IDRÆTSSTATISTIK BIND 1

Størrelse: px
Starte visningen fra side:

Download "IDRÆTSSTATISTIK BIND 1"

Transkript

1 IDRÆTSSTATISTIK BIND 1

2 ii Det Naturvidenskabelige Fakultet Aarhus Universitet Reprocenter Preben Blæsild og Jørgen Granfeldt 2001 ISBN Bd.1

3 iii Forord Denne bog er skrevet til brug i et statistikkursus for bachelorstuderende ved Center for Idræt, Aarhus Universitet. Bag bogen ligger samme holdninger både til statistisk analyse og til begynderundervisning i statistik, der primært retter sig mod brugere, som i Blæsild og Granfeldt (2000) Statistik for biologer og geologer. Et vigtigt holdepunkt i statistisk analyse er modelbegrebet. Man vælger en statistisk model, som kan belyse den faglige problemstilling. Det vil sige, at parametrene i modellen kan fortolkes i den faglige problemstilling, og at interessante faglige hypoteser svarer til restriktioner på parametrene. En faglig hypotese afprøves ved at undersøge (teste), om man kan acceptere en reduktion af modellen til en ny model, som er enklere ved at have færre parametre. Gør man sig det klart, kan man hurtigt lære at analysere temmelig komplicerede problemstillinger korrekt. Ydermere bliver analysen til at følge også for folk, som hverken er specialister på det faglige område eller er professionelle statistikere. Et tidsvarende brugerkursus i statistik må benytte EDB og en statistisk programpakke. Ved dette kursus er valgt regnearket Excel og den statistik pakke der under navnet Dataanalyse optræder som et tilføjelsesprogram til Excel, men der er ikke benyttet faciliteter, som er specielle for denne statistik pakke, og bogen kan uden vanskelighed anvendes sammen med andre statistiske programpakker. Argumentet for at benytte Excel er, at regnearket er tilgængeligt på de fleste PC-er imodsætning til mere kostbare og specialiserede statistiske programpakker såsom for eksempel SAS, Genstat og BMDP. Disse programpakker er designet specielt til brug i forbindelse med statistisk analyse og kan derfor udføre beregningerne i meget mere avancerede statistiske modeller end regnearket Excel kan. Disse noter demonsterer forhåbenligt at i forbindelse med et elementært kursus i statistik er Excel et brugbart alternativ. Når man bruger statistiske programpakker i undervisningen bliver modellerne, som beskrevet ovenfor, det faste holdepunkt når man skal orientere sig i udskrifterne. Man kan bruge en programpakke til statistisk analyse, når man har lært dels at specificere modeller i programpakken og dels at teste reduktionen fra én model til en simplere ved at hente relevante oplysninger ud fra udskrifterne fra estimationen i de to modeller.

4 iv Kun få kan lære statistik uden at få metoderne ind gennem fingrene. Vi har derfor valgt både at præsentere, hvordan de enkleste modeller kan regnes på lommeregner, og hvordan de kan regnes ved at orientere sig i udskrifter fra en programpakke. For normalfordelte data vises både for én, to og k observationsrækker, samt én regressionslinje, hvordan modellerne regnes igennem på lommegner, mens en mere kompliceret model som tosidet variansanalyse kun skal kunne klares med henvisning til programudskrifter. Et statistikkursus for studerende, der ikke har et vist kendskab til de mest basale begreber i sandsynlighedsteorien, fremstår for os som en umulighed. I Kapitel 2 introduceres og/eller repeteres disse begreber, der illustreres ved en række eksempler, som er valgt ud fra det princip, at de matematisk skulle være lette at håndtere. Kapitel 3 er at betragte som et katalog vedrørende definition af og egenskaber ved de fordelinger som anvendes i forbindelse med de statistiske modeller i de senere kapitler. Kaptitel 2 gennemgås efter diskussionen i Kapitel 1 af grafiske og numeriske metoder i forbindelse med beskrivende statistik. Herefter fortsættes med modellerne for normalfordelte data i Kapitel 4 idet de hertil relaterede fordelinger fra Kapitel 3 omtales undervejs. Efter adskillige eksempler på statistisk analyse i forbindelse med normalfordelingen i Kapitel 4 diskuteres hovedtrækkene i en analyse af en parametrisk statistisk model i generelle termer i Kapitel 5. Derefter gennemgås Kapitel 6 om multinomialfordelte data og Kapitel 7 om Poissonfordelte data. Bogen slutter med omtale af nogle simple ikke-parametriske test i Kapitel 8. Som nævnt ovenfor foretrækker vi at betragte parametriske statistiske modeller. Formålet med Kapitel 8 er at orientere læserne om at ikke alle deler denne holdning og for at give et kort indblik i de alternative metoder. Det vil være muligt at læse kapitlerne i en anden rækkefølge, men man skal være opmærksom på, at de statistiske grundbegreber som nulhypotese, test, testsandsynlighed, signifikansniveau og så videre gennemgås i forbindelse med Afsnit 4.2. Uden dataeksempler, som udspringer af en faglig problemstilling, bliver en lærebog til et brugerkursus i statistik temmelig uinteressant. En del af eksemplerne er taget fra Andersen (1998) Statistik for Idrætsstuderende med forfatterens tilladelse, hvilket vi er taknemmelige for. Vi vil også gerne takke medarbejdere og studerende ved Center for Idræt, Aarhus Universitet og ved Institut for Idræt, Københavns Universitet, som har stillet data og deres historie til rådighed for bogens eksempler og opgaver. Bogen er blevet brugt ved Idrætsstatistik i efteråret 2000 og bygger på erfaringer fra et lignede kursus i efteråret 1999 og en særlig tak går til Jakob Krabbe Pedersen og Lars Bo Kristensen for deres store indstats som instruktorer på disse to kurser og for deres påvisning af trykfejl. Bogen er skrevet LATEX, og Jacob Goldbach har skrevet de stylefiler i LATEX, som definerer

5 v udseendet af bogen, men derudover har Jacob Goldbach tålmodigt besvaret utallige spørgsmål om LATEX ligesom Frank Allan Hansen, Niels Væver Hartvig og Michael Kjærgård Sørensen velvilligt har assisteret os. I forhold til versionen af bogen fra maj 2001 er der rettet en del trykfejl og nogle få figurer er blevet tilføjet. Vi vil gerne takke Lars Madsen for meget kompetent bistand med LATEX spørgsmål i forbindelse med revisionen og Michael Kjærgård Sørensen for at have produceret de nye figurer. Århus, august 2005 Preben Blæsild og Jørgen Granfeldt

6 vi

7 INDHOLD vii Indhold 1 Data og beskrivende statistik Prik- og pindediagrammer Histogrammer Empiriske størrelser Grupperede data Kvalitative data Flerdimensionale data Anneks til Kapitel Opgaver til Kapitel Begreber fra sandsynlighedsteorien Sandsynlighedsrum Definition af sandsynlighedsmål Regneregler for sandsynligheder Betingede sandsynligheder og uafhængighed Stokastiske variable Diskrete stokastiske variable Kontinuerte stokastiske variable Stokastiske vektorer Diskrete stokastiske vektorer Kontinuerte stokastiske vektorer Marginale fordelinger Uafhængighed Betingede fordelinger Middelværdi og varians Opgaver til Kapitel

8 viii INDHOLD 3 Specielle fordelinger Normalfordelingen og relaterede fordelinger Normalfordelingen Den todimensionale normalfordeling χ 2 -fordelingen t-fordelingen F-fordelingen Diskrete fordelinger Binomialfordelingen Multinomialfordelingen Poissonfordelingen Den hypergeometriske fordeling Den negative binomialfordeling Opgaver til Kapitel Normalfordelte data Fraktilsammenligning Ugrupperede observationer Grupperede data Transformation Anneks til Afsnit Én observationsrække med kendt varians Anneks til Afsnit Hovedpunkter til Afsnit Én observationsrække med ukendt varians Anneks til Afsnit Hovedpunkter til Afsnit To observationsrækker Test for varianshomogenitet Ens varians Forskellig varians Parrede observationer Anneks til Afsnit Hovedpunkter til Afsnit k observationsrækker Test for varianshomogenitet

9 INDHOLD ix Test for ens middelværdier Forskelle og ligheder i behandlingen af to og k observationsrækker Notation og test i forbindelse med en følge af modeller Anneks til Afsnit Hovedpunkter til Afsnit Lineær regression Lineær regression uden gentagelser Lineær regression med gentagelser Hypoteser om regressionsparametrene Korrelation og/eller regression Anneks til Afsnit Hovedpunkter til Afsnit Tosidet variansanalyse Anneks til Afsnit Hovedpunkter til Afsnit Opgaver til Kapitel Indeks I.1 5 Statistisk analyse Data Modelopstilling Modelkontrol Statistisk inferens Likelihood inferens Begreber fra generel testteori Approksimativ likelihood teori Afsluttende bemærkninger Opgaver til Kapitel Multinomialfordelte data Eksempler Inferens i én multinomialfordeling Test af simpel hypotese Uafhængighed af inddelingskriterier Inferens i flere multinomialfordelinger

10 x INDHOLD Homogenitet af flere multinomialfordelinger Fishers eksakte test Test for goodness of fit Anneks til Kapitel Hovedpunkter til Kapitel Opgaver til Kapitel Poissonfordelte data Eksempler Sandsynlighedsteoretiske resultater vedrørende Poissonfordelingen Én observationsrække Inferens i flere fordelinger Poissonmodellen med proportionale parametre Den multiplikative Poissonmodel Anneks til Kapitel Hovedpunkter til Kapitel Opgaver til Kapitel Ikke-parametriske test Fortegnstestet Rangtest Wilcoxons test for én observationsrække Wilcoxons test for to observationsrækker Kruskal-Wallis test Anneks til Kapitel Hovedpunkter til Kapitel Opgaver til Kapitel A Forskellige matematiske begreber A.1 A.1 Notation fra mængdelæren A.1 A.2 Rækker A.3 A.3 Dobbeltintegraler og partiel differentiation A.4 A.3.1 Dobbeltintegraler A.5 A.3.2 Partiel differentiation A.5 B Simulerede fraktildiagrammer B.1

11 INDHOLD xi C Matematiske symboler C.1 D Det græske alfabet D.1 Indeks I.1

12 xii INDHOLD

13 1 Data og beskrivende statistik Data og beskrivende statistik Udgangspunktet for en statistisk analyse er et datasæt x, der er resultatet af et eksperiment, udført med det formål at få indblik i en speciel faglig sammenhæng. Betegnelsen eksperiment skal her forstås i en bred forstand. Data fra idræt kan eksempelvis være bestemmelser af kondital, hæmaglobinindhold, hæmatokritværdier eller andre fysiologiske størrelser hos en gruppe af personer. Ofte foretages disse målinger på den samme gruppe personer til forskellige tidspunkter for at vurdere effekten på disse størrelser af træning, konkurrence eller andre påvirkninger. Data kan også være resultater af konkurrencer eller turneringer indsamlet med henblik på at sammenligne personers eller holds præstationer. Karakteristisk for et datasæt x i et eksperiment er, at det er stokastisk; det vil sige, at hvis man gentager eksperimentet eller målingerne under lignende omstændigheder, bliver resultatet ikke nødvendigvis x. Dette er i modsætning til en deterministisk situation, hvor udfald på forhånd kan bestemmes med sikkerhed. Men selv om udfaldene af eksperimentet ikke kan angives på forhånd er der ofte en regelmæssighed på et højere niveau, som man netop kan erkende, hvis forsøget gentages mange gange. En byggesten i beskrivelsen af et eksperiment er derfor en sandsynlighedsteoretisk model. De relevante begreber fra sandsynlighedsteorien er resumeret i Kapitel 2. Her nævner vi blot, at en sandsynlighedsteoretisk model består af tre komponenter: 1) udfaldsrummet, X, som er samtlige værdier (udfald), som eksperimentet kan få; 2) hændelsessystemet, F, som omfatter alle de hændelser vi vil betragte; og 3) sandsynlighedsmålet, P, som angiver sandsynligheden af alle hændelser i F. Det stokastiske element i et eksperiment beskrives af hændelsessystemet og sandsynlighedsmålet, som beskriver alle hændelser vi er interesserede i og deres sandsynligheder. Vi beskriver ofte det stokastiske ved et datasæt ved at opfatte data x som en udfald af en stokastisk vektor X hvis fordeling er bestemt af sandsynlighedsmålet P. Det første punkt i en statistisk analyse er at opstille en brugbar statistisk model for det aktuelle datasæt, hvilket undertiden kan være en besværlig opgave. Dette punkt er ofte det vanskeligste i en statistisk analyse. Mange faktorer spiller ind, når en model for data skal opstilles, for eksempel måden data er indsamlet på, information om den faglige problemstilling data skal

14 1.2 belyse, erfaringer - personlige eller erhvervet ved litteraturstudier - fra analyser af lignende problemer. Statistikeren benytter sig ved modelformuleringen af information, som stammer fra forskellige sammenfatninger af data, såsom tabelleringer og/eller grafiske repræsentationer af data. Ved modelopstillingen skal man tage højde for, at den statistiske model skal være tilstrækkelig simpel fra et matematisk synspunkt, således at den er til at håndtere, og samtidig tilstrækkelig struktureret til at give relevant information om den faglige problemstilling, som undersøges. Endelig skal modellen naturligvis give en rimelig god beskrivelse af data for at kunne anvendes i den videre analyse. Som det vil fremgå af de kommende kapitler, er grafiske undersøgelser relevante på så at sige alle stadier af en statistisk analyse. I dette kapitel diskuterer vi forskellige numeriske og grafiske procedurer, der er relevante i den indledende fase af en statistisk analyse, hvor man skaffer sig overblik over data. Disse procedurer er en del af det, der omtales som beskrivende eller deskriptiv statistik. Vi vil udelukkende betragte data, som enten er kvalitative eller kvantitative, det vil sige data, der fremkommer enten ved at tælle eller ved at måle. For sådanne datasæt består de relevante fordelingsklasser af henholdsvis diskrete fordelinger og kontinuerte fordelinger, se Kapitel 2. Vi skelner desuden mellem grupperede data og ugrupperede data. Hvis et datasæt består af n observationer, og hvis værdierne x 1,x 2,...,x n af alle n observationer kendes, siges datasættet at være ugrupperet. Undertiden er udfaldsrummet X for observationerne opdelt i m disjunkte mængder A 1,...,A m og i stedet for at angive de n observationer x 1,x 2,...,x n angiver man kun a 1,a 2,...,a m, hvor a j betegner antallet af observationer der tilhører A j, j = 1,2,...,m. I så tilfælde omtales a 1,a 2,...,a m som et grupperet datasæt. Delmængderne A j, j = 1,2,...,m, vælges sædvanligvis som intervaller på den reelle akse. En stor del af kapitlet beskæftiger sig med modeller for én observationsrække. Ved én observationsrække på n observationer forstår vi n uafhængige observationer x 1,x 2,...,x n fra den samme fordeling. Undertiden bruger man i stedet for sprogbrugen en stikprøve af størrelse n. Vi giver nogle simple numeriske og grafiske metoder, som opsummerer data og som giver nogle indikationer vedrørende formen af den fælles fordeling af observationerne. I Afsnit 1.1 betragter vi prikdiagrammer og pindediagrammer og Afsnit 1.2 og Afsnit 1.3 vedrører ugrupperede kvantitative data. I Afsnit 1.2 diskuteres histogrammer og i Afsnit 1.3 indføres forskellige numeriske størrelser, der bruges til at beskrive den observerede fordeling. Afsnit 1.4 vedrører grupperede kvantitative data mens kvalitative data omtales i Afsnit 1.5. Endelig indeholder Afsnit 1.6 nogle få bemærkninger om flerdimensionale data. I et anneks til kapitlet gøres der rede for hvorledes udvalgte beregninger og tegninger kan laves ved hjælp af Excel. Til sidst i kapitlet er der en lille samling af opgaver.

15 1 Data og beskrivende statistik 1.3 I kapitlet betragter vi blandt andet de 3 nedenstående eksempler. Eksempel 1.1 De følgende data stammer fra en undersøgelse fra Odense amt af børn, der lider af astma. Undersøgelsen er foretaget af professor Bent Juhl, Aarhus Kommunehospital, i perioden 1. december 1968 til 3. marts Der blev foretaget 14 forskellige målinger på hvert barn og blandt disse var målinger af højden. Blandt børnene var der 247 piger, der på undersøgelsestidspunktet var mellem 10 og 12 år. Målingerne af højden (i cm) af disse piger er angivet i Tabel 1.1. Højden er en kvantitativ - kontinuert - variabel og datasættet er ugrupperet, fordi højden blev målt og angivet i cm. Bemærk imidlertid, at hvis højderne oprindeligt var blevet målt i mm og - som her - angivet i cm ville datasættet være grupperet Tabel 1.1 Højden (i cm) af 247 astmaplagede piger i alderen år. Eksempel 1.2 Tabel 1.2 viser konditallene for 20 eliteidrætsudøvere. Tallene er fra Andersen (1998). Datasæt-

16 Prik- og pindediagrammer tet er ugrupperet og konditallet er en kvantitativ - kontinuert - variabel Tabel 1.2 Kondital for 20 eliteidrætsudøvere. Eksempel 1.3 I Tabel 1.3 er vist resultatet af Faxe Kondi Ligaen For hvert af 12 hold er vist antal kampe (k), antal vundne kampe (v), antal uafgjorte kampe (u), antal tabte kampe (t), antal mål for, antal mål imod og antal point (p) for henholdsvis hjemmebanekampe, udebanekampe og totalt. Samtlige variable er kvalitative. Tabel 1.3 Resultatet af Faxe Kondi Ligaen Prik- og pindediagrammer Prikdiagrammet er en grafisk procedure, der opsummerer data og som kan give et første indtryk af den underliggende fordeling af data. Prikdiagrammet konstrueres ved at indtegne data i et koordinatsystem på følgende måde. For hver observation afsættes en prik over det punkt på førsteaksen, som svarer til værdien af observationen. (Af typografiske årsager bruger vi i stedet for til at repræsentere observationerne med.) Prikdiagrammet kan også benyttes til at ordne observationerne efter størrelse, hvis data ikke foreligger på elektronisk form.

17 1.5 Figur 1.1 Prikdiagrammet for højderne i Tabel 1.1. Eksempel 1.1 (Fortsat) Prikdiagrammet for data i Tabel 1.1 er vist i Figur 1.1. Pindediagrammet eller søjlediagrammet bruges til at repræsentere data, der er grupperede i intervaller. For hvert interval anbringes over midtpunktet af intervallet en pind, hvis højde er antallet (eller det relative antal) af observationer i intervallet. Eksempel 1.1 (Fortsat) Tabel 1.4 nedenfor viser resultatet af en gruppering af data i Tabel 1.1 svarende til en intervallængde på 4 cm. Det tilsvarende pindediagram er vist i Figur Histogrammer Hvis data er kontinuerte, laver man ofte et histogram for at få et indtryk af, hvorledes tæthedsfunktionen, se Kapitel 2, for den underliggende fordeling ser ud. Histogrammer kan derfor være af stor hjælp, når klassen af fordelinger i den statistiske model skal vælges. Et histogram konstrueres på følgende måde. De n observationer x 1, x 2,...,x n grupperes i

18 Histogrammer interval midtpunkt antal observationer ]112,116] ]116,120] ]120,124] ]124,128] ]128,132] ]132,136] ]136,140] ]140,144] ]144,148] ]148,152] ]152,156] ]156,160] ]160,164] ]164,168] Tabel 1.4 Observationerne i Tabel 1.1 grupperet i intervaller af længden 4 cm. Figur 1.2 Pindediagrammet for højderne i Tabel 1.4.

19 1.7 et antal intervaller. Lad m betegne dette antal og lad t 1,t 2,...,t m og t 1, t 2,..., t m betegne henholdsvis midtpunkterne og længderne af disse intervaller. Hvis a j betegner antallet af observationer i det j te interval og h j = a j /n den relative hyppighed af observationer i det j te interval, j = 1, 2,..., m, er histogrammet den trappefunktion h, der er givet ved h(t) = h j t j, hvis t ] t j t j 2, t j + t j 2 ]. (1.1) Bemærk, at i et histogram repræsenteres den relative hyppighed h j som arealet af et rektangel, som har sidelængderne t j og h j / t j. Derfor er det totale areal under trappefunktionen h lig med 1, summen af de relative hyppigheder. Hvis de m intervaller har samme længde t, det vil sige hvis t 1 = t 2 = = t m = t, betragter man, for at lette beregningerne, ofte funktionen h(t) = n th(t) = a j, hvis t ] t j t 2, t j + t 2 ] (1.2) i stedet for h. En tegning af denne funktion kaldes også et histogram. Bemærk, at arealet under h er n t, og bemærk desuden lighedspunkterne mellem denne form for et histogram og pindediagrammet, som blev omtalt i Afsnit 1.1. Figurerne nedenfor viser forskellige histogrammer for tallene i Tabel 1.1. I hver af disse figurer betragter vi den samme intervallængde, som varierer fra figur til figur. Det ses af figurerne, at det er vigtigt at vælge et passende antal intervaller for at få et indtryk af tæthedsfunktionen for den underliggende fordeling. For mange intervaller giver et irregulært indtryk af tæthedsfunktionen og for få intervaller giver for groft et indtryk. De fleste statistiske programpakker kan tegne histogrammer og i disse er default værdien af antallet m af intervaller ofte n. For tallene i Tabel 1.1 er n 16, og antallet af intervaller i Figur 1.2 og 1.6 er henholdsvis 19 og 14. Disse figurer antyder, at tæthedsfunktionen for den underliggende fordeling for tallene i Tabel 1.1 har det samme klokkeformede udseende som tæthedsfunktionen for normalfordelingen - se Figur 3.1, det vil sige figurerne antyder en statistisk model baseret på normalfordelingen for højderne i Tabel Empiriske størrelser I dette afsnit definerer vi nogle numeriske størrelser knyttet til en observationsrække x 1, x 2,..., x n af størrelsen n af en kvantitativ variabel. Formålet med disse størrelser er at beskrive variationen af observationerne på forskellig måde. Først introduceres lidt notation vedrørende reference til observationerne og værdierne af observationerne.

20 Empiriske størrelser Figur 1.3 Histogram for højden i cm for 247 piger. Intervallængde 1 cm. Figur 1.4 Histogram for højden i cm for 247 piger. Intervallængde 2 cm.

21 1.9 Figur 1.5 Histogram for højden i cm for 247 piger. Intervallængde 3 cm. Figur 1.6 Histogram for højden i cm for 247 piger. Intervallængde 4 cm.

22 Empiriske størrelser Figur 1.7 Histogram for højden i cm for 247 piger. Intervallængde 6 cm. Figur 1.8 Histogram for højden i cm for 247 piger. Intervallængde 12 cm.

23 1.11 Definition 1.1 Lad x 1,x 2,...,x n være en observationsrække af størrelsen n af en kvantitativ variabel. Den ordnede stikprøve x (1),x (2),...,x (i),...,x (n) er en opstilling af observationerne i stigende rækkefølge således at x (1) x (2) x (i) x (n). Rangen af observationerne defineres således: rang(x (i) ) = i, hvis x (i 1) < x (i) < x (i+1) rang(x (i) ) = = rang(x (i+k 1) ) = i+(k 1)/2, hvis x (i) = = x (i+k 1) (1.3) Rangen af observationen x (i) er altså i, hvis x (i) er den eneste observation med denne værdi, det vil sige hvis x (i 1) < x (i) < x (i+1). Hvis k observationer x (i),x (i+1),...,x (i+k 1) er lige store, det vil sige hvis x (i) = x (i+1) = = x (i+k 1), tildeles de alle rangen i + (k 1)/2, som er gennemsnittet af de k tal i,i+1,...,i+k 1. De ordnede værdier i stikprøven er de forskellige værdier y 1,y 2,...,y m, som observationerne i stikprøven antager, ordnet efter størrelse, det vil sige y 1 < y 2 < < y m. (1.4) For j = 1,...,m betegnes antallet af observationer med værdien y j med a j og det kumulerede antal med k j, det vil sige at k j = a 1 + +a j. Bemærkning I den ordnede stikprøve er det observationerne, der ordnes efter størrelse, mens det ved de ordnede værdier er værdierne, der ordnes efter størrelse. Hvis der er to eller flere observationer, der antager samme værdi, er antallet m af forskellige værdier i stikprøven mindre end antallet n af observationer i stikprøven. Eksempel 1.4 De forskellige størrelser i Definition 1.1 er illustreret i nedenstående tabel for 10 hypotetiske

24 Empiriske størrelser kondital. i x i x (i) rang(x (i) ) y i a i k i Definition 1.2 Den empiriske fordelingsfunktion F n svarende til observationerne x 1,x 2,...,x n er defineret ved F n (x) = #{i : x i x}, x R. (1.5) n Den empiriske fordelingsfunktion F n er altså en trappefunktion, hvis spring er multipla af 1/n og for ethvert x R er tallet F n (x) blot den relative hyppighed af observationer i datasættet som er mindre end eller lig med x. Helt præcist har F n spring i de m ordnede værdier y 1,y 2,...,y m og springet i y i er a i /n, i = 1,...,m, se Figur 1.9. Den empiriske fordelingsfunktion F n er fuldstændigt bestemt af sine fraktiler, der defineres således: Definition 1.3 For ethvert p [0,1] er p-fraktilen for den empiriske fordelingsfunktion F n mængden x p givet ved x p = {x R : F n (x ) p F n (x)}, hvor F n (x ) betegner grænseværdien fra venstre af F n i punktet x. Specielt kaldes x 0.50 ofte for den empiriske median, mens x 0.25 og x 0.75 kaldes henholdsvis nedre og øvre empiriske kvartil. Hvis vi supplerer notationen i Definition 1.1 med at sætte k 0 = 0 gælder der, at y j er p-fraktil for alle værdier af p i intervallet [ k j 1 /n,k j /n ]. I anvendelser er vi kun interesseret i at udpege

25 1.13 Figur 1.9 Den empiriske fordelingsfunktion F n for data i Eksempel 1.4. I den øverste figur er de valgte p-værdier antydet med og i den nederste figur er fraktilerne x p antydet med.

26 Empiriske størrelser nummer observation antal kumulerede antal sandsynlighed i % j y a k p i % 1 y 1 a 1 k 1 = a 1 p 1 = 100 k 1 /(2n) 2 y 2 a 2 k 2 = a 1 + a 2 p 2 = 100 (k 1 + k 2 )/(2n) 3 y 3 a 3 k 3 = a 1 + a 2 + a 3 p 3 = 100 (k 2 + k 3 )/(2n) j y j a j k j = a 1 + +a j p j = 100 (k j 1 + k j )/(2n) m y m a m k m = a 1 + +a m p m = 100 (k m 1 + k m )/(2n) Tabel 1.5 Beregningsskema for fraktiler for et ugrupperet datasæt. én værdi p j af p for hvilken y j er p-fraktil og vi vælger derfor p j som midtpunkt af intervallet [ k j 1 /n,k j /n ], det vil sige p j = (k j 1 + k j )/(2n). Beregningerne kan foretages ved hjælp af skemaet i Tabel 1.5. Hvis p = k j /n, j = 1,...,m 1 er p-fraktilen et interval, nemlig x p = [ y j,y j+1 ], og vil vi blot udpege en enkelt værdi x p af x svarende til p forekommer det naturligt at vælge midtpunktet af dette interval, det vil sige x p = (y j + y j+1 )/2. Hvis k j /n < p < k j+1 /n, j = 0,...,m 1, er p-fraktilen x p blot punktet y j+1 og vi sætter x p = x p = y j+1. Beregningen af størrelserne x p kan foretages ved hjælp beregningsskemaet i Tabel 1.5. Givet en værdi af p beregnes np. Hvis np = k j er x p = (y j + y j+1 )/2. og hvis k j < np < k j+1 er x p = y j+1. Eksempel 1.4 (Fortsat) For de 10 hypotetiske kondital i dette eksempel er den empiriske fordelingsfunktion vist i Figur

27 og beregningsskemaet i Tabel 1.5 er nummer observation antal kumulerede antal sandsynlighed i % j y a k p i % Vi viser nu beregningen af x p for udvalgte p-værdier: p = 0.10 np = 1 np = k 1 x 0.1 = (y 1 + y 2 )/2 = ( )/2 = 63.5 p = 0.25 np = 2.5 k 2 < np < k 3 x 0.25 = y 3 = 65.0 p = 0.50 np = 5 np = k 3 x 0.50 = (y 3 + y 4 )/2 = ( )/2 = p = 0.75 np = 7.5 k 5 < np < k 6 x 0.75 = y 6 = 69.8 p = 0.90 np = 9 np = k 6 x 0.90 = (y 6 + y 7 )/2 = ( )/2 = Definition 1.4 Fempunktsopsummeringen for en observationsrække x 1, x 2,..., x n af størrelsen n er angivelse af de fem fraktiler x p svarende til p-værdierne 0.10, 0.25, 0.50, 0.75, 0.90, det vil sige talsættet (x 0.10,x 0.25,x 0.50,x 0.75,x 0.90 ). Kvartilafstanden er afstanden mellem den øvre og nedre kvartil, det vil sige størrelsen d = x 0.75 x Medianen x 0.50 angiver observationsrækkens centrale punkt og de to kvartiler, x 0.25 og x 0.75 afgrænser den centrale del. Kvartilafstanden er et mål for fordelingens spredning. Hvis vi kalder gruppen af de 10% mindste observationer fordelingens venstre hale og gruppen af de 10% største observationer for fordelingens højre hale, angiver x 0.10 og x 0.90 hvor langt fordelingens haler ligger fra den centrale del. En stikprøve kaldes symmetrisk hvis dens fordeling har samme form til højre og til venstre for medianen, det vil sige hvis x 0.50 x p x 1 p x 0.50 for alle p ]0,0.5].

28 Empiriske størrelser I en symmetrisk stikprøve har højre og venstre hale samme form. En stikprøve kaldes højreskæv hvis den højre hale ligger længere væk fra medianen end den venstre hale. Tilsvarende, er skikprøven venstreskæv, hvis den venstre hale ligger længst væk. Ofte illustreres fempunktsopsummeringen grafisk ved hjælp af et kassediagram, som fremkommer ved at tegne lodrette linjer gennem medianen og de to kvartiler og forbinde stregerne gennem kvartilerne med vandrette linjer. Herved fremkommer en kasse, der illustrerer den centrale del af fordelingen. For at vise længden af fordelingens haler tegnes undertiden linjer ud til x 0.10 og x 0.90 og endelig markeres observationer mindre end x 0.10 og eller større end x 0.90 med et. Eksempel 1.4 (Fortsat) For de 10 hypotetiske kondital er fempunktsopsummeringen (x 0.10,x 0.25,x 0.50,x 0.75,x 0.90 ) = (63.5,65.0,66.45,69.8,70.35) og kvartil afstanden er d = = 4.8. Kassediagrammet i Figur 1.10 viser, at fordelingen højreskæv og dermed ikke er symmetrisk. Figur 1.10 Kassediagrammet for data i Eksempel 1.4. Den empiriske median og kvartilafstanden er mål for henholdsvis fordelingens position og bredde eller spredning. Alternative - og mere benyttede - mål for disse størrelser er: Definition 1.5 Den empiriske middelværdi x, den empiriske varians s 2 og den empiriske spredning s for en observationsrække x 1, x 2,..., x n af størrelsen n er: x = 1 n n i=1 x i, (1.6)

29 1.17 og s 2 = 1 n 1 s = s 2 = n i=1 1 n 1 (x i x ) 2 (1.7) n i=1 (x i x ) 2. (1.8) Bemærkning Som det ses er den empiriske middelværdi x blot gennemsnittet af observationerne. Den empiriske varians s 2 er et mål for variationen af observationerne. Det fremkommer ved at beregne en normeret sum af den kvadratiske afstand (x i x ) 2 mellem observationerne x i og gennemsnittet x, som et mål for hvor meget observationerne varierer omkring gennemsnittet. Hvis for eksempel målingerne x i er foretaget i enheden cm, er enheden for s 2, den empiriske varians, cm 2. Ved at betragte den empiriske spredning s fremkommer et mål for variationen der har samme enhed - i eksemplet cm - som de enkelte observationer. Den empiriske middelværdi x og den empiriske varians s 2 beregnes lettest ud fra S = n i=1 x i og SK = n i=1 Summen af observationerne og Summen af Kvadraterne af observationerne, idet x 2 i, x = S n (1.9) og n i=1 (x i x ) 2 = = n i=1 n i=1 (x 2 i + x2 2x i x ) x 2 i + n x 2 2 x = SK + n S2 n 2 2S n S = SK S2 n. n x i i=1 Idet størrelsen n i=1 (x i x ) 2 ofte betegnes med SAK - Summen af Afvigelsernes Kvadrater - fås at s 2 = 1 n 1 SAK = 1 S2 (SK ). (1.10) n 1 n

30 Grupperede data Bemærk, at i denne formel optræder både S, som er summen af observationerne, og s, som er den empiriske spredning eller kvadratroden af den empiriske varians. Forveksles disse størrelser bliver resultatet oftest katastrofalt forkert. Eksempel 1.4 (Fortsat) For de 10 hypotetiske kondital er S = og SK = , så ved hjælp af (1.9), (1.10) og (1.8) finder vi - med 5 decimalers nøjagtighed - x = = 66.88, og s 2 = ( ) = s = = Grupperede data Med nogen modvilje giver vi dette afsnit med en kort diskussion af empiriske størrelser for kontinuerte og grupperede data. Modviljen skyldes den kendsgerning, at kontinuerte og grupperede data sjældent forekommer i virkeligheden. Som oftest stammer data af denne type fra en gruppering af et ugrupperet datasæt. Motivationen for denne gruppering er næsten altid af praktisk art, såsom at spare plads i tidsskrifter, bøger mm., og yderst sjældent videnskabelig. Proceduren med at gruppere data kan illustreres ved data i Tabel 1.1 og 1.4. Data i Tabel 1.4 repræsenterer en opsummering af de oprindelige data i Tabel 1.1, som oplagt ikke indeholder den samme information som de oprindelige data. Statistiske procedurer bør benytte al information i data og ikke kun en del heraf. Imidlertid er datasæt i litteraturen, specielt ældre litteratur, ofte grupperede, hvilket er grunden til, at empiriske størrelser for grupperede data også bliver omtalt her. Antag, at antallet af observationer i de m intervaller ]y 0,y 1 ],]y 1,y 2 ],...,]y m 1,y m ] er a 1, a 2,..., a m. For j = 1, 2,...,m lader vi k j = a 1 + a a j betegne det kumulerede antal observationer. Bemærk, at k m = n, det totale antal observationer. Desuden lader vi t j = (y j + y j 1 )/2 betegne midtpunket af det j te interval, j = 1,...,m.

31 1.19 nummer højre endepunkt midtpunkt antal kumulerede antal sandsynlighed i % j y t a k p i % 1 y 1 t 1 a 1 k 1 = a 1 p 1 = 100 k 1 /n 2 y 2 t 2 a 2 k 2 = a 1 + a 2 p 2 = 100 k 2 /n 3 y 3 t 3 a 3 k 3 = a 1 + a 2 + a 3 p 3 = 100 k 3 /n j y j t j a j k j = a 1 + +a j p j = 100 k j /n m 1 y m 1 t m 1 a m 1 k m 1 = a 1 + +a m 1 p m 1 = 100 k m 1 /n m y m t m a m k m = n p m = 100 Tabel 1.6 Skema til beregning af empiriske størrelser for grupperede data. For et grupperet datasæt kendes den empiriske fordelingsfunktion F n kun i de højre intervalendepunkter y 1,y 2,...,y m. Vi lader derfor p j = F n (y j ) = k j /n, j = 1,...,m, og for p = k j /n sætter vi x p = y j. Beregningen af p-værdierne kan foretages ved hjælp af skemaet i Tabel 1.6. Beregningerne af andre empiriske størrelser foretages ofte på grundlag af en ugrupperet version af de grupperede data, som fremkommer ved at antage at midtpunktet t j af det j te interval er en værdi, som er blevet observeret a j gange, j = 1,...,m. Den empiriske fordelingsfunktion for det grupperede datasæt approksimeres ved den empiriske fordelingsfunktion for den ugrupperede version, se Figur For k j /n < p < k j+1 /n sætter vi x p = t j+1. Størrelserne x p bestemmes let ud fra Tabel 1.6. Givet en værdi af p beregnes np. Hvis np = k j er x p = y j og hvis k j < np < k j+1 er x p = t j+1. Summen S og kvadratsummen SK for de grupperede data beregnes som de tilsvarende

32 Grupperede data størrelser for den ugrupperede version, det vil sige, at S = m m a j t j og SK = a j t 2 j, (1.11) j=1 j=1 hvorefter beregningsformlerne for middelværdi og varians i (1.9) og (1.10) benyttes, det vil sige, at x = S n (1.12) og s 2 = 1 S2 (SK ). (1.13) n 1 n Eksempel 1.1 (Fortsat) Antag, at vi kun kendte den grupperede version af data i Tabel 1.4 og ikke de oprindelige data i Tabel 1.1. Hvilken forskel giver dette med hensyn til den beskrivende statistik? I Figur 1.11 ses øverst den empiriske fordelingsfunktion for de oprindelige data og nederst den empiriske fordelingsfunktion for de grupperede data og den ugrupperede version af disse. Tabel 1.6 for de grupperede data i Tabel 1.4 ser således ud: nummer højre endepunkt midtpunkt antal kumulerede antal sandsynlighed i % j y t a k p i % Fempunktsopsummeringen er (x 0.10,x 0.25,x 0.50,x 0.75,x 0.90 ) = (126,134,138,146,154).

33 1.21 Figur 1.11 Øverst ses den empiriske fordelingsfunktion for data i Tabel 1.1 og nederst den empiriske fordelingsfunktion for data i Tabel 1.4 og for den ugrupperede version (- - -) af disse data. De valgte p-værdier antydet med.

34 Grupperede data Hvis for eksempel p = 0.75 er np = = , det vil sige at j = 8 og x 0.75 = t 9 = 146. Da bliver S = a j t j = og SK = a j t 2 j = j=1 j=1 x = = og s2 = ( ) = For de oprindelige data i 1.1 ser en del af skemaet i Tabel 1.5 således ud: nummer observation antal kumulerede antal sandsynlighed i % j y a k p i % Fempunktsopsummeringen for de oprindelige data i Tabel 1.1 ses at være (x 0.10,x 0.25,x 0.50,x 0.75,x 0.90 ) = (128,134,140,146,153). I tabellerne nedenfor resumeres vi de beregnede størrelser for de oprindelige data og de grupperede data: data S SK x s 2 oprindelige (Tabel 1.1) grupperede (Tabel 1.4)

35 1.23 data x 0.10 x 0.25 x 0.50 x 0.75 x 0.90 oprindelige (Tabel 1.1) grupperede (Tabel 1.4) Det ses, at der er nogen forskel mellem resultaterne for de to datasæt. Med hensyn til den beskrivende statistik er denne forskel dog næppe af større betydning. Med hensyn til de mere eksakte beregninger i de kommende kapitler kan forskellen dog være vigtig. Det skal understreges igen, at når man som her har de oprindelige data til rådighed skal disse benyttes. Grunden til her at betragte de grupperede data er primært at illustrere beregningerne for grupperede datasæt og - sekundært - at sammenligne med resultaterne med de oprindelige data, som vi har til rådighed i denne situation. Det er - som nævnt indledningsvis - desværre ikke altid tilfældet. 1.5 Kvalitative data I dette afsnit betragter vi kvalitative eller diskrete data. Situationen er typisk, at der foreligger data, der er fremkommet ved optælling af antallet af observationer i forskellige navngivne kategorier. Kategorierne kan være numeriske, det vil sige navngivet ved hjælp af en numerisk variabel. Hvis dette er tilfældet kan situationen sammenlignes med grupperede data for en kvantitativ - kontinuert - variabel idet navnene på kategorierne da svarer til de forskellige intervaller, som data er grupperet i. Hvis kategorierne ikke er numeriske, kan observationer ikke naturligt ordnes efter størrelse. Fordelingen af en stikprøve af størrelse n af en diskret variabel kan beskrives ved hyppigheden - eller den relative hyppighed - af antallet af observationer i de forskellige kategorier. Hvis der er m kategorier og antallet af observationer i den j te kategori er a j, j = 1,...,m, er den relative hyppighed for den j te kategori h j = a j /n. Tabeller over de observerede antal a - eller de relative hyppigheder h - i de m kategorier suppleres ofte med grafiske repræsentationer af data. I Excel er der forskellige muligheder for at præsentere data, herunder søjlediagrammer, blokdiagrammer og lagkagediagrammer. I et søjlediagram illustreres antallet af observationer a j i den j te kategori som søjler, der har en højde der typisk er antallet a j eller det relative antal h j af observationer i kategorien. I et blokdiagram tegnes en blok med sektioner, der udgør samme andel af blokken som hyppighederne for de enkelte kategorier. I et lagkagediagram repræsenteres hyppighederne for kategorierne ved stykker af lagkagen, der udgør samme andel af lagkagen som hyppighederne for kategorierne. Eksempel 1.3 (Fortsat)

36 Kvalitative data Tabellen nedenfor viser antallet af mål som de 12 superligaklubber har scoret på henholdsvis hjemme- og udebane. klub hjemme ude HB BIF AB VFF AAB SIF LCF FCK OB AGF VB EFB Her er der ialt 24 kategorier med navne (HB, hjemme), (HB, ude),..., (EFB, ude). Søjlediagrammet for data er vist i Figur Det mest bemærkelsesværdige er at de 5 svagest placerede klubber - pånær AGF - scorer relativt godt på udebane i modsætning til de to højest placerede klubber. For den enkelte klub har det måske større interesse at se påholdets præstationer på hjemmeog udebane. For AGF s vedkommende kan resultaterne i kampene resumeres således: AGF sejr uafgjort nederlag hjemme ude Her er der 6 kategorier med navne (hjemme, sejr),..., (ude, nederlag). Det tilsvarende søjlediagram i Figur 1.13 viser, at klubben er relativ stærk på hjemmebane men svag på udebane. Figur 1.14 viser blokdiagrammet, hvoraf det fremgår at små 80% (præcist 77.78%) af AGF s sejre er vundet hjemme. I eksemplerne ovenfor var kategorierne ikke navngivet med en numeriske variabel og det har derfor ingen mening at regne empiriske størrelser såsom fraktiler, middelværdi og varians. Vi giver nu et eksempel hvor kategorierne er navngivet ved hjælp af en numerisk variabel og hvor beregning af numeriske størrelser er relevant.

37 !!" # $ % &'())( *+( 1.25,-. Figur 1.12 Antal mål scoret hjemme og ude af de 12 klubber i Superligaen / 40 / B76CC6D 9:;<7=8> Figur 1.13 Resultaterne af AGF s kampe på hjemme- og udebane i sæsonen

38 Kvalitative data Figur 1.14 Resultaterne af AGF s kampe på hjemme- og udebane i sæsonen i et blokdiagram. Eksempel 1.3 (Fortsat) Anden og tredje søjle i tabellen nedenfor viser fordelingen af mål i de 198 superligakampe i sæsonen Kategorierne 0, 1,..., 10 er numeriske. nummer antal antal kumulerede p mål kampe antal i % j x a k p Søjlediagrammet er vist i Figur De resterende søjler i tabellen er udfyldt som i beregningsskemaet for et ugrupperet datasæt i Tabel 1.5, idet vi her kender værdierne af alle 198 observationer. Ud fra skemaet kan

39 ! "#$%& 1.27 Figur 1.15 Fordelingen af antal mål i de 198 kampe i superligaen fempunktsopsummeringen beregnes til (x 0.10,x 0.25,x 0.50,x 0.75,x 0.90 ) = (1,2,3,4,5). Da summen og kvadratsummen af antal scorede mål er S = a j x j = 573 og SK = a j x 2 j = 2265 j=1 j=1 er den empiriske middelværdi og empiriske varians for antal scorede mål henholdsvis x = = 2.89 og s 2 = ( ) = Flerdimensionale data Indtil nu har vi udelukkende betragtet endimensionale data, det vil sige data hvor observationerne betår af et enkelt tal. Ofte registreres mere end et tal for hver observation og vi taler da om at data er flerdimensionale. I dette afsnit indføres notationen for todimensionale data.

40 Flerdimensionale data Eksempel 1.5 Data er fra Andersen (1998) og i tabellen nedenfor er vist muskelglycogen (i mmol/kg tørvægt) for 8 forsøgspersoners venstre og højre ben. Forsøgsperson nummer venstre ben højre ben For hver af de 8 forsøgspersoner har vi to sammenhørende målinger af muskelglycogen i henholdsvis venstre og højre ben, så data er to-dimensionale. Lad (x 11,x 21 ),...,(x 1 j,x 2 j ),...,(x 1n,x 2n ) betegne en stikprøve af størrelse n af en to-dimensional variabel. Foruden at få et indtryk af de to stikprøver x 11,...,x 1 j,...,x 1n og x 21,...,x 2 j,..., x 2n bestående af henholdsvis første og anden komponenterne, er det også vigtigt at få et indtryk samvariationen af de to komponenter. Denne kan belyses ved at indtegne observationerne (x 1 j,x 2 j ), j = 1,...,n, i et koordinatsystem. En numeriske størrelse, der angiver et mål for samvariationen af komponenterne i et todimensionalt datasæt, er den empiriske korrelationskoefficient. For at indføre denne behøver vi noget notation. For i = 1,2 lader vi S i, SK i, SAK i, x i og s 2 i betegne henholdsvis Summen af observationerne, Summen af Kvadraterne af observationer, Summen af Afvigelserne Kvadrater, den empiske middelværdi og den empiriske varians for den i te komponent af observationerne, det vil sige SAK i = S i = n j=1 n n x i j, SK i = x 2 i j, j=1 j=1 x i = S i n, (1.14) (x i j x i ) 2 = SK i S2 i n, s2 i = 1 n 1 SAK i. (1.15) Desuden lader vi SP og SAP betegne Summen af Produkter og Summen af Afvigelsernes Produkter, det vil sige SP = n x 1 j x 2 j, SAP = j=1 n j=1 (x 1 j x 1 )(x 2 j x 2 ) = SP S 1S 2 n. (1.16)

41 1.29 Det kan vises, at den empiriske korrelationskoefficient r, der er defineret som r = n n j=1 (x 1 j x 1 )(x 2 j x 2 ) = (x 1 j x 1 ) 2 n (x 2 j x 2 ) 2 j=1 j=1 SAP SAK1 SAK 2, (1.17) antager værdier i intervallet [ 1, 1]. Fortolkningen af r er, at for store værdier af r optræder store(små) værdier af første komponenten sammen med store(små) værdier af anden komponenten og i det ekstreme tilfælde hvor r = 1 ligger punkterne (x 1 j,x 2 j ), j = 1,...,n, på en ret linje med positiv hældning. Hvis omvendt r er lille optræder store(små) værdier af første komponenten sammen med små(store) værdier af anden komponenten og i det ekstreme tilfælde hvor r = 1 ligger punkterne (x 1 j,x 2 j ), j = 1,...,n, på en ret linje med negativ hældning. Hvis r er tæt på 0 er der ingen sammenhæng mellem første og anden komponenten. Eksempel 1.5 (Fortsat) Tegningen af data i Figur 1.16, antyder en positiv korrelation. For data her er venstre ben n 8 højre ben S SK SP Ved hjælp af formlerne (1.14) - (1.17) finder vi, x 1 = SAK 1 = s 2 1 = = , x 2 = = , = , SAK 2 = = , s 2 2 = = , = , og SAP = r = = =

42 Flerdimensionale data Figur 1.16 Muskelglycogen indholdet i venstre og højre ben tegnet op mod hinanden.

IDRÆTSSTATISTIK BIND 2

IDRÆTSSTATISTIK BIND 2 IDRÆTSSTATISTIK BIND 2 ii Det Naturvidenskabelige Fakultet Aarhus Universitet Reprocenter Preben Blæsild og Jørgen Granfeldt 2001 ISBN 87-87436-07-8 Bd.2 iii Forord Denne bog er skrevet til brug i et statistikkursus

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag Jens Ledet Jensen på data, og statistik er derfor et nødvendigt værktøj i disse sammenhænge. Gennem konkrete datasæt og problemstillinger giver Statistik viden fra data en grundig indføring i de basale

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Noter til Statistik. Lisbeth Tavs Gregersen. 1. udgave

Noter til Statistik. Lisbeth Tavs Gregersen. 1. udgave Noter til Statistik Lisbeth Tavs Gregersen 1. udgave 1 Indhold 1 Intro 3 1.1 HF Bekendtgørelsen........................ 3 1.2 Deskriptiv statistik......................... 3 2 Ikke-grupperet Talmateriale

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

brikkerne til regning & matematik statistik preben bernitt

brikkerne til regning & matematik statistik preben bernitt brikkerne til regning & matematik statistik 2+ preben bernitt brikkerne til regning & matematik statistik 2+ 1. udgave som E-bog ISBN: 978-87-92488-33-6 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

Statistik (deskriptiv)

Statistik (deskriptiv) Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Statistisk beskrivelse og test

Statistisk beskrivelse og test Statistisk beskrivelse og test 005 Karsten Juul Kapitel 1. Intervalhyppigheder Afsnit 1.1: Histogram En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid

Læs mere

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå.

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Hvis man fx samler de karakterer, der er givet til en eksamen i én stor bunke (se herunder), kan det være svært

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Et CAS program til Word.

Et CAS program til Word. Et CAS program til Word. 1 WordMat WordMat er et CAS-program (computer algebra system) som man kan downloade gratis fra hjemmesiden www.eduap.com/wordmat/. Programmet fungerer kun i Word 2007 og 2010.

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Hvad er meningen? Et forløb om opinionsundersøgelser

Hvad er meningen? Et forløb om opinionsundersøgelser Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2014 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik niveau

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2015 Institution Vejen Business College Uddannelse Fag og niveau HHX Matematik niveau B Lærer(e)

Læs mere

Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres)

Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Til Gribskovløbet 006 gennemførte 118 kvinder 1,4 km distancen. Fordelingen af kvindernes løbstider

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF Sammenligning af to måleserier En af de mest grundlæggende problemstillinger i statistik består i at undersøge om to forskellige måleserier er signifikant forskellige eller om forskellen på de to serier

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 2013/14

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

Deskriptiv statistik

Deskriptiv statistik Deskriptiv statistik Billedet Collage (IM) med hjælp fra Danmarks Statistik, Volsted Plantage Jagtkonsortium og Kriminalforsorgen Version 1.7 incl. Sandsynlighed 16-3-2009 Editeret 18-1-2012 og 6-2-2012

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11.

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2010/11 Institution Uddannelse Fag og niveau Lærer(e) Hold Zealand Business College Hhx Matematik

Læs mere

ANVENDT STATISTIK (med anvendelse af Excel)

ANVENDT STATISTIK (med anvendelse af Excel) MOGENS ODDERSHEDE LARSEN ANVENDT STATISTIK (med anvendelse af Excel) Hyppighed 0 18 16 14 1 10 8 6 4 0 6,94 7,0 7,1 7,18 7,6 7,34 7,4 7,5 7,58 7,66 Mere Hyppighed. udgave 008 FORORD Notatet er bygget op

Læs mere

En statistikstuderendes bekendelser Søren Wengel Mogensen

En statistikstuderendes bekendelser Søren Wengel Mogensen Oplysning 23 En statistikstuderendes bekendelser Søren Wengel Mogensen Om at skrive BSc-opgave i anvendt statistik. Der findes matematikere (i hvert fald matematikstuderende), der mener, at den rene matematik

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul

Deskriptiv statistik. for C-niveau i hf. 2015 Karsten Juul Deskriptiv statistik for C-niveau i hf 75 50 25 2015 Karsten Juul DESKRIPTIV STATISTIK 1.1 Hvad er deskriptiv statistik?...1 1.2 Hvad er grupperede og ugrupperede data?...1 1.21 Eksempel pä ugrupperede

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse

Læs mere

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer.

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer. Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Nogle emner fra. Deskriptiv Statistik. 2011 Karsten Juul

Nogle emner fra. Deskriptiv Statistik. 2011 Karsten Juul Nogle emner fra Deskriptiv Statistik 75 50 25 2011 Karsten Juul Indhold Hvad er deskriptiv statistik?... 1 UGRUPPEREDE OBSERVATIONER Hyppigheder... 1 Det samlede antal observationer... 1 Middeltallet...

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014 IBC-Kolding

Læs mere

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler Dagens program Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler 1 Sandsynlighedsmodel Kvantitative Metoder 1 - Efterår 2006 Eksperiment

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 11. Denne

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Per Vejrup-Hansen STATISTIK. med Excel. 2. udgave

Per Vejrup-Hansen STATISTIK. med Excel. 2. udgave Per Vejrup-Hansen STATISTIK med Excel 2. udgave Per Vejrup-Hansen Statistik med Excel Per Vejrup-Hansen Statistik med Excel 2. trykte udgave 2012 1. e-bogsudgave 2012 Samfundslitteratur 2012 e-isbn: 978-87-593-1736-5

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Vi ønskede at planlægge og afprøve et undervisningsforløb, hvor anvendelse af

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx132-mat/b-16082013 Fredag den 16. august 2013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Institution Uddannelse Fag og niveau Lærer Hold IBC Aabenraa HHX Matematik C Lars Erik Henriksen 1HHI 1 Funktioner og polynomier a) Lave en grafisk funktionsanalyse. 1. Definitionsmængde.

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2011 Institution ZBC, Vordingborg Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jørgen Slot

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011 juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau Lærer(e)

Læs mere

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393.

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Broer, skak og netværk Side 1 af 6 Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Eksempler på praktiske anvendelser af matematik og nogle uløste problemer Indledning Figur

Læs mere

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten

Læs mere

Teknikker til analyse af tal med Excel

Teknikker til analyse af tal med Excel 1 Appendiks 2 Teknikker til analyse af tal med Excel Dette appendiks indeholder mange gentagelser fra kapitel 10, afsnit 4 Teknikker til analyse af tal i Den skinbarlige virkelighed) dog med den forskel,

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Normalfordelingen. Erik Vestergaard

Normalfordelingen. Erik Vestergaard Normalfordelingen Erik Vestergaard Erik Vestergaard www.matematiksider.dk Erik Vestergaard, 008. Billeder: Forside: jakobkramer.dk/jakob Kramer Side 7: istock.com/elenathewise Side 8: istock.com/jaroon

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere