Statistik 1TS 2003 Obligatorisk opgave 1

Størrelse: px
Starte visningen fra side:

Download "Statistik 1TS 2003 Obligatorisk opgave 1"

Transkript

1 Afdeling for Statistik og Operationsanalyse Institut for Matematiske Fag, Københavns Universitet 4. marts 2003 Stat 1TS / EH Statistik 1TS 2003 Obligatorisk opgave 1 Formelle forhold: Opgaven stilles tirsdag d. 4. marts Rapporten afleveres senest ved forelæsningen tirsdag d. 25. marts. Rapporten afleveres til mig personligt. For sent indleverede besvarelser vil ikke blive rettet. Rapporten skal skrives ind i et tekstbehandlingsanlæg (eller på maskine). Håndskrevne besvarelser vil ikke blive accepteret. Opgaven kan besvares i grupper af 1-3 studerende. Grupperne må gerne samarbejde undervejs, men den endelige rapport skal være selvstændigt arbejde for hver gruppe. Software: I princippet er valget af software frit. Det anbefales dog at man bruger R. Rapportens indhold: Besvarelsen skal indeholde tekst, formler og grafer, men ikke program-kode. Inkluder gerne et afsnit om hvilket software du har benyttet, og hvilke erfaringer du har gjort med det. Ernst Hansen 1

2 Rotters levetid Talmaterialet i denne opgave stammer fra et eksperiment, der skulle belyse hvilken indflydelse begrænsninger i adgangen til føde har på rotters levetid. Eksperimentet er afrapporteret i artiklen Yu, B.P., Masoro, E. J., Murata, I., Bertrand, H.A., og Lynd, F.T. (1982): Lifespan study of SPF Fisher 344 male rats fed ad libitum or restricted diets: Longevity, growth, lean body mass and disease. Journal of Gerontology 37, Teorien bag eksperimentet gik ud på at en begrænsning i adgangen til fødevarer vil nedsætte tempoet i rotternes livscyklus, og på den måde fører til at rotterne lever længere. Men modsat kan man selvfølgelig forestille sig, at en begrænsning fører til at rotterne generelt er svagere, og derfor lever kortere. I det eksperiment vi skal studere, indgik 106 rotter med begrænset adgang til fødevarer, og en kontrolgruppe på 89 rotter, der blev holdt under normale laboratoriemæssige forhold, herunder med ubegrænset adgang til fødevarer. Rotterne blev placeret i en af de to grupper ved en lodtrækningsprocedure når de var tre uger gamle. De blev fulgt til de døde - de længstlevende rotter i eksperimentet blev næsten fire år gamle. De teoretiske/statistiske temaer for projektet drejer sig om modelopstilling og modelkontrol, om at finde maksimaliseringsestimatorer ved hjælp af numeriske metoder, og om at beskrive usikkerheden forbundet med parameterestimater. Numerisk maksimering af likelihoodfunktionen For langt de fleste af de modeller, der lever uden for tekstbøgernes beskyttede verden, kan man måske nok opstille likelihoodfunktionen, men man er ude af stand til finde eksplicitte udtryk for maksimaliseringsestimatoren. I så fald er man henvist til at benytte numeriske teknikker til maksimaliseringen. Eller til minimeringen af den negative loglikelihoodfunktion, som man af tekniske grunde som regel foretrækker. 2

