyt den fremlagte Databog i fysik-kemi til at finde kogepunkter og densiteter for de mulige alkoholer. Disse værdier skal bruges til sammenligning med dine målte værdier. 2. Sammenlign gaskromatogrammet fra den udleverede alkohol med standardgaskromatogrammerne for de mulige alkoholer. 3. I rapporten gøres rede for de opnåede resultater samt for de argumenter, du bruger for at fastslå navnet på din alkohol. Afstem relevante reaktionsskemaer, tegn strukturformlen og angiv navnet på oxidationsproduktet når du har identificeret alkoholen. 10

11 Vejledning til øvelse nr. 6 : Bestemmelse af iodtal for et fedtstof Formålet med eksperimentet er at bestemme et fedtstofs iodtal. Teori: Umættede forbindelser kan addere Br 2 (dibrom) eller I 2 (diiod), f.eks. : & & & & & & & & hvor carbonatomerne på venstre side kan symbolisere et udsnit af et umættet fedtstofmolekyle. Et fedtstofs iodtal, I t, defineres som det antal gram diiod, der kan adderes til 100 gram af fedtstoffet. Iodtallet siger dermed noget om antallet af dobbeltbindinger i fedtstoffet. Dibrom er mere reaktivt end diiod, hvorfor vi i stedet for at addere I 2 til fedtstoffet, adderer Br 2 hertil. Den adderede mængde Br 2 omregnes derefter til den ækvivalente mængde I 2. Den mængde dibrom, n(br 2 (start)), der er til rådighed for addition til fedtstoffets dobbeltbindinger, dannes i reaktionskolben ved reaktion mellem BrO - 3 og Br- i sur opløsning (afstem selv reaktionsskemaet) : BrO Br- Br 2 Den tiloversblevne mængde dibrom, n(br 2 (slut) ), reduceres til Br- ved hjælp af I -. Afstem selv reaktionsskemaet. Br 2 + I - Br - + I 2 Den dannede mængde diiod, n(i 2 ), der er ækvivalent med n(br 2 (slut)) i forholdet 1:1, kan herefter bestemmes ved titrering med natriumthiosulfat. Afstem selv reaktionsskemaet: I 2 + S 2 O 2-3 I - + S 4 O 2-6 Den adderede mængde dibrom, n(br 2 (adderet)) findes nu på følgende måde: n(br 2 (adderet) ) = n(br 2(start) ) - n(br 2(slut) ) Den adderede mængde dibrom, n(br 2 (adderet)), er ækvivalent med den mængde diiod, n(i 2 (adderet) ), der kunne være blevet adderet, hvis vi i stedet havde valgt at addere dette. I t kan altså findes ved hjælp massen af denne mængde diiod, m(i 2 (adderet)) og massen af det afvejede fedtstof. 11

12 Apparatur: 250 ml konisk kolbe, magnetomrører + magnet, burette, 3 stk 25 ml måleglas, stativ, en 10,0 ml fuldpipette Kemikalier: Fedtstof (efter eget valg), heptan, 0,100 M KBrO 3 -opløsning, KBr(s), 2 M svovlsyre, 0,50 M KI-opløsning, 0,100 M Na 2 S 2 O 3 -opløsning, 1% stivelsesopløsning. Risici og affaldsbehandling: Affaldet fra dette laboratorieeksperiment skal hældes i dunken mærket "ORGANISK AFFALD". Overskydende thiosulfat hældes i dunken mærket "BASISK AFFALD". For at begrænse forbruget af kemikalier, og for at få nogenlunde det samme forbrug uanset det benyttede fedtstof, "snyder" vi lidt. Det forventede iodtal slås op i et tabelværk og ved hjælp af denne værdi, I t (tabel), finder vi på følgende måde frem til, hvor meget der ca. skal afvejes af det benyttede fedtstof : afvejede mængde fedtstof = 50/ I t 1. Ved hjælp af ovenstående formel beregnes hvor meget fedtstof, der ca. skal afvejes. Fedtstoffet afvejes herefter direkte i en konisk kolbe. Massen af det afvejede fedtstof noteres med 0,001 grams nøjagtighed. 2. Der tilsættes 20 ml heptan til kolben, og fedtstoffet opløses i dette opløsningsmiddel. Til kolben sættes yderligere 10,0 ml KBrO 3 -opløsning (med fuldpipette) og 1 gram KBr (s). Der rystes indtil al KBr (s) er opløst. Endelig tilsættes kolben 10 ml svovlsyre, hvorefter den straks placeres i et mørkt skab med magnetomrøring. 3. Efter 30 min. udtages kolben, og med det samme tilsættes 20 ml KI-opløsning med måleglas. Kolbens indhold titreres nu med Na 2 S 2 O 3 -opløsningen. Når iodfarven næsten er forsvundet tilsættes lidt stivelsesopløsning som indikator. Titreringen bør foregå under magnetomrøring, da kolben under titreringen indeholder et tofaset system, og da reaktionen med thiosulfat kun foregår i vandfasen. Ved titreringens ækvivalenspunkt bliver kolbens indhold farveløst. Forbrugt volumen ntriumthiosulfat-opløsning noteres. 1. Beregn stofmængden af dibrom før additionen begynder, n(br 2 (start) ). 2. Beregn stofmængden af diiod, n(i 2 ), ud fra den forbrugte mængde natriumthiosulfatopløsning, ved titreringen. Find herefter stofmængden af Br 2, der er tilbage efter additionen, (Br 2 (slut) ). 3. Beregn nu stofmængden af Br adderet, n(br 2 2(adderet) ). Find den ækvivalente mængde I, 2 n(i 2 ("adderet") ). 4. Beregn I t i enhederne angivet i definitionen. 5. Blev der tilsat tilstrækkeligt KI til at reducere al Br 2 (slut)? 6. Hvorfor det er vigtigt, at kolben med Br 2 og fedtstof står i mørke, mens reaktionen foregår? 12

13 Vejledning til øvelse nr 7 : Indgreb i et ligevægtssystem - kvalitativ ligevægtsforskydning Formålet med øvelsen er at foretage forskellige kvalitative indgreb i et ligevægtssystem og at undersøge, hvordan disse indgreb påvirker ligevægten. Teori: Når man blander en opløsning der indeholder jern(iii)ioner med en opløsning der indeholder thiocyanationer (SCN - ), dannes der en rød kompleks-ion (FeSCN 2+ ) i en ligevægtsreaktion: Fe 3+ (aq) + SCN - (aq) FeSCN 2+ (aq) svagt gul farveløs kraftigt rød I forsøget foretages der forskellige indgreb i dette ligevægtssystem. Ved at se på opløsningens farve kan man se om indgrebet har bevirket en forskydning mod højre eller venstre i ligevægten. Der er naturligvis også den mulighed, at indgrebet slet ikke bevirker nogen forskydning. Apparatur: 250 ml konisk kolbe, spatel, 7 reagensglas i stativ, 10 ml målecylinder, 2 store bægerglas (til varmebad og kuldebad), eventuelt termometer, 2 stk. helt identiske 50 eller 100 ml bægerglas. Kemikalier: 0,1 M jern(iii)nitrat-opløsning Jern(III)nitrat (Fe(NO 3 ) 3 ) 0,1 M kaliumthiocyanat-opløsning Natriumhydrogenphosphat (Na 2 HPO 4 ) 0,002 M kaliumpermanganat-opløsning Kaliumthiocyanat (KSCN) sølvnitrat-opløsning Fremgangsmåde og resultatbehandling: 1. Fyld ca. 200 ml dem. vand i en 250 ml konisk kolbe. Tilsæt 10 ml 0,1 M jern(iii)nitratopløsning og dernæst 10 ml 0,1 M kaliumthiocyanat-opløsning og rør rundt med en spatel. - Noter jeres observationer! - Er reaktionshastigheden stor eller lille? - Opskriv ligevægtsloven for ligevægten. Noget af opløsningen overføres til de 7 reagensglas, som fyldes ca. 1/4 op. De 6 af reagensglassene anvendes i de følgende forsøg. Det syvende anvendes til farvesammenligning. Gem resten af opløsningen i den koniske kolbe til senere brug. 2. Tilsæt en lille spatelfuld fast jern(iii)nitrat til det første reagensglas og rør rundt. - Noter jeres observationer! - Sker der en forskydning som følge af tilsætningen? - Mod højre eller venstre? - Indstiller den nye ligevægtssituation sig hurtigt eller langsomt? - Forklar den observerede forskydning ved hjælp af ligevægtsloven. - Forklar den observerede forskydning ved hjælp af Le Chateliers princip. 3. Tilsæt nogle få korn fast natriumhydrogenphosphat til reagensglas nr. 2 og rør rundt. - Forklar jeres observationer som under pkt

14 4. Til det 3. reagensglas tilsættes der en lille spatelfuld fast kaliumthiocyanat. - Forklar jeres observationer som under pkt Inden forsøget med det 4. reagensglas skal der udføres et lille ekstra forsøg: Fyld lidt 0,1 M kaliumthiocyanat i et nyt reagensglas. Tilsæt nogle dråber sølvnitratopløsning. - Forklar jeres observationer som under pkt Nu tilsætter I et par dråber sølvnitrat-opløsning til reagensglas nr Forklar jeres observationer som under pkt I 2 store reagensglas laves 2 vandbade med henholdsvis varmt vand (60-70 C) og isvand. Reagensglas nr. 5 placeres i det varme vand og reagensglas nr. 6 i isvandet. Lad dem stå et stykke tid og sammenlign derefter med glas nr Sker der en forskydning af ligevægten ved disse temperaturændringer? - Er reaktionen mod højre exoterm eller endoterm? 8. Inden det sidste forsøg med ligevægtsblandingen udføres følgende forsøg: Stil de to ens bægerglas (50 eller 100 ml) ved siden af hinanden på et stykke hvidt papir og fyld dem næsten halvt op med 0,002 M kaliumpermanganat-opløsning. Væsken skal stå nøjagtig lige højt i de to reagensglas. Farven i opløsningen skyldes permanganationen. Se ned gennem de to glas og sammenlign farveintensiteterne. - Hvad ser I? Dernæst fordobles voluminet i det ene glas ved tilsætning af vand. Sammenlign farverne. - Hvad ser I nu? Bemærk at ved fortynding ændres antallet af permanganationer i glasset ikke. 9. Efter en omhyggelig rengøring og tørring af bægerglassene udføres et helt tilsvarende forsøg med den røde ligevægtsblanding fra den koniske kolbe. - Sker der en forskydning af ligevægten ved fortynding? - Forklar det observerede. Lidt efterbehandling: 1. Ved tilsætningerne til reagensglassene blev der anvendt faste stoffer eller et par dråber af en ret koncentreret opløsning. Hvorfor tilsatte man ikke i stedet for nogle ml af fortyndede opløsninger af de pågældende stoffer? 2. Ved større thiocyanat-koncentrationer end vi anvender i denne øvelse, kan jern(iii)ioner binde sig komplekst til flere thiocyanat-ioner. Skriv formler for de komplekser, som indeholder henholdsvis 3 og 6 thiocyanat-ioner til én jern(iii)ion. 14

15 Vejledning til øvelse nr. 8 : Bestemmelse af acetylsalicylsyreindhold i hovedpinetabletter Formålet med øvelsen er at bestemme indholdet af acetylsalicylsyre i en hovedpinetablet ved spektrofotometri. Teori: Vi kan ikke lave en direkte spektrofotometrisk måling på acetylsalicylsyren, men det kan vi derimod på salicylsyre, hvortil acetylsalicylsyren derfor omdannes ved tilsætning af base (forsæbning). Acetylsalicylsyre er samtidig både en carboxylsyre og en ester. Ved tilsætning af base vil der derfor både ske en protolyse af syregruppen og en forsæbning af esteren (= en basisk hydrolyse). Den nu dannede salicylat-ion omdannes til salicylsyre ved tilsætning af syre. Herefter tilsættes jern(iii), som danner et violet kompleks med salicylsyre. Slutteligt måles opløsningens absorbans. OOCCH 3 + OH - COOH acetylsalicylsyre OOCCH 3 + COO - acetylsalicylat-ion H 2 O acetylsalicylat-ion OOCCH 3 OH + OH - + CH3 COO- COO - COO - salicylat-ion Vi laver en standardkurve for salicylsyre ud fra opløsninger med kendt koncentration af salicylsyre. Det gøres ved først at fremstille fem opløsninger med kendt koncentration af salicylsyre. Den ene opløsning indeholder intet salicylsyre, dermed er c(salicylsyre) lig 0 M. De andre opløsningers absorbans læses i forhold til denne opløsning. På en standardkurve afbildes absorbans som funktion af koncentration. Vi afprøver målemetoden på en kendt mængde acetylsalicylsyre. Med andre ord, afvejes en kendt masse acetylsalicylsyre, der forsæbes, jern(iii)reagens tilsættes og der aflæses absorbans. Massen af acetylsalicylsyre beregnes, og sammenlignes med den kendt masse. Herefter bestemmer vi acetylsalicylsyreindholdet i en hovedpinetablet på samme måde. På kurset udleveres materiale, der beskriver spektrofotometerets virkemåde. Apparatur: 4 x 1 L målekolber 8 x 100 ml koniske kolber, målekolber eller bægerglas 2 buretter med stativ almindelig tragt og filtrerpapir 10.0 ml fuldpipetter med Peleusbold morter med pistil spektrofotometer og to cuvetter Kemikalier: jern(iii)-reagens (4.00 g jern(iii)nitrat i 20 ml konc. saltsyre, fyldes op med demineraliseret vand til 1 L) 15

16 salicylsyre (2-hydroxybenzoesyre ) acetylsalicylsyre (CH 3 COOC 6 H 4 COOH) 99% ethanol 1.0 M natriumhydroxid 1.0 M saltsyre hovedpinetabletter Risici: Acetylsalicylsyre er sundhedsskadelig, med klassificering Xn,R22. Affaldshåndtering: Kemikalierne må gerne smides ud i vasken, da de er til stede i ret lave koncentrationer. A. Standardkurve 1. Opløs g salicylsyre i 10 ml ethanol i en 1 L målekolbe, hvorefter der fyldes op til 1 L med demineraliseret vand. Hermed har vi lavet en stamopløsning, som indeholder 3.00 x 10-3 mol/ L salicylsyre. Den ene burette fyldes op med stamopløsningen. 2. Den anden burette fyldes med demineraliseret vand. 3. Til fem 100 ml koniske kolber, nummereret fra 1 til 5, tilsættes salicylsyreopløsning og vand fra buretterne som angivet i skemaet. Det giver de koncentrationer, som står i skemaet. Bemærk, at koncentrationerne gælder inden reagenstilsætning. B. Kvantitativ bestemmelse af acetylsalicylsyre. I dette afsnit undersøges målemetodens nøjagtighed ved at måle på en kendt mængde acetylsalicylsyre. 1. Afvej 0.4 g acetylsalicylsyre i et 100 ml bægerglas og notér den præcise masse. Opløs stoffet i 10 ml ethanol og derefter tilsæt 10 ml af 1.0 M natriumhydroxid. Vent 10 minutter, så forsæbningen kan løbe til ende. 2. Efter de 10 minutter er gået, overføres bægerglassets indhold til en 1 L målekolbe. Bægerglasset skylles efter. Der tilsættes 10 ml af 1.0 M saltsyre, for at kompensere for tilsætningen af natriumhydroxid, og da kompleksdannelsen er ph-følsom. Kolben fyldes op til stregen med demineraliseret vand, og omrystes. 3. Der udtages 10.0 ml fra målekolben til en 100 ml konisk kolbe, nummereret med tallet 6. C. Kvantitativ bestemmelse af acetylsalicylsyreindholdet i tabletterne. 1. Der laves en dobbeltbestemmelse. 2. En tablet vejes og knuses i en morter. Lad pistillen blive stående i morteren hele tiden for at sikre at alt stoffet er med. Der tilsættes 10 ml ethanol for at opløse tabletten. Derefter tilsættes 10 ml af 1.0 M natriumhydroxid. Rør rund med pistillen og lad blandingen stå i 10 minutter for at acetylsalicylsyren kan forsæbe. 3. Derefter hældes blandingen uden spild over i en 1 L målekolbe. Skyl morter og pistil med vand, som hældes over i målekolben. Der tilsættes 10 ml af 1.0 M saltsyre, og der fyldes op til stegen med vand. 4. Opløsningen i målekolben er nu uklar på grund af tablethjælpestofferne. Lidt af opløsningen filtreres. De første ca 20 ml kasseres, hvorefter der opsamles ca 20 ml. Herefter kommes 10.0 ml af den filtrerede opløsning over i en 100 ml konisk kolbe, nummereret med tallet 7. Dobbeltbestemmelsen nummeres med tallet 8. D. Måling af prøverne i spektrofotometret. 1. Tænd for spektrofotometret, så det kan varme op. 16

17 2. Til hver af de 8 kolber tilsættes 10.0 ml jern(iii)-reagens. Lad prøverne stå i ti minutter for fuld farveudvikling. 3. Spektrofotometrets bølgelængde indstilles ved 532 nm. Kolbe nr.1, med 10.0 ml vand og reagens, anvendes til nulstilling ved aflæsning af absorbansen for indholdet af hver af de andre kolber. Indfør de aflæste absorbanser i skemaet. Kolbe nr. Volumen af 3.00 x 10-3 M Volumen Salicylsyre salicylsyreopløsning/ml vand/ml koncentration/m x x x x 10-3 Absorbans Kolbe nr. 6 Afmålt masse af acetylsalicylsyre/g Absorbans Salicylsyre koncentration/m Beregnet masse af acetylsalicylsyre (gram) Kolbe nr. Afmålt masse af tablet/g Absorbans Salicylsyre koncentration/m 7 8 A. 1. Gør rede for at den anvendte salicylsyre opløsning er 3.00 x 10-3 M. 2. Tegn en standardkurve, absorbansen som funktion af salicylsyrekoncentration i mol/l. Er Lambert-Beers lov opfyldt? Giv en forklaring. B. 1. Aflæs koncentration af salicylsyre i kolbe 6. på standardkurven. 2. Beregn derefter massen af acetylsalicylsyre i prøven. Kommentér overensstemmelsen med den afvejede mængde acetylsalicylsyre. Kommentér metodens nøjagtighed. C. 1. Aflæs koncentration af salicylsyre i kolbe 7. på standardkurven. Beregn derefter massen af acetylsalicylsyre i prøven. Sammenlign med deklarationen på pakken. Beregn hvor stor en procentdel acetylsalicylsyren udgør af massen af tabletten. 2. Gentag beregningen for kolbe Angiv den gennemsnitlige masse og %-indhold for acetylsalicylsyreindholdet i en tablet. 4. Vis ved beregning, at der er anvendt overskud af natriumhydroxid under forsæbningen. Angiv reaktionsskemaer for protolysen af acetylsalicylsyres syregruppe og forsæbning af acetylsalicylsyres estergruppe med natriumhydroxid. Definér forsæbning. 5. Hvilken farve har lys med en bølgelængde på 532 nm? Giv en forklaring på hvorfor man skal læse absorbansen ved denne bølgelængde. 17

18 Vejledning til øvelse nr. 9: Syntese af en ester Formålet med øvelsen er at fremstille en ester ved kogning med tilbagesvaling, at bestemme esterens kogepunkt og densitet, og at bestemme syntesens udbytteprocent. Apparatur: Opstilling til reflux (kogning med tilbagesvaling) dvs. 100 ml rundbundet slibkolbe med svaler ovenpå - uden prop foroven. Destillationsudstyr - se tegningen i øvelsen, Identifikation af en alkohol. Korkbund til den rundbundede kolbe, varmekappe, skilletragt med prop, 25 ml målecylinder, spidsbundet kolbe. Kemikalier: en carboxylsyre, en alkohol, koncentreret svovlsyre, calciumchlorid (vandsugende), natriumcarbonat, pimpsten. 1. Med sikkerhedsbriller på næsen blandes forsigtigt i den rundbunded kolbe 20 ml syre og 20 ml alkohol samt 3 ml koncentreret svovlsyre. Der tilsættes pimpsten. Der koges med tilbagesvaling i mindst 20 min. Imens slås syrens, alkoholens og esterens kogepunkt og densitet op i Databogen. Efter en kort afkøling kan reaktionsblandingen hældes over i skilletragten. 2. Esteren vaskes med ca. lige så meget demineraliseret vand, som der er ester i skilletragten. Der rystes, og der ventes til der igen er dannet to faser. På grund af forskel i densiteterne ligger esteren i øverste lag i den tofasede blanding. Det nederste lag hældes ud i et bægerglas (det er vand, svovlsyre og uomsat syre og alkohol). Vask nu en gang med ca. 10 ml af en mættet natriumcarbonat-opløsning for at fjerne den sidste rest af uomsat syre. Det bruser - så hold spidsen af skilletragten op og åbn hanen. Hæld igen det nederste vandlag ud. Vask endnu en gang med vand. Dernæst tørres esteren i skilletragen med klumper af vandfrit calciumchlorid. Hæld esteren i en spidsbundet kolbe. 3. Til sidst destilleres esteren i en opstilling, hvor et T-rør sættes imellem kolben og svaleren, som opstilles med en lille hældning nedad til forlaget. Benyt en 25 ml målecylinder, der i forvejen er vejet, som forlag. Så kan volumen straks aflæses. Vejning af målecylinder med ester giver så den tilhørende massen af ester (dvs. det vi kalder udbyttet, m udbytte = m ester ). 1. Skriv reaktionsskemaet med de aktuelle reaktanter, både med navn og strukturformel. Svovlsyrens formel skrives over reaktionspilene, da den ikke indgår i bruttoreaktionen. Vis ved strukturformlerne, hvilke atomer der reagerer og danner vand. Forklar svovlsyrens virkning. 2. Bestem esterens densitet og sammenlign med tabelværdien. Sammenlign esterens kogepunkt med tabelværdien. Hvad siger det om dit produkt? 3. Find stofmængderne af syre og alkohol, n syre og n alk, ved hjælp af deres volumen, densitet og molarmasse. Gør rede for hvilken af reaktanterne, der er i overskud og hvilken, der er i underskud. 18

19 4. Forklar, hvordan man kan beregne den maksimale forventede stofmængde af ester, forudsat at reaktion går fuldstændigt til højre. Omregn n ester til massen af ester. Det kalder vi m teoretisk. Find udbytteprocenten, dvs. m udbytte / m teoretisk. Det angives i %. Forklar, hvorfor man ikke får 100 % udbytte. 5. Denne antagelse, at reaktionen går fuldstændigt til højre, er dog ikke helt korrekt. Nu antager vi at dette er et ligevægtssystem, hvor ligevægtskonstanten er 2.5 ved den gældende temperatur. Opstil en ligning som udtrykker ligevægtsloven, og som kan løses for at finde ligevægtskoncentrationerne for reaktanterne og produkterne i ligevægtssystemet. Anslå den nye værdi for n ester og for udbytteprocenten, i forhold til den forrige, og begrund din konklusion. Alternativt, må ligningen gerne løses. 19

1. Reaktionshastighed

1. Reaktionshastighed Kemi laboratoriekursus, kemi -B, VU Århus 1. Reaktionshastighed Formålet med øvelsen er, at bestemme hvorledes reaktionshastigheden afhænger af koncentrations- og temperaturændringer. Teori: Når man sætter

Læs mere

Et fedtstofs iodtal. Problemstilling. Kapitel 2: Uorganisk kemi (iodometri) R 1 CH 2 O C R 2 O R 3. H + Br Br C C Br Br

Et fedtstofs iodtal. Problemstilling. Kapitel 2: Uorganisk kemi (iodometri) R 1 CH 2 O C R 2 O R 3. H + Br Br C C Br Br Et fedtstofs iodtal Kapitel 2: Uorganisk kemi (iodometri) Problemstilling Additionsreaktionen til dobbeltbindinger mellem -atomer, 8?7, kan vises ved addition af dibrom til et fedtstof. Reaktionen benyttes

Læs mere

Øvelse 4.2 1/5 KemiForlaget

Øvelse 4.2 1/5 KemiForlaget KST G ERNÆRING Benthe Schou ØVELSE 4. Øvelse: Iodtal for fedtstoffer Indledning Et fedtstofs ernæringsmæssige sundhed bestemmes af hvilke fedtsyrer, der indgår i fedtstoffet. Fedtstoffets sundhed er stærkt

Læs mere

Jernindhold i fødevarer bestemt ved spektrofotometri

Jernindhold i fødevarer bestemt ved spektrofotometri Bioteknologi 4, Tema 8 Forsøg www.nucleus.dk Linkadresserne fungerer pr. 1.7.2011. Forlaget tager forbehold for evt. ændringer i adresserne. Jernindhold i fødevarer bestemt ved spektrofotometri Formål

Læs mere

1. OPVARMNING AF NATRIUMHYDROGENCARBONAT

1. OPVARMNING AF NATRIUMHYDROGENCARBONAT 1. OPVARMNING AF NATRIUMHYDROGENCARBONAT At undersøge hvilken kemisk reaktion, der finder sted ved opvarmning af natriumhydrogencarbonat. Natriumhydrogencarbonat (natron) har formlen NaHCO 3 og er et fast

Læs mere

1. BESTEMMELSE AF KRYSTALVAND I KRYSTALSODA

1. BESTEMMELSE AF KRYSTALVAND I KRYSTALSODA 1. BESTEMMELSE AF KRYSTALVAND I KRYSTALSODA Formålet med denne øvelse er at bestemme indholdet af krystalvand i krystalsoda, som har den kemiske formel Na 2 CO 3 xh 2 O. Teori: En del ionforbindelser (salte)

Læs mere

Øvelsesvejledninger til laboratoriekursus i Kemi B. VUC Aarhus, HF-afdelingen

Øvelsesvejledninger til laboratoriekursus i Kemi B. VUC Aarhus, HF-afdelingen Øvelsesvejledninger til laboratoriekursus i Kemi B VUC Aarhus, F-afdelingen 2015 Indholdsfortegnelse: side Indholdsfortegnelse 2 Velkommen til laboratoriekursus i kemi B på VUC Aarhus 3 Laboratoriearbejdet

Læs mere

Forsæbning af kakaosmør

Forsæbning af kakaosmør Side: 1/10 Forsæbning af kakaosmør Forfattere: Lone Berg Redaktør: Thomas Brahe Faglige temaer: Kompetenceområder: Introduktion: Formålet med denne øvelse er at bestemme kakaosmørs gennemsnitlige molare

Læs mere

Øvelse: Ligevægt. Aflever de udfyldte journalark på Fronter individuelt

Øvelse: Ligevægt. Aflever de udfyldte journalark på Fronter individuelt KEMI kl.2.1 Øvelse Oprettet 2007-05-20 hjsn@rts.dk videreforarbejdet af 2008-09 bos@rts.dk Øvelse: Ligevægt Læremål at kunne anvende Le Chateliers princip til bestemmelse af forskydningen af en ligevægt

Læs mere

Titel: OPLØSELIGHEDEN AF KOBBER(II)SULFAT. Litteratur: Klasse: Dato: Ark 1 af. Helge Mygind, Kemi 2000 A-niveau 1, s. 290-292 8/9-2008/OV

Titel: OPLØSELIGHEDEN AF KOBBER(II)SULFAT. Litteratur: Klasse: Dato: Ark 1 af. Helge Mygind, Kemi 2000 A-niveau 1, s. 290-292 8/9-2008/OV Fag: KEMI Journal nr. Titel: OPLØSELIGHEDEN AF KOBBER(II)SULFAT Navn: Litteratur: Klasse: Dato: Ark 1 af Helge Mygind, Kemi 2000 A-niveau 1, s. 290-292 8/9-2008/OV Formålet er at bestemme opløseligheden

Læs mere

Kvantitativ bestemmelse af reducerende sukker (glukose)

Kvantitativ bestemmelse af reducerende sukker (glukose) Kvantitativ bestemmelse af reducerende sukker (glukose) Baggrund: Det viser sig at en del af de sukkerarter vi indtager med vores mad er hvad man i fagsproget kalder reducerende sukkerarter. Disse vil

Læs mere

Intro5uktion: I'" Acetylsalicylsyre. Salicylsyre

Intro5uktion: I' Acetylsalicylsyre. Salicylsyre Intro5uktion: H'11t frem til omkring 1850 var alle tilgængelige smertestillende midler "naturstoffer", dvs oftest ekstrakter fra planter eller dyr. Det første syntetisk fremstillede smertestillende stof

Læs mere

[H 3 O + ] = 10 ph m [OH ] = 10 poh m K s = 10 pks m K b = 10 pk b. m ph + poh = 14 [H 3 O + ][OH ] = m 2 pk s + pk b = 14 K s K b = m 2

[H 3 O + ] = 10 ph m [OH ] = 10 poh m K s = 10 pks m K b = 10 pk b. m ph + poh = 14 [H 3 O + ][OH ] = m 2 pk s + pk b = 14 K s K b = m 2 ph = -log [H 3 O + ] poh = -log [OH ] pk s = -log K s pk b = -log K b [H 3 O + ] = 10 ph m [OH ] = 10 poh m K s = 10 pks m K b = 10 pk b m ph + poh = 1 [H 3 O + ][OH ] = 10 1 m 2 pk s + pk b = 1 K s K

Læs mere

Syre-base titreringer

Syre-base titreringer Syre-base titreringer Titrering: Er en analytisk metode til bestemmelse af mængden af et stof (A) i et kendt volumen af en opløsning. Metode: Et kendt volumen af opløsningen der indeholder A udtages. En

Læs mere

Exoterme og endoterme reaktioner (termometri)

Exoterme og endoterme reaktioner (termometri) AKTIVITET 10 (FAG: KEMI) NB! Det er i denne øvelse ikke nødvendigt at udføre alle forsøgene. Vælg selv hvilke du/i vil udføre er du i tvivl så spørg. Hvis du er interesseret i at måle varmen i et af de

Læs mere

Puffere. Øvelsens pædagogiske rammer. Sammenhæng. Formål. Arbejdsform: Evaluering

Puffere. Øvelsens pædagogiske rammer. Sammenhæng. Formål. Arbejdsform: Evaluering 1 Puffere Øvelsens pædagogiske rammer Sammenhæng Denne øvelse er tilpasset kemiundervisningen på modul 3 ved bioanalytikeruddannelsen. Kemiundervisningen i dette modul indeholder blandt andet syrebaseteori

Læs mere

ANALYSE AF FEDTINDHOLD I MADOLIE

ANALYSE AF FEDTINDHOLD I MADOLIE ANALYSE AF FEDTINDOLD I MADOLIE Ved denne øvelse bestemmes det gennemsnitlige antal dobbeltbindinger pr. fedtsyre og fedtstoffets middelmolmasse for en madolie. Supplerende baggrundsinformation om lipider

Læs mere

Øvelsesvejledninger til laboratoriekursus i Kemi B. Aarhus HF og VUC, HF-afdelingen

Øvelsesvejledninger til laboratoriekursus i Kemi B. Aarhus HF og VUC, HF-afdelingen Øvelsesvejledninger til laboratoriekursus i Kemi B Aarhus HF og VUC, HF-afdelingen 1 Indholdsfortegnelse Velkommen til laboratoriekursus i Kemi B på Aarhus HF og VUC... 3 Laboratorie arbejdet... 4 Sikkerheden

Læs mere

Gæringsprocessen ved fremstillingen af alkohol tager udgangspunkt i glukose molekylet (C

Gæringsprocessen ved fremstillingen af alkohol tager udgangspunkt i glukose molekylet (C Molekyler af alkohol Byg molekylerne af forskellige alkoholer, og tegn deres stregformler Byg alkoholmolekyler med 1, 2 og 3 C atomer og 1 OH gruppe. Tegn deres stregformler her og skriv navnet ved. Byg

Læs mere

Kemiøvelse 2 1. Puffere

Kemiøvelse 2 1. Puffere Kemiøvelse 2 1 Puffere Øvelsens pædagogiske rammer Sammenhæng Denne øvelse er tilpasset kemiundervisningen på modul 3 ved bioanalytikeruddannelsen. Kemiundervisningen i dette modul indeholder blandt andet

Læs mere

Olfaktometrisk titrering

Olfaktometrisk titrering Side: 1/8 Olfaktometrisk titrering Forfattere: Henrik Parbo Redaktør: Morten Christensen, Thomas Brahe Faglige temaer: Olfaktometri, ph, Titrering, Thioler Kompetenceområder: Introduktion: Titrering med

Læs mere

KOSMOS. 7.1 Spaltning af sukker. Materialer MADENS KEMI KEMISKE STOFFER I MADEN DISACCHARIDER

KOSMOS. 7.1 Spaltning af sukker. Materialer MADENS KEMI KEMISKE STOFFER I MADEN DISACCHARIDER KEMISKE STOFFER I MADEN DISACCHARIDER 7.1 Spaltning af sukker I skal undersøge, hvordan sukker spaltes ved kontakt med en syre. Almindelig hvidt sukker er et disaccharid. Det kan spaltes i to monosaccharider:

Læs mere

10. juni 2016 Kemi C 325

10. juni 2016 Kemi C 325 Grundstoffer og Det Periodiske System Spørgsmål 1 Forklar hvordan et atom er opbygget og hvad isotoper er. Forklar hvad der forstås med begrebet grundstoffer kontra kemiske forbindelser. Atomer er placeret

Læs mere

VUC Århus Laboratoriekursus for selvstuderende i kemi højniveau

VUC Århus Laboratoriekursus for selvstuderende i kemi højniveau Øvelse 1: Bestemmelse af reaktionshastighed Apparatur: 100 ml bægerglas, pipetter 10 ml og 20 ml, sugebold, reagensglas, spatel, stopur. Kemikalier: 0.200 M Na 2 S 2 O 8 ; 0.100 M Na 2 S 2 O 8 (opløsningen

Læs mere

KEMISK IN STITUT ENHAVNS UNIVERS ITET KØB. estere. samt. ved GC

KEMISK IN STITUT ENHAVNS UNIVERS ITET KØB. estere. samt. ved GC H..C.ØRSTEDS UNGDMSLABRATRIUM KEMISK IN STITUT KØB ENHAVNS UNIVERS ITET Syntese og ekstraktion af naturlige estere samt identifikation ved GC Af Marc Cedenius Indhold Gran... 2 Syntese af Eddikesyre( )bornylester...

Læs mere

Bilag til Kvantitativ bestemmelse af glucose

Bilag til Kvantitativ bestemmelse af glucose Bilag til Kvantitativ bestemmelse af glucose Det synlige formål med øvelsen er at lære, hvorledes man helt præcist kan bestemme små mængder af glucose i en vandig opløsning ved hjælp af målepipetter, spektrofotometer

Læs mere

Kemiøvelse 2 C2.1. Puffere. Øvelsens pædagogiske rammer

Kemiøvelse 2 C2.1. Puffere. Øvelsens pædagogiske rammer Kemiøvelse 2 C2.1 Puffere Øvelsens pædagogiske rammer Sammenhæng Denne øvelse er tilpasset kemiundervisningen på modul 3 ved bioanalytikeruddannelsen. Kemiundervisningen i dette modul indeholder blandt

Læs mere

Gør rede for begrebet reaktionshastighed. Kom herunder ind på de faktorer, der påvirker reaktionshastigheden.

Gør rede for begrebet reaktionshastighed. Kom herunder ind på de faktorer, der påvirker reaktionshastigheden. 1 Reaktionshastighed Gør rede for begrebet reaktionshastighed. Kom herunder ind på de faktorer, der påvirker reaktionshastigheden. Bilaget samt eksperimentet Reaktionshastighed skal inddrages i din gennemgang.

Læs mere

Eksamensspørgsmål Kemi C, 2015, Kec124 (NB).

Eksamensspørgsmål Kemi C, 2015, Kec124 (NB). Eksamensspørgsmål Kemi C, 2015, Kec124 (NB). 1 Molekylmodeller og det periodiske system 2 Molekylmodeller og elektronparbindingen 3 Molekylmodeller og organiske stoffer 4 Redoxreaktioner, spændingsrækken

Læs mere

Eksamensspørgsmål 2c ke, juni Fag: Kemi C-niveau. Censor: Andreas Andersen, Skanderborg Gymnasium

Eksamensspørgsmål 2c ke, juni Fag: Kemi C-niveau. Censor: Andreas Andersen, Skanderborg Gymnasium Eksamensspørgsmål 2c ke, juni 2016 Fag: Kemi C-niveau Censor: Andreas Andersen, Skanderborg Gymnasium Eksaminator: Jeanette Olofsson, Ikast-Brande Gymnasium 1. Bindingstyper og tilstandsformer under inddragelse

Læs mere

Roskilde Tekniske Gymnasium Klasse 2,5 Kemi Jonas Kalmark, Daniel Blankenstejner & Ticho Nielsen. Organisk kemi for dummies

Roskilde Tekniske Gymnasium Klasse 2,5 Kemi Jonas Kalmark, Daniel Blankenstejner & Ticho Nielsen. Organisk kemi for dummies Organisk kemi for dummies 1 Indholdsfortegnelse Projektets formål:... 2 Målgruppe:... 4 Resume af interviewet:... 5 Teori:... 6 forsøg:... 6 Indledning:... 6 Materialer... 7 kalier:... 8 Fremgangs måde:...

Læs mere

Anvendt kemi 1 ekstraspørgsmål. Koncentration

Anvendt kemi 1 ekstraspørgsmål. Koncentration Anvendt kemi 1 ekstraspørgsmål Koncentration Til et kemiforsøg skal der fremstilles en række opløsninger af letopløselige salte. Udregn for hver af de følgende opløsninger, hvor mange gram af det aktuelle

Læs mere

maj 2017 Kemi C 326

maj 2017 Kemi C 326 Nedenstående eksamensspørgsmål vil kunne trækkes ved eksaminationen af kursisterne på holdet KeC326. Hvis censor har indsigelser mod spørgsmålene, så kan der forekomme ændringer. Spørgsmål 1 + Spørgsmål

Læs mere

Eksamensspørgsmål 2z ke (ikke godkendte) Fag: Kemi C Dato: 7. juni 2013 Lærer: Peter R Nielsen (PN) Censor: Tanja Krüger, VUC Aarhus

Eksamensspørgsmål 2z ke (ikke godkendte) Fag: Kemi C Dato: 7. juni 2013 Lærer: Peter R Nielsen (PN) Censor: Tanja Krüger, VUC Aarhus 1. Kemisk Binding Gør rede for øvelsen Kovalent- eller Ionbinding? Beskriv ionbinding og kovalent binding og forklar hvordan forskellene på de to typer af kemisk binding udnyttes i for66søget. Stikord

Læs mere

Teori Hvis en aminosyre bringes til at reagere med natriumhydroxid, dannes et natriumsalt: NH 2

Teori Hvis en aminosyre bringes til at reagere med natriumhydroxid, dannes et natriumsalt: NH 2 Øvelser om aminosyrer og peptider Øvelse 2 Identifikation af et aminosyrehydrochlorid Formål Forsøgets formål er at undersøge et af tre forskellige aminosyrehydrochlorider, som udleveres til klassen. Identifikationen

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen

Øvelser 10. KlasseCenter Vesthimmerland Kaj Mikkelsen Indholdsfortegnelse Indholdsfortegnelse... 1 Bygning af et glucosemolekyle... 2 Bygning af et poly- sakkarid.... 3 Påvisning af glukose (1)... 4 Påvisning af glucose (2)... 5 Påvisning af disakkarider....

Læs mere

Øvelse 2 Mest mættede olier

Øvelse 2 Mest mættede olier Øvelse 2 Mest mættede olier Formål Formålet med denne øvelse er at foretage en kvalitativ undersøgelse af mængden af dobbeltbindinger i forskellige olier for at undersøge hvilke der er mest mættede. Teori

Læs mere

Task 1. Gær til hverdag og fest. DM i Science for 1.g Finale 2015 Onsdag 25.februar 2015 kl. 14-17.

Task 1. Gær til hverdag og fest. DM i Science for 1.g Finale 2015 Onsdag 25.februar 2015 kl. 14-17. Task 1 Gær til hverdag og fest DM i Science for 1.g Finale 2015 Onsdag 25.februar 2015 kl. 14-17. Opgave 1: Opgave 2: Opgave 3: Opgave 4: 25 point 29 point 31 point 29 point Gær kan bruges til lidt af

Læs mere

Mundtlige eksamensopgaver

Mundtlige eksamensopgaver Mundtlige eksamensopgaver Kemi C 3ckecmh11308 Grundstoffer og det periodiske system Øvelse: Kobber + dibrom Spørgsmål 1 Forklar hvordan et atom er opbygget og hvad isotoper er. Grundstofferne er ordnet

Læs mere

Øvelse: Analyse af betanin i rødbede

Øvelse: Analyse af betanin i rødbede Forløb: Smagen af frugt og grønt: Kemimateriale modul 2-8 Aktivitet: Øvelse: Analyse af betanin i rødbede Fag: Kemi Klassetrin: 1. g, 2. g, 3. g Side: 1/14 Øvelse: Analyse af betanin i rødbede Forfattere:

Læs mere

E 10: Fremstilling af PEC-solceller

E 10: Fremstilling af PEC-solceller E 10: Fremstilling af PEC-solceller Formål Formålet med forsøget er at fremstille PEC (Photo Electro Chemical) solceller ud fra vinduesruder, plantesaft, hvid maling og grafit fra en blyant. Apparatur

Læs mere

EKSAMENSSPØRGSMÅL Kemi C maj/juni 2017

EKSAMENSSPØRGSMÅL Kemi C maj/juni 2017 EKSAMENSSPØRGSMÅL Kemi C maj/juni 2017 Titler på eksamensspørgsmål 1. Grundstoffer og det periodiske system 2. Spændingsrækken 3. Elektronparbindinger 4. Bindingstyper 5. Saltes opløselighed i vand 6.

Læs mere

Er dit reaktionsskema afstemt? Dvs. undersøg for hvert grundstof, om der er lige mange atomer af grundstoffet før reaktionen som efter reaktionen.

Er dit reaktionsskema afstemt? Dvs. undersøg for hvert grundstof, om der er lige mange atomer af grundstoffet før reaktionen som efter reaktionen. 7.12 Bagning med hjortetaksalt I skal undersøge, hvilke egenskaber bagepulveret hjortetaksalt har. Hjortetaksalt bruges i bagværk som kiks, klejner, brunkager m.m. Saltet giver en sprødhed i bagværket.

Læs mere

Kvantitativ bestemmelse af glukose

Kvantitativ bestemmelse af glukose Kvantitativ bestemmelse af glukose Baggrund: Det viser sig at en del af de sukkerarter, vi indtager med vores mad, er, hvad man i fagsproget kalder reducerende sukkerarter. Disse vil i en stærk basisk

Læs mere

Øvelsesvejledninger til laboratoriekursus i Kemi A. VUC Aarhus, GSK-afdelingen

Øvelsesvejledninger til laboratoriekursus i Kemi A. VUC Aarhus, GSK-afdelingen Øvelsesvejledninger til laboratoriekursus i Kemi A VUC Aarhus, GSK-afdelingen 2015 Indholdsfortegnelse Velkommen til laboratoriekursus i Kemi A på VUC Aarhus 2015.... 3 Laboratoriearbejdet.... 3 Sikkerheden

Læs mere

Anvendt kemi 2 - ekstraopgaver

Anvendt kemi 2 - ekstraopgaver 1 Anvendt kemi - ekstraopgaver Enthalpiberegninger Stoffet ethan (H6) kan afbrændes. a) Opskriv og afstem reaktionsskemaet for forbrændingen. b) Beregn H for reaktionen. Opgave Betragt følgende redoxreaktionsskema:

Læs mere

UNDERSØGELSE AF JORDRESPIRATION

UNDERSØGELSE AF JORDRESPIRATION UNDERSØGELSE AF JORDRESPIRATION Formål 1. At bestemme omsætningen af organisk stof i jordbunden ved at måle respirationen med en kvantitative metode. 2. At undersøge respirationsstørrelsen på forskellige

Læs mere

Øvelsesvejledninger til laboratorieøvelser Kemi C B

Øvelsesvejledninger til laboratorieøvelser Kemi C B Øvelsesvejledninger til laboratorieøvelser Kemi C B 2015 Fredag den 17. april 17.30-20.30 Lørdag den 18. april kl. 9-16 Søndag den 19. april kl. 9-16 KVUC, Sankt Petri Passage 1, Kbh. Laboratorieøvelserne

Læs mere

Det sure, det salte, det basiske Ny Prisma Fysik og kemi 9 - kapitel 1 Skole: Navn: Klasse:

Det sure, det salte, det basiske Ny Prisma Fysik og kemi 9 - kapitel 1 Skole: Navn: Klasse: Det sure, det salte, det basiske Ny Prisma Fysik og kemi 9 - kapitel 1 Skole: Navn: Klasse: Opgave 1 Den kemiske formel for køkkensalt er NaCl. Her er en række udsagn om køkkensalt. Sæt kryds ved sandt

Læs mere

Eksamensspørgsmål til 2b kemi C 2017

Eksamensspørgsmål til 2b kemi C 2017 Eksamensspørgsmål til 2b kemi C 2017 Eksamensdato: fredag d. 2/6 2017 8 eksaminander skal eksamineres, og der er derfor 11 eksamensopgaver, sådan at den sidste har 4 muligheder. Opgaverne skal tilsammen

Læs mere

Grundstoffer og det periodiske system

Grundstoffer og det periodiske system Spørgsmål 1 Grundstoffer og det periodiske system Øvelse: Hvilket salt i hvilken beholder Gør rede for inddelingen i grupper (hovedgrupperne) og perioder i det periodiske system. Kom herunder ind på opbygningen

Læs mere

Øvelse 29. Studieportalen.dk Din online lektieguide Sara Hestehave Side 1 08-05-2007 Kemi Aflevering 2m KE2 Herning Gymnasium

Øvelse 29. Studieportalen.dk Din online lektieguide Sara Hestehave Side 1 08-05-2007 Kemi Aflevering 2m KE2 Herning Gymnasium Sara Hestehave Side 1 08-05-2007 Øvelse 29 Forsøget er lavet d. 6/4-2006 Forsøget er udført i samarbejde med; Jacob Haurum Rapporten er skrevet af Sara Hestehave Kristensen 2.x Sara Hestehave Side 2 08-05-2007

Læs mere

Med forbehold for censors kommentarer. Eksamensspørgsmål Kemi C, 2014, Kec223 (NB).

Med forbehold for censors kommentarer. Eksamensspørgsmål Kemi C, 2014, Kec223 (NB). Med forbehold for censors kommentarer Eksamensspørgsmål Kemi C, 2014, Kec223 (NB). 1 Molekylmodeller og det periodiske system 2 Molekylmodeller og elektronparbindingen 3 Molekylmodeller og organiske stoffer

Læs mere

Hæld 25 ml NaOH(aq) op i et bægerglas. Observer væsken. Er den gennemsigtig? Hvilke ioner er der i ionsuppen?

Hæld 25 ml NaOH(aq) op i et bægerglas. Observer væsken. Er den gennemsigtig? Hvilke ioner er der i ionsuppen? Fældningsreaktion (som erstatning for titrering af saltvand) Opløs 5 g CuSO 4 i 50 ml vand Opløses saltet? Følger det teorien? Hvilke ioner er der i ionsuppen? Hæld 25 ml NaOH(aq) op i et bægerglas. Observer

Læs mere

Eksamensspørgsmål Kemi C, 2017, Kec126 (NB). Med forbehold for censors godkendelse

Eksamensspørgsmål Kemi C, 2017, Kec126 (NB). Med forbehold for censors godkendelse Eksamensspørgsmål Kemi C, 2017, Kec126 (NB). Med forbehold for censors godkendelse 1 Stoffers blandbarhed og det periodiske system 2 Stoffers blandbarhed og elektronparbindingen 3 Redoxreaktioner, spændingsrækken

Læs mere

Dialyse og carbamidanalyse

Dialyse og carbamidanalyse C.12.1 Dialyse og carbamidanalyse Formål: Ved dialyse af en vandig opløsning af proteinet albumin og det lavmolekylære stof carbamid trænes forskellige laboratorieprocedurer (afpipettering, tidtagning,

Læs mere

Eksamensspørgsmål Kemi C, 2017, Kec196 (NB). Med forbehold for censors godkendelse

Eksamensspørgsmål Kemi C, 2017, Kec196 (NB). Med forbehold for censors godkendelse Eksamensspørgsmål Kemi C, 2017, Kec196 (NB). Med forbehold for censors godkendelse Da nogle har deltaget i laboratoriekursus i Aarhus og andre i Esbjerg, er der henvist til øvelser de to steder fra. Man

Læs mere

Alkohol Ingrid Jespersens Gymnasieskole 2007

Alkohol Ingrid Jespersens Gymnasieskole 2007 Alkohol Ingrid Jespersens Gymnasieskole 007 Ethanols fysiske egenskaber Kogepunkt 78,5 o C På side 8 i Alkohol også vises Frysepunkt -114, o C opskriften på et forsøg til bestemmelse af Massefylde 0,789

Læs mere

Matematiske modeller Forsøg 1

Matematiske modeller Forsøg 1 Matematiske modeller Forsøg 1 At måle absorbansen af forskellige koncentrationer af brilliant blue og derefter lave en standardkurve. 2 ml pipette 50 og 100 ml målekolber Kuvetter Engangspipetter Stamopløsning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2018/2019, eksamen maj-juni 2019 Institution Kolding HF & VUC Uddannelse Hfe Fag og niveau Kemi B,

Læs mere

Spørgsmål 1 Kemisk ligevægt

Spørgsmål 1 Kemisk ligevægt Spørgsmål 1 Kemisk ligevægt Du skal redegøre for den teori der ligger op til forståelsen af eksperimentet Indgreb i et ligevægtssystem. Du skal som minimum inddrage begreberne: Reversibel og irreversibel

Læs mere

Eksamensopgaver i kemi b uden bilag (med forbehold for censors godkendelse)

Eksamensopgaver i kemi b uden bilag (med forbehold for censors godkendelse) Eksamensopgaver i kemi b uden bilag (med forbehold for censors godkendelse) Jern korrosion 1 redoxreaktioner 1. Metallers generelle egenskaber. Stikord: malm, tilstandsform, formbarhed, bindingstype, kuglepakning,

Læs mere

Øvelsesvejledninger til laboratorieøvelser Kemi C B

Øvelsesvejledninger til laboratorieøvelser Kemi C B Laboratorieøvelser, Kemi B, KVUC forår 2016 Øvelsesvejledninger til laboratorieøvelser Kemi C B 2016 fredag den 15. april 16:30-19:30 lørdag den 16. april 9-16 søndag den 17. april 9-16 1 KVUC, Sankt Petri

Læs mere

Kemiøvelse 2 C2.1. Puffere. Øvelsens pædagogiske rammer

Kemiøvelse 2 C2.1. Puffere. Øvelsens pædagogiske rammer Kemiøvelse 2 C2.1 Puffere Øvelsens pædagogiske rammer Sammenhæng Denne øvelse er tilpasset kemiundervisningen på modul 3 ved bioanalytikeruddannelsen. Kemiundervisningen i dette modul indeholder blandt

Læs mere

Kemi A. Studentereksamen

Kemi A. Studentereksamen Kemi A Studentereksamen 1stx131-KEM/A-24052013 Fredag den 24. maj 2013 kl. 9.00-14.00 Side 1 af 10 sider Opgavesættet består af 4 opgaver med i alt 17 spørgsmål samt 3 bilag i 2 eksemplarer. Svarene på

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 16/17, eksamen maj-juni 2017 Institution Kolding HF & VUC Uddannelse Hfe Fag og niveau Kemi B, stx-bekendtgørelsen,

Læs mere

Dokumentation til Kemi for dummies Mike, Mark, Ida, Daniel og Max

Dokumentation til Kemi for dummies Mike, Mark, Ida, Daniel og Max Dokumentation til Kemi for dummies Mike, Mark, Ida, Daniel og Max 1 Indskanning af vores krav til posterne, skrevet på papir: Første udkast til et design af vores poster: Det første udkast er en hurtig

Læs mere

Måling af ph i syrer og baser

Måling af ph i syrer og baser Kemiøvelse 1 1.1 Måling af ph i syrer og baser Øvelsens pædagogiske rammer Sammenhæng Denne øvelse er tilpasset kemiundervisningen på modul 1 ved bioanalytikeruddannelsen. Øvelsen skal betragtes som en

Læs mere

Eksamensspørgsmål Kemi C, 2016, Kec225 (KSD).

Eksamensspørgsmål Kemi C, 2016, Kec225 (KSD). Eksamensspørgsmål Kemi C, 2016, Kec225 (KSD). 1 Molekylmodeller og det periodiske system 2 Molekylmodeller og elektronparbindingen 3 Molekylmodeller og organiske stoffer 4 Redoxreaktioner, ph 5 Redoxreaktioner,

Læs mere

Produktion af biodiesel fra rapsolie ved en enzymatisk reaktion

Produktion af biodiesel fra rapsolie ved en enzymatisk reaktion Produktion af biodiesel fra rapsolie ved en enzymatisk reaktion produceres fra rapsolie som består af 95% triglycerider (TG), samt diglycerider (DG), monoglycerider (MG) og frie fedtsyrer (FA). Under reaktionen

Læs mere

Spørgsmål 1 Kemisk ligevægt

Spørgsmål 1 Kemisk ligevægt Spørgsmål 1 Kemisk ligevægt Du skal redegøre for den teori der ligger op til forståelsen af eksperimentet Indgreb i et ligevægtssystem. Du skal som minimum inddrage begreberne: Reversibel og irreversibel

Læs mere

Opgaver til: 6. Syrer og baser

Opgaver til: 6. Syrer og baser Opgaver til: 6. Syrer og baser 1. Færdiggør følgende syre-basereaktioner: a) HNO 3 + H 2 O b) H 2 SO 4 + H 2 O c) HNO 3 + NH 3 d) SO 2-3 + H 2O e) PO 3-4 + H 2O f) H 3 PO 4 + H 2 O g) O 2- + H 2 O h) CO

Læs mere

Titler på eksamensspørgsmål til kemi B maj/juni 2018

Titler på eksamensspørgsmål til kemi B maj/juni 2018 Titler på eksamensspørgsmål til kemi B maj/juni 2018 (3gkebsh1) Der kan komme ændringer til eksamensspørgsmålene. 1. Redoxreaktioner 2. Reaktionshastighed 3. Kemisk Ligevægt 4. Syre-base ligevægt 5. Carbonhydrider

Læs mere

Kemiaflevering uge 37

Kemiaflevering uge 37 Kemiaflevering uge 37 Kenneth Buchwald Johansen, 1laba0807 Opgave 1: Afstem redoxligningen Cl 2 Cl +ClO 3 : 0 1 5 3( 2) Cl 2 Cl + ClO 3 (basisk væske). Vi kan se at Cl 2 både reduceres og oxideres. Det

Læs mere

EKSAMENSSPØRGSMÅL Kemi C december 2016 Helsingør. Spørgsmål 1. Grundstoffer og det periodiske system

EKSAMENSSPØRGSMÅL Kemi C december 2016 Helsingør. Spørgsmål 1. Grundstoffer og det periodiske system EKSAMENSSPØRGSMÅL Kemi C december 2016 Helsingør Øvelse: Opløsningsmidlers egenskaber Spørgsmål 1 Grundstoffer og det periodiske system Forklar hvordan et atom er opbygget og hvad isotoper er. Grundstofferne

Læs mere

Øvelsesvejledninger til laboratoriekursus i Kemi A. VUC Aarhus, GSK-afdelingen

Øvelsesvejledninger til laboratoriekursus i Kemi A. VUC Aarhus, GSK-afdelingen Øvelsesvejledninger til laboratoriekursus i Kemi A VUC Aarhus, GSK-afdelingen 2014 Indholdsfortegnelse Velkommen til laboratoriekursus i Kemi A på VUC Aarhus 2014.... 3 Laboratoriearbejdet.... 3 Sikkerheden

Læs mere

Formål: At undersøge nogle egenskaber ved CO 2 (carbondioxid). 6 CO 2 + 6 H 2 O C 6 H 12 O 6 + 6 O 2

Formål: At undersøge nogle egenskaber ved CO 2 (carbondioxid). 6 CO 2 + 6 H 2 O C 6 H 12 O 6 + 6 O 2 ØVELSE 2.1 SMÅ FORSØG MED CO 2 At undersøge nogle egenskaber ved CO 2 (carbondioxid). Indledning: CO 2 er en vigtig gas. CO 2 (carbondioxid) er det molekyle, der er grundlaget for opbygningen af alle organiske

Læs mere

Eksamensopgaver. Kemi B DER KAN OPSTÅ ÆNDRINGER I DE ENDELIGE SPØRGSMÅL

Eksamensopgaver. Kemi B DER KAN OPSTÅ ÆNDRINGER I DE ENDELIGE SPØRGSMÅL Eksamensopgaver Kemi B DER KAN OPSTÅ ÆNDRINGER I DE ENDELIGE SPØRGSMÅL 1. Redoxreaktioner Du skal inddrage eksperimentet Redoxreaktioner og de vedlagte bilag. Redegør for begreberne oxidation, reduktion

Læs mere

Spørgsmål 1 Struktur og egenskaber

Spørgsmål 1 Struktur og egenskaber Spørgsmål 1 Struktur og egenskaber Der ønskes en gennemgang af de forskellige former for intermolekylære bindinger, samt deres betydning for stoffernes fysiske og kemiske egenskaber. Inddrag øvelsen Carbonhydrider

Læs mere

Kemiøvelser (til eleverne)

Kemiøvelser (til eleverne) Fra ressourceforbandelse til grøn omstilling Kemiøvelser (til eleverne) Udviklet af Kjeld Lundgaard, kemilærer på Ingrid Jespersens Gymasieskole 1. Eksperiment: Opløselighed af lithiumchlorid Formål: Bestemme

Læs mere

Kemi B (3ckebeh11308) - juni Eksamensspørgsmål. HF & VUC Nordsjælland

Kemi B (3ckebeh11308) - juni Eksamensspørgsmål. HF & VUC Nordsjælland Kemi B (3ckebeh11308) - juni 2014 - Eksamensspørgsmål HF & VUC Nordsjælland 1. Redox reaktioner Øvelse: Rustbeskyttelse Redegør for begreberne oxidation, reduktion og oxidationstal. Forklar konsekvenserne

Læs mere

Kædens længde kan ligger mellem 10 og 14 carbonatomer; det mest almindelige er 12.

Kædens længde kan ligger mellem 10 og 14 carbonatomer; det mest almindelige er 12. Kemi laboratorieforsøg 9.2 Anioniske surfaktanter Anioniske surfaktanter er vaskeaktive stoffer, der har en hydrofob ende og en hydrofil ende. Den hydrofile ende er negativt ladet, dvs. en anion. Da der

Læs mere

Grundstoffer og det periodiske system

Grundstoffer og det periodiske system Grundstoffer og det periodiske system Gør rede for atomets opbygning. Definer; atom, grundstof, isotop, molekyle, ion. Beskriv hvorfor de enkelte grundstoffer er placeret som de er i Det Periodiske System.

Læs mere

Kvantitativ forsæbning af vindruekerneolie. Rapport nr. 1 1.9-2005

Kvantitativ forsæbning af vindruekerneolie. Rapport nr. 1 1.9-2005 Kvantitativ forsæbning af vindruekerneolie. Rapport nr. 1 1.9-2005 Skrevet af: Helene Berg-Nielsen Lærer: Hanne Glahder Formål: At bestemme vindruekerneolies gennemsnitlige molare masse, for derved at

Læs mere

Fremstilling af bioethanol

Fremstilling af bioethanol Bioteknologi 3, Tema 6 Forsøg www.nucleus.dk Linkadresserne fungerer pr. 1.7.2011. Forlaget tager forbehold for evt. ændringer i adresserne. Fremstilling af bioethanol Nedenstående fermenteringsforsøg

Læs mere

Noter til kemi A-niveau

Noter til kemi A-niveau Noter til kemi A-niveau Grundlæggende kemi til opgaveregning 2.0 Af Martin Sparre INDHOLD 2 Indhold 1 Kemiske ligevægte 3 1.1 En simpel kemisk ligevægt.................... 3 1.2 Forskydning af ligevægte.....................

Læs mere

1. Kovalent binding herunder eksperimentet Undersøgelse af stoffers opløselighed.

1. Kovalent binding herunder eksperimentet Undersøgelse af stoffers opløselighed. Indhold 1. Kovalent binding herunder eksperimentet Undersøgelse af stoffers opløselighed.... 2 2. Fældningsreaktioner herunder eksperimentet Saltes opløselighed i vand.... 3 3. Stofmængdekoncentration

Læs mere

1. Grundstoffer i mennesket og opbygningen af grundstoffernes periodesystem, herunder gennemgang af eksperimentet: Neutralisation

1. Grundstoffer i mennesket og opbygningen af grundstoffernes periodesystem, herunder gennemgang af eksperimentet: Neutralisation Overskrifter til kemispørgsmål, Kemi C 2012 1. Grundstoffer i mennesket og opbygningen af grundstoffernes periodesystem, herunder gennemgang af eksperimentet: Neutralisation 2. Grundstoffer i mennesket

Læs mere

Kemi B 2a3ax 2012. Der er 14 elever, som skal til eksamen: Nogle fra 2a, nogle fra 3a og nogle fra 3x

Kemi B 2a3ax 2012. Der er 14 elever, som skal til eksamen: Nogle fra 2a, nogle fra 3a og nogle fra 3x Kemi B 2a3ax 2012 Der er 14 elever, som skal til eksamen: Nogle fra 2a, nogle fra 3a og nogle fra 3x De har læst kemi C efter forskellige lærebogssystemer På Kemi B har vi brugt H Mygind Basiskemi B, 1.

Læs mere

Øvelser 10. KlasseCenter Vesthimmerland

Øvelser 10. KlasseCenter Vesthimmerland Indholdsfortegnelse Sådan kan du påvise ilt (O 2 )... 2 Sådan kan du påvise CO 2... 3 Sådan kan du påvise SO 2... 4 Sådan kan røg renses for SO 2... 5 Sammenligning af indåndings- og udåndingsluft....

Læs mere

Bestemmelse af koffein i cola

Bestemmelse af koffein i cola Bestemmelse af koffein i cola 1,3,7-trimethylxanthine Koffein i læskedrikke Læs følgende links, hvor der blandt andet står nogle informationer om koffein og regler for hvor meget koffein, der må være i

Læs mere

Bestem en jordprøves surhedsgrad, ph-værdien, med en Rapitest.

Bestem en jordprøves surhedsgrad, ph-værdien, med en Rapitest. Jordbundsanalyse ph Bestem en jordprøves surhedsgrad, ph-værdien, med en Rapitest 31 21 - Vejledning til Rapitest Læs vejledningen fra Rapitesten: Nu er det let at forbedre sin have med den nye Rapitest

Læs mere

Opgave 1.1 1 KemiForlaget

Opgave 1.1 1 KemiForlaget Opgave 1.1 Byg et monosaccharid Kulhydrat-molekylerne består af tre forskellige atomer : arbon, (sorte); ydrogen, (hvide), og Oxygen,O (røde). 1. Lav en ring af 5 -atomer og et O-atom. 2. Byg en gruppe

Læs mere

TI-B 9 (85) Prøvningsmetode Hærdnet betons chloridindhold

TI-B 9 (85) Prøvningsmetode Hærdnet betons chloridindhold Hærdnet betons chloridindhold Teknologisk Institut, Byggeri Hærdnet betons chloridindhold Deskriptorer: - Udgave: 1 Dato: 1985-05-7 Sideantal: / Bilag: 1 Udarbejdet af: BF/JKU Hærdnet betons chloridindhold

Læs mere

Kemi A. Højere teknisk eksamen

Kemi A. Højere teknisk eksamen Kemi A Højere teknisk eksamen htx101-kem/a-31052010 Mandag den 31. maj 2010 kl. 9.40-14.40 Kemi A Ved bedømmelsen lægges der vægt på eksaminandens evne til at løse opgaverne korrekt begrunde løsningerne

Læs mere

Eksamensspørgsmål 2.a ke Fag: Kemi C (godkendt af censor) Lærer: Peter R Nielsen (PN) Censor: Thao Cao, Horsens Gymnasium

Eksamensspørgsmål 2.a ke Fag: Kemi C (godkendt af censor) Lærer: Peter R Nielsen (PN) Censor: Thao Cao, Horsens Gymnasium 1 Ionforbindelser - egenskaber Gør rede for øvelsen Fældningsreaktioner Du skal beskrive, hvad en ion er. Giv derefter eksempler på ionforbindelser (med både simple og sammensatte ioner) samt navngivning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår forår 2019, eksamen maj-juni 2019 Institution Kolding HF & VUC Uddannelse Hfe Fag og niveau Kemi B,

Læs mere

Øvelsesvejledninger til laboratorieøvelser

Øvelsesvejledninger til laboratorieøvelser Øvelsesvejledninger til laboratorieøvelser Kemi C B 2017 fredag den 24. marts 16.30-19.30 lørdag den 25. marts 9-16 søndag den 26. marts 9-16 KVUC, Sankt Petri Passage 1, Kbh. Laboratorieøvelserne foregår

Læs mere

Højere Teknisk Eksamen maj Kemi A. - løse opgaverne korrekt. - tegne og aflæse grafer. Ved bedømmelsen vægtes alle opgaver ens.

Højere Teknisk Eksamen maj Kemi A. - løse opgaverne korrekt. - tegne og aflæse grafer. Ved bedømmelsen vægtes alle opgaver ens. 054129 18/05/06 12:21 Side 1 Højere Teknisk Eksamen maj 2006 Kemi A Ved bedømmelsen lægges der vægt på eksaminandens evne til at - løse opgaverne korrekt - begrunde løsningerne med relevante beregninger,

Læs mere

Spørgsmål 1 Carbonhydrider

Spørgsmål 1 Carbonhydrider Nedenstående spørgsmål er med forbehold for censors godkendelse Spørgsmål 1 Carbonhydrider Der ønskes en gennemgang af udvalgte carbonhydriders opbygning og kemiske egenskaber. Du skal inddrage øvelsen:

Læs mere