3 Der findes et væld af specialiserede numeriske teknikker, men oftest er den generelle Newton-Raphson algoritme den nemmeste at implementere - og den mest effektive. Den fungerer på følgende måde: Lad θ n være en approksimation til et stationært punkt θ for l x. Af Taylorudviklingen Dl x (θ) Dl x (θ n ) + D 2 l x (θ n )(θ θ n ) ser vi at hvis k k-matricen D 2 l x (θ n ) er invertibel, så er θ n+1 = θ n (D 2 l x (θ n )) 1 Dl x (θ n ) (1) formentlig en endnu bedre approksimation til θ. Vi taler om at opdatere initialgættet θ n ved hjælp af Newton-Raphson scoring. Hvis parametermængden er etdimensional, antager opdateringsformlen den simple form θ n+1 = θ n l x (θ n) l x(θ n ). Hvis θ n allerede er et stationært punkt for l x, så vil θ n+1 = θ n. Vi siger at de stationære punkter er fikspunkter for algoritmen. Og det er tydeligvis de eneste fikspunkter. De er endda attraktive fikspunkter, i den forstand at hvis man har en startværdi i nærheden af et stationært punkt θ, kræver det sædvanligvis kun et par iterationer at få lokaliseret θ med så stort nøjagtighed som man måtte ønske det. I denne sammenhæng må man så bede til at det fundne stationære punkt faktisk er det globale minimum for l x - det kan i princippet udmærket være et lokalt minimum, eller ligefrem et saddelpunkt eller et lokalt maksimum! Newton-Raphson algoritmen har to stærke sider. Dels er den forbavsende nem at implementere. Og dels er den rasende effektiv - hvis man vel at mærke er i stand til at starte den i nærheden af de stationære punkter. Hvis man ikke ved hvor mange stationære punkter der er, og hvis man ikke ved hvor de ligger henne, så er et ikke givet at Newton-Raphson algoritmen vil være til den store hjælp. En dårlig begyndelsesværdi vil således ofte få algoritmen til at divergere. Konfidensområder Hvis R : Θ X R er en reel kombinant, og hvis vi for hvert θ Θ vælger et z θ R så P θ (R(θ, X) < z θ ) = 0.95 for alle θ Θ, (2) 3

4 så vil området C(x) = {θ Θ R(θ, x) < z θ } være et såkaldt 95% konfidensområde. Altså en x-afhængig mængde af parametre med den egenskab at P θ (θ C(X)) = 0.95 for alle θ Θ. (3) Formuleret i ord er det et område, man vælger på baggrund af den gjorte observation, med den egenskab at i et stort antal gentagelser af eksperimentet, vil man i 95% af tilfældende fange den sande parameter ind. I praksis ved man naturligvis aldrig om man står med et af de ubehagelige tilfælde hvor den sande parameter er smuttet ud af området, men eftersom det sker så sjældent, kan man med en vis ret gå ud fra at det konkrete C(x) faktisk indeholder den sande parameter. Det er uhyre regnekrævende at finde de z θ er der løser (2). Og det kan i øvrigt også være vældig regnetungt bagefter at vende konstruktionen om for at finde konfidensområdet. Bemærk at konstruktionen simplificeres betragteligt hvis R er en pivot, for i så fald varierer z θ slet ikke med θ, og man kan nøjes med at finde et enkelt z θ. Vi vil benytte denne konstruktion ud fra kombinanten 2 log Q(θ, x) = 2l x (θ) 2l x (ˆθ), hvor ˆθ er maksimaliseringsestimatoren (der nota bene minimerer l x ). Vi betragter l x (θ) som et udtryk for konkordansen mellem observation x og parameter θ, så hvis 2 log Q(x, θ) er lille, betyder det at θ er i næsten lige så god konkordans med x som den bedste parameter ˆθ. Konfidensområdet på baggrund af 2 log Q samler så at sige de gode parametre, og repræsenterer derfor et udsagn om usikkerheden forbundet med maksimaliseringsestimation. For at denne konstruktion skal være nogen nytte til i praksis, er det vigtigt at der ofte gælder at 2 log Q(θ, X) approx χ 2 df=dim Θ for alle θ Θ. (4) Altså: 2 log Q er approksimativt pivot, og den (approksimative) fælles fordeling er oven i købet kendt. Dette er et af de centrale resultater fra den asymptotiske teori for statistiske modeller, og man kan i almindelighed slippe 4

5 godt fra at lade som om resultatet er eksakt, hvis modellen beskriver et eksperiment med et stort antal uafhængige gentagelser. Helt konkret fører denne ide til de approksimative konfidensområder C(x) = {θ Θ 2 log Q(θ, x) < z} (5) hvor z er 95% fraktilen i χ 2 -fordelingen med dim Θ frihedsgrader. Denne konstruktion opfylder muligvis ikke helt (3), men det vil som regel være tæt på. Data Datamaterialet er gjort tilgængeligt på erhansen/stat1ts 03/rapport/rotter.dat Denne fil indeholder samtlige levetider for de rotter, der indgik i eksperimentet. Levetiden er angivet som antal dage efter baseline, hvor baseline er det tidspunkt, hvor der er blevet trukket lod om, hvilken gruppe den pågældende rotte skulle placeres i. Levetidsvariablen hedder tid i filen. For hver rotte er der angivet om den havde begrænset eller ubegrænset adgang til føde. Det sker i form af variablen gruppe, der kan antage de to værdier Diæt (begrænset adgang) og Alm. (ubegrænset adgang). 1. Indlæs data, og beskriv den empiriske fordeling af reaktionstiderne i hver af de to grupper (histogrammer, momenter, udvalgte fraktiler etc.) Kommenter ligheder og forskelle mellem grupperne. Opstilling af model I analysen vil vi i første omgang koncentrere os om kontrolpopulationen af rotter med ubegrænset adgang til fødevarer. Når levetiden for denne population er forstået, vil vi inddrage gruppen på diæt. 5

6 Lad variablene X 1,..., X n være levetiderne for rotterne i grundpopulationen. Vi antager at disse stokastiske variable er uafhængige og identisk fordelte. I første omgang antager vi at de er Weibull-fordelte med formparameter c = eneste ukendte parameter er således skalaparameteren β. I anden omgang vil vi betragte både form- og skalaparameter som ukendte, og vi vil se at det komplicerer analysen ganske betydeligt. Vi vil interessere os dels for estimation af de ukendte parametre, og dels for en beskrivelse af usikkerheden forbundet med estimaterne. Den etdimensionale model I første omgang antager vi altså: X 1,..., X n er uafhængige. Hvert X i er Weibull-fordelt med formparamter c = 5.5 og ukendt skalaparameter β (0, ). 2. Find middelværdien af X i i denne model, og kom herudfra med et initialt skøn over β. 3. Opskriv likelihoodfunktionen L X (β) og opskriv også l X (β) = log L X (β) Tegn grafen for de observerede funktioner L x (β) og l x (β). 4. Under hvilke omstændigheder kan likelihoodfunktionen maksimaliseres, og under hvilke omstændigheder er maksimum entydigt bestemt? Opskriv et eksplicit udtryk for maksimaliseringsestimatoren ˆβ. Udregn ˆβ for de konkrete data. 5. Vurder om det er rimeligt at observationerne stammer fra en Weibullfordeling med formparameter 5.5 og skalaparameter ˆβ. 6. Angiv den forventede information i(β) = E β (l X (β)). 6

7 7. Simuler et stort antal (f.eks ) datasæt af samme størrelse som grundpopulationen. Disse simulerede data skal være uafhængige, Weibullfordelte med formparameter 5.5 og skalaparameter ˆβ. Find for hvert af disse simulerede datasæt maksimaliseringsestimatoren for β. Sammenlign den empiriske fordeling af de simulerede estimatorer med normalfordelingen med middelværdi ˆβ og varians 1 i( ˆβ). 8. I denne simple model er vi så heldige at kunne finde maksimaliseringsestimatoren eksplicit. Men lad os for træningens skyld rigge en Newton-Raphson algoritme op, der kan finde en numerisk approksimation til ˆβ. Hvor mange iterationer k af algoritmen skal der til for at få en approksimation β k, der opfylder at β k ˆβ < 10 ˆβ 3, hvis algoritmens startpunkt β 0 er henholdsvis 700, 800, 900 og 1000? 9. Undersøg ved et simulationseksperiment hvor god den fundamentale approksimation (4) er for den aktuelle model. Det vil sige: vælg et sandt β, simuler en lang række datasæt med n elementer ud fra dette β, og udregn for hvert af disse datasæt 2 log Q(β, x). Sammenhold de simulerede 2 log Q- værdier med χ 2 -fordelingen med 1 frihedsgrad. Gentag gerne undersøgelsen for flere β er. 10. Find konfidensområdet (5) for de aktuelle data ved følgende numeriske procedure: for et stort antal β-værdier på (0, ) undersøges om betingelsen i (5) er opfyldt. Hvis ja farvelægges den pågældende β-værdi på en passende markant måde, hvis nej farvelægges den pågældende β-værdi ikke. Beskriv den farvelagte mængde. 11. Gentag analysen for gruppen af rotter på diæt. Detaljerne i analyserne skal ikke anføres i rapporten, men de to analyser skal sammenfattes i en tegning, hvorpå de to β-estimater er markeret, ligesom de to konfidensområder. Hvad kan man konkludere om de to gruppers levetiderpå baggrund af denne tegning? 7

8 Den todimensionale model Vi vender tilbage til studiet af grundpopulationen. Men nu antager vi at både form- og skalaparameter er ukendt: X 1,..., X n er uafhængige. Hvert X i er Weibullfordelt med ukendt formparamter c (0, ) og ukendt skalaparameter β (0, ). 12. Opskriv likelihoodfunktionen L X (c, β) og opskriv også l X (c, β) = log L X (c, β) Optegn i et relevant område af (c, β)-planen nogle niveaukurver for den observerede loglikelihoodfunktion. 13. Find scorefunktion og den observerede informationsmatrix. 14. I denne model kan man ikke eksplicit finde maksimaliseringsestimatoren, og man er derfor tvunget ud i numerisk optimering. Kør en Newton-Raphson algoritme, indtil den har stabiliseret sig (sørg for at vælge et fornuftigt startpunkt) og angiv den numerisk bestemte maksimaliseringsestimator (ĉ, ˆβ). 15. Find konfidensområdet (5) for de aktuelle data ved følgende numeriske procedure: for et stort antal punkter i (c, β)-planen undersøges om betingelsen i (5) er opfyldt. Hvis ja farvelægges det pågældende punkt på en passende markant måde, hvis nej farvelægges det pågældende punkt ikke. Forsøg at beskrive den farvelagte mængde. 16. Gentag analysen for gruppen af rotter på diæt. Detaljerne i analyserne skal ikke anføres i rapporten, men de to analyser skal sammenfattes i en tegning af en (c, β)-plan, hvorpå de to masimaliseringsestimater er markeret, ligesom de to konfidensområder. Hvad kan man konkludere om de to gruppers levetider på baggrund af denne tegning? 8

Statistik 1TS 2005 Obligatorisk opgave 1

Statistik 1TS 2005 Obligatorisk opgave 1 9. marts 2005 Stat 1TS / EH Statistik 1TS 2005 Obligatorisk opgave 1 Formelle forhold: Opgaven stilles onsdag d. 9. marts 2005. Rapporten skal afleveres til mig personligt. Afleveringsfristen er tirsdag

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2002 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive

Læs mere

Områdeestimator. X x. P θ. ν θ. Θ C(x) En områdeestimator er en afbildning C : X P(Θ). . p.1/30

Områdeestimator. X x. P θ. ν θ. Θ C(x) En områdeestimator er en afbildning C : X P(Θ). . p.1/30 Områdeestimator X (Ω, F) (X, E) x 01 01 P θ ν θ θ Θ 0000 1111 000000 111111 0000 1111 0000 1111 C(x) En områdeestimator er en afbildning C : X P(Θ).. p.1/30 Konfidensområde En områdestimator C : X P(Θ)

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2003 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive

Læs mere

Kombinant. En kombinant er en afbildning. hvor (Y, K) er endnu et målbart rum. Typisk taler vi om reelle kombinanter, hvor Y = R.

Kombinant. En kombinant er en afbildning. hvor (Y, K) er endnu et målbart rum. Typisk taler vi om reelle kombinanter, hvor Y = R. Kombinant Lad (ν θ ) θ Θ være en statistisk model på (X, E). En kombinant er en afbildning hvor (Y, K) er endnu et målbart rum. R : X Θ Y Typisk taler vi om reelle kombinanter, hvor Y = R. Som regel forsøger

Læs mere

Statistik Obligatorisk opgave

Statistik Obligatorisk opgave 13. maj 2008 Stat 2 / EH Statistik 2 2008 Obligatorisk opgave Formelle forhold: Opgaven stilles tirsdag d. 13. maj 2008. Rapporten skal afleveres til mig personligt. Afleveringsfristen er mandag d. 2.

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2005 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive

Læs mere

Den lineære normale model

Den lineære normale model Den lineære normale model Ingredienser: V : N-dimensionalt vektorrum. X : Ω V : stokastisk variabel. L : ægte underrum af V, dimension k., : fundamentalt indre produkt på V. Vi laver en hel familie af

Læs mere

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd I dag Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik SaSt) Helle Sørensen Først lidt om de sidste uger af SaSt. Derefter statistisk analyse af en enkelt

Læs mere

Områdeestimation. Kapitel 7

Områdeestimation. Kapitel 7 Kapitel 7 Områdeestimation Lad (ν θ ) θ Θ være en parametriseret statistisk model på (X, E). I kapitel 4 definerede vi såkaldte punktestimatorer af parameteren θ. Disse estimatorer fungerer sådan at vi

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18

Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning 1 STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 7. undervisningsuge, mandag 1 Estimation og konfidensintervaller

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Den lineære normale model

Den lineære normale model Den lineære normale model Ingredienser: V : N-dimensionalt vektorrum. X : Ω V : stokastisk variabel. L : ægte underrum af V, dimension k., : fundamentalt indre produkt på V. Vi laver en hel familie af

Læs mere

Statistisk model. Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål

Statistisk model. Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål Statistisk model Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål på (X, E). Modellen er parametriseret hvis der findes en parametermængde Θ og

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

Trykfejlsliste - alle fejl Introduktion til matematisk statistik

Trykfejlsliste - alle fejl Introduktion til matematisk statistik 29. juni 2004 Stat 1TS / EH Trykfejlsliste - alle fejl Introduktion til matematisk statistik Denne liste indeholder alle de regulære fejl, slåfejl og stavefejl der er fundet i noterne indtil nu. 4 5 Forkert:

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20.

Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20. Foldning af sandsnlighedsmål Lad µ og ν være to sandsnlighedsmål på (R, B). Fortolkning Lad φ : R R være φ(, ) = + for (, ) R. Lad X og Y være to reelle stokastiske variable defineret på (Ω, F, P). Definition

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Betingning med en uafhængig variabel

Betingning med en uafhængig variabel Betingning med en uafhængig variabel Sætning Hvis X er en reel stokastisk variabel med første moment og Y er en stokastisk variabel uafhængig af X, så er E(X Y ) = EX. Bevis: Observer at D σ(y ) har formen

Læs mere

Estimation. Lad (ν θ ) θ Θ være en statistisk model på (X, E). En estimator af θ er en afbildning t : X Θ. En konkret værdi t(x) kaldes et estimat.

Estimation. Lad (ν θ ) θ Θ være en statistisk model på (X, E). En estimator af θ er en afbildning t : X Θ. En konkret værdi t(x) kaldes et estimat. Estimation Lad (ν θ ) θ Θ være en statistisk model på (X, E). En estimator af θ er en afbildning t : X Θ. En konkret værdi t(x) kaldes et estimat. En estimator er en gætteregel.. p.1/22 Estimation X acements

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Motivation. Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser

Motivation. Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser Motivation Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser Rasmus Waagepetersen October 26, 2018 Eksempel: En landmåler får til opgave at måle længden λ fra A til B. Entreprenøren

Læs mere

Preben Blæsild og Jens Ledet Jensen

Preben Blæsild og Jens Ledet Jensen χ 2 Test Preben Blæsild og Jens Ledet Jensen Institut for Matematisk Fag Aarhus Universitet Egå Gymnasium, December 2010 Program 8.15-10.00 Forelæsning 10.15-12.00 Statlab: I arbejder, vi cirkler rundt

Læs mere

Reeksamen 2014/2015 Mål- og integralteori

Reeksamen 2014/2015 Mål- og integralteori Reeksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål. Ved bedømmelsen indgår de spørgsmål med samme vægt.

Læs mere

Maksimaliseringsestimation i praksis

Maksimaliseringsestimation i praksis Kapitel 6 Maksimaliseringsestimation i praksis Lærebogseksempler på statistiske modeller er gerne så simple at man er i stand til eksplicit at maksimere likelihoodfunktionen, og opnå lukkede udtryk for

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Estimation Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 9. september 003 Denne note er skrevet til kurset Økonometri på. årsprøve af polit-studiet.

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Estimation: Kapitel 9.7-9.10 Estimationsmetoder kap 9.10 Momentestimation Maximum likelihood estimation Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks:

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Til hvert af de gennemgåede værktøjer findes der 5 afsnit. De enkelte afsnit kan læses uafhængigt af hinanden. Der forudsættes et elementært kendskab

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Trykfejlsliste - alle fejl Introduktion til Matematisk Statistik 2. udgave

Trykfejlsliste - alle fejl Introduktion til Matematisk Statistik 2. udgave 3. februar 2012 Stat 1TS / EH Trykfejlsliste - alle fejl Introduktion til Matematisk Statistik 2. udgave Denne liste indeholder alle de regulære fejl, slåfejl og stavefejl der er fundet i 2. udgave af

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kapitel 8.1-8.3 Tilfældig stikprøve (Random Sampling) Likelihood Eksempler på likelihood funktioner Sufficiente statistikker Eksempler på sufficiente statistikker 1 Tilfældig stikprøve Kvantitative

Læs mere

Hypotesetests, fejltyper og p-værdier

Hypotesetests, fejltyper og p-værdier Hypotesetests, fejltyper og p-værdier Søren Højsgaard Institut for Matematiske Fag, Aalborg Universitet October 25, 2018 Søren Højsgaard Institut for Matematiske Fag, Aalborg Hypotesetests, Universitet

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

I dag. Statistisk analyse af en enkelt stikprøve: LR test og t-test, modelkontrol, R Sandsynlighedsregning og Statistik (SaSt)

I dag. Statistisk analyse af en enkelt stikprøve: LR test og t-test, modelkontrol, R Sandsynlighedsregning og Statistik (SaSt) I dag Statistisk analyse af en enkelt stikprøve: LR test og t-test, modelkontrol, R Sandsynlighedsregning og Statistik (SaSt) Helle Sørensen Repetition vha eksempel om dagligvarepriser Analyse med R: ttest

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik ekstrom@sund.ku.dk Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation

Læs mere

Estimation af bilkøbsrelationen med nye indkomst- og formueudtryk

Estimation af bilkøbsrelationen med nye indkomst- og formueudtryk Danmarks Statistik MODELGRUPPEN Arbejdspapir* Edith Madsen 21. juli 1997 Estimation af bilkøbsrelationen med nye indkomst- og formueudtryk Resumé: Papiret præsenterer en reestimationen af fcb-relationen.

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Om hypoteseprøvning (1)

Om hypoteseprøvning (1) E6 efterår 1999 Notat 16 Jørgen Larsen 11. november 1999 Om hypoteseprøvning 1) Det grundlæggende problem kan generelt formuleres sådan: Man har en statistisk model parametriseret med en parameter θ Ω;

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 22. februar 2005 Denne note er skrevet til kurset Økonometri 1 på 2. årsprøve af polit-studiet.

Læs mere

Modelselektion Permeabilitet Permeabilitet Permeabilitet

Modelselektion Permeabilitet Permeabilitet Permeabilitet Modelselektion Permeabilitet Vi vil ud fra et eksempel diskutere de uhyggelige effekter af test-baseret modelselektion. Hvor lang tid er vand om at trænge igennem nyfremstillede byggeplader. Dag Dag Dag

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Trykfejlsliste - alle fejl Asymptotisk teori

Trykfejlsliste - alle fejl Asymptotisk teori 9. januar 2005 Stat 2A / EH Trykfejlsliste - alle fejl Asymptotisk teori Denne liste indeholder alle de regulære fejl, slåfejl og stavefejl der er fundet i 2A-noterne indtil nu. 9 1 Forkert: x C x ro alle

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Et statistisk test er en konfrontation af virkelighenden (data) med en teori (model).

Et statistisk test er en konfrontation af virkelighenden (data) med en teori (model). Hypotesetests, fejltyper og p-værdier og er den nu også det? Søren Højsgaard Institut for Matematiske Fag, Aalborg Universitet (updated: 2019-03-17) 1 / 40 Statistisk test Et statistisk test er en konfrontation

Læs mere

Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2. R opgaver

Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2. R opgaver Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2 Københavns Universitet Susanne Ditlevsen og Helle Sørensen R opgaver Det er en god ide at vænne sig til at skrive kommandoerne i en editor

Læs mere

Estimation. Kapitel 4

Estimation. Kapitel 4 Kapitel 4 Estimation Lad (ν θ ) θ Θ være en parametriseret statistisk model på (X, E). I dette kapitel skal vi diskutere, hvorledes man ud fra en given observation x X kan give et skøn over værdien af

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 2. maj 2007 KM2: F22 1 Program Specifikation og dataproblemer, fortsat (Wooldridge kap. 9): Betydning af målefejl Dataudvælgelse: Manglende observationer

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Statistik og Sandsynlighedsregning 1. IH kapitel 6

Statistik og Sandsynlighedsregning 1. IH kapitel 6 Statistik og Sandsynlighedsregning 1 IH kapitel 6 Overheads til forelæsninger. Uge 41/2005 1 Test i Polynomialfordelingen Forsøg: n uafhængige gentagelse af forsøg med m udfald. Vi observerer x = x 1,...,

Læs mere

Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Afsluttes juni 2019 Institution Campus Vejle Uddannelse Fag og niveau Lærer Hold HHX Matematik B Jebbe Lukas

Læs mere

Rettevejledning til eksamen i Kvantitative metoder 1, 2. årsprøve 2. januar 2007

Rettevejledning til eksamen i Kvantitative metoder 1, 2. årsprøve 2. januar 2007 Rettevejledning til eksamen i Kvantitative metoder 1,. årsprøve. januar 007 I rettevejledningen henvises der til Berry and Lindgren "Statistics Theory and methods"(b&l) hvis ikke andet er nævnt. Opgave

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Bayesiansk statistik. Tom Engsted. DSS Aarhus, 28 november 2017

Bayesiansk statistik. Tom Engsted. DSS Aarhus, 28 november 2017 Bayesiansk statistik Tom Engsted DSS Aarhus, 28 november 2017 1 Figure 1: Nicolajs gur 2 Klassisk frekvensbaseret statistik Statistisk beslutningsteori Bayesiansk statistik Et kompromis mellem den klassiske

Læs mere

Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.

Binomialfordelingen. X ~ bin(n,p): X = antal succeser i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes. Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):

Læs mere

Vejledende besvarelse af eksamen i Statistik for biokemikere, blok

Vejledende besvarelse af eksamen i Statistik for biokemikere, blok Opgave 1 Vejledende besvarelse af eksamen i Statistik for biokemikere, blok 2 2006 Inge Henningsen og Niels Richard Hansen Analysevariablen i denne opgave er variablen forskel, der for hver af 10 kvinder

Læs mere

1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau...

1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau... Indhold 1 Statistisk inferens: Hypotese og test 2 1.1 Nulhypotese - alternativ.................................. 2 1.2 Teststatistik........................................ 3 1.3 P-værdi..........................................

Læs mere

Landmålingens fejlteori - Repetition - Fordeling af slutfejl - Lektion 8

Landmålingens fejlteori - Repetition - Fordeling af slutfejl - Lektion 8 Landmålingens fejlteori Repetition - Fordeling af slutfejl Lektion 8 - tvede@math.aau.dk http://www.math.aau.dk/ tvede/teaching/l4 Institut for Matematiske Fag Aalborg Universitet 15. maj 2008 1/13 Fordeling

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program ( ): 1. repetition: fordeling af observatorer X, S 2 og t.

t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program ( ): 1. repetition: fordeling af observatorer X, S 2 og t. t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program (8.15-10): 1. repetition: fordeling af observatorer X, S 2 og t. 2. konfidens-intervaller, hypotese test, type I og type II fejl, styrke,

Læs mere

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable E6 efterår 999 Notat 8 Jørgen Larsen 22. november 999 Lineære normale modeller ) udkast Ved hjælp af lineær algebra kan man formulere og analysere de såkaldte lineære normale modeller meget overskueligt

Læs mere

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k Dagens program: Likelihoodfunktion, begreber : Mandag den 4. februar Den generelle lineære model score-funktion: første afledede af log-likelihood har middelværdien nul observeret information: anden afledede

Læs mere

Nanostatistik: Konfidensinterval

Nanostatistik: Konfidensinterval Nanostatistik: Konfidensinterval JLJ Nanostatistik: Konfidensinterval p. 1/37 Fraktilpåmindelse u p : Φ(u p ) = p, Φ( z ) = 1 Φ( z ) t p [f] : F t[f] (t p [f]) = p, F t[f] ( t ) = 1 F t[f] ( t ) F-fordeling:

Læs mere

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere