Nanostatistik: Lineær regression

Størrelse: px
Starte visningen fra side:

Download "Nanostatistik: Lineær regression"

Transkript

1 Nanostatistik: Lineær regression JLJ Nanostatistik: Lineær regression p. 1/41

2 Sammenhænge Funktionssammenhæng: y er en funktion af x. Ex: Hvis jeg kender afstanden mellem to galakser så kender jeg også den hastighed hvormed de bevæger sig væk fra hinanden Ex: En målemetode giver et respons der er proportional med koncentrationen af et bestem stof i prøven x kaldes den forklarende variabel y kaldes den afhængige variabel Nanostatistik: Lineær regression p. 2/41

3 Sammenhænge Biologisk samvariation: x og y er korrelerede indenfor en population Ex: Vægt og højde er positivt korrelerede: den gennemsnitlige vægt for en given højde vil vokse med højden De to variable er på lige fod, men i en analyse kan vi vælge at betragte den ene som forklarende og den anden som afhængig Nanostatistik: Lineær regression p. 3/41

4 Sammenhænge Falsk sammenhæng: Et begrænset datasæt kan på grund af andre faktorer vise en sammenhæng mellem to variable der ikke er forbundne Ex: Fra falder antallet af storkepar i Danmark samtidig med at antallet af fødsler går ned Nanostatistik: Lineær regression p. 4/41

5 Er der en linær sammenhæng Plot data! Den fundne lineære sammenhæng gælder kun indenfor dataområdet! (medmindre der er en teori bagved) En etableret sammenhæng bruges ofte til at sige noget om den afhængige variabel givet kendskab til den forklarende variabel: Forklarende variabel: nem at måle Afhængige variabel: svær at måle Ex: kan nemt måle højden på en pige og kan bruge denne til at sige noget om vægten Data fra jer Nanostatistik: Lineær regression p. 5/41

6 Bedste rette linie Hvordan estimerer vi den linære sammenhæng der bedst beskriver data? Lineær sammenhæng?: y-erne ligger ikke på en linie: de spreder sig omkring linien Statistisk model: E(Y i ) = α + βx i α: liniens skæring med y-aksen β: liniens hældning Nanostatistik: Lineær regression p. 6/41

7 Mindste kvadraters metode Data: n punkter (x i,y i ) Model: x i -erne opfattes som faste og y i er en observation fra en stokastisk variabel med en fordeling der afhænger af x i, specielt: E(Y i ) = α + βx i Metode: vælger den linie der minimerer summen af de kvadrerede afstande til linien R(α,β) = n (Y i α βx i ) 2 i=1 Find ˆα og ˆβ ved at minimere R(α,β) Vis R-plot Nanostatistik: Lineær regression p. 7/41

8 Mindste kvadraters metode Løsning: ˆβ = SPD xy ˆα = Ȳ ˆβ x SPD xy = n n (x i x)(y i Ȳ ) = (x i x)y i i=1 i=1 n = (x i x) 2 i=1 Nanostatistik: Lineær regression p. 8/41

9 Bevis R(α, β) = = n (Y i α βx i ) 2 i=1 n {(Y i Ȳ ) + (Ȳ α β x) β(x i x)} 2 i=1 = (Y i Ȳ )2 + n(ȳ α β x)2 + β 2 (x i x) 2 +2(Ȳ α β x) (Y i Ȳ ) 2β (x i x)(y i Ȳ ) 2β(Ȳ α β x) (x i x) = (Y i Ȳ )2 + n(ȳ α β x)2 + β 2 2βSPD xy For fast β skal vi vælge α til ˆα = Ȳ β x. Indsætter vi dette får vi (Yi Ȳ )2 + β 2 2βSPD xy Nanostatistik: Lineær regression p. 9/41

10 Bevis (Yi Ȳ ) 2 + β 2 2βSPD xy Differentierer vi mht β fås 2β 2SPD xy og sætter vi denne lig med 0 får vi ˆβ = SPD xy Nanostatistik: Lineær regression p. 10/41

11 Hubble s law In 1929, Edwin Hubble investigated the relationship between distance of a galaxy from the earth and the velocity with which it appears to be receding Big Bang Hubble s law is as follows: Recession Velocity = Ho*Distance Vis R-plot n = 24, x = , ȳ = , = , SPD xy = ˆβ = , ˆα = β = 75?, negative hastigheder? Nanostatistik: Lineær regression p. 11/41

12 Unbiased estimater SPD xy = (x i x)(y i Ȳ ) = (x i x)y i Ȳ (x i x) = (x i x)y i ( ) SPDxy E(ˆβ) = E = 1 E(SPD xy ) = 1 E{(xi x)y i } 1 = (xi x)(α + βx i ) β = (xi x)x i = β (xi x)(x i x) = β Nanostatistik: Lineær regression p. 12/41

13 Unbiased estimater E(ˆα) = E(Ȳ ˆβ x) = E(Ȳ ) xe(ˆβ) = 1 n E(Yi ) β x = 1 n (α + βxi ) β x = α + β x β x = α Nanostatistik: Lineær regression p. 13/41

14 V (ˆβ) = V = = ( ) SPDxy 1 Varians = 1 SSD 2 V (SPD xy ) = 1 x SSD 2 x (xi x) 2 V (Y i ) SSD 2 x 1 SSD 2 σ 2 = x σ2, hvis V (Y i ) σ 2 V {(xi x)y i } Jo større SSD 2 x jo mindre varians: sørge for at x-værdierne er spredt ud Nanostatistik: Lineær regression p. 14/41

15 ˆα = Ȳ ˆβ x = 1 n Varians Yi x (xi x)y i = Y i ( 1 n x(x ) i x) V (ˆα) = ( 1 n x(x ) i x) 2 V (Y i ) { n = σ 2 n 2 2 x (xi x) + x2 n SSD 2 x { } 1 = σ 2 n + x2, hvis V (Y i ) σ 2 (xi x) 2 } Jo længere x er væk fra nul jo mindre ved vi om skæringen med y-aksen Vis R-eksempler Nanostatistik: Lineær regression p. 15/41

16 Skøn over varians Model: Y 1,...,Y n uafhængige, E(Y i ) = α + βx i V (Y i ) = σ 2 og Skøn over σ 2? σ 2 = E{[Y i E(Y i )] 2 } = E{(Y i α βx i ) 2 } Bruge s 2 = 1 n 2 Bemærk: n 2! n i=1 (Y i ˆα ˆβx i ) 2 Vis plot med linier i afstand 2s Påstand: E(s 2 ) = σ 2 Nanostatistik: Lineær regression p. 16/41

17 Bevis Det i te residual: r i = Y i ˆα ˆβx i, s 2 = 1 n 2 r 2 i Vi skriver Y i som Y i = α + βx i + u i, E(u i ) = 0, V (u i ) = σ 2 Vi har Ȳ = α + β x + ū, og SPD xy = n (x i x)y i = (x i x)(α + βx i + u i ) i=1 = 0 + β + (x i x)u i Nanostatistik: Lineær regression p. 17/41

18 Bevis Indsætter vi i ˆβ får vi Dernæst indsættes i r i : ˆβ = SPD xy = β + 1 (xi x)u i r i = Y i ˆα ˆβx i = {α + βx i + u i } {α + β x + ū} { β + 1 } (xj x)u j (x i x) = u i ū x i x (xj x)u j, Nanostatistik: Lineær regression p. 18/41

19 Bevis Kvadrerer vi disse fås r 2 i = (u i ū) 2 2 (ui ū)(x i x) (xj x)u j + (xi x) 2 SSD 2 x { } 2 (xj x)u j = (u i ū) 2 1 { (xj x)u j } 2, E( r 2 i ) = (n 1)σ 2 1 = (n 1)σ 2 σ2 (xi x) 2 = (n 1)σ 2 σ 2 = (n 2)σ 2 i (x i x)(x j x)e(u i u j ) j Nanostatistik: Lineær regression p. 19/41

20 Lineær normal model Model: Y 1,...,Y n uafhængige, Y i N(α + βx i,σ 2 ) Så er ˆα, ˆβ maximum likelihood estimaterne (mle), og s 2 er næsten mle for σ 2 ˆβ = SSD 1 ) n x 1 Y σ i(x i x) N (β, 2 ˆα = ( ) n 1 Y 1n i x(x i x) N (α,σ ( )) SSD 2 1 x n + SSD x2 x idet sum af uafhængige normalfordelte variable er normalfordelt s 2 σ2 n 2 χ2 [n 2] Nanostatistik: Lineær regression p. 20/41

21 Kontrol af modelantagelser Lineær sammenhæng: Lav plot med punkterne (ˆµ i,r i ), ˆµ i = ˆα, ˆβx i, r i = y i ˆα ˆβx i disse skal sprede sig "symmetrisk" omkring x-aksen: ingen systematiske afvigelser der tyder på en mere kompliceret sammenhæng. (Vis Plot) Konstant varians: ingen trompetform. (Vis Plot) Normalitet: lav qq-plot. (Vis Plot) Nanostatistik: Lineær regression p. 21/41

22 Tørvægt - levende vægt Biomasse = levende vægt FW af smådyr i mulden Måles: tørvægt DM Data: 15 målinger af springhale (Folsomia quadrioculata s.l.) log(dm) log(f W) log(dm) log(f W) Vi vil forvente en sammenhæng på formen FW = c DM eller log(fw) = α + log(dm) Nanostatistik: Lineær regression p. 22/41

23 Teste hældning har givet værdi Model: Y 1,...,Y n uafhængige, Y i N(α + βx i,σ 2 ) Hypotese: β = β 0, Alternativ: β β 0 test på niveau 5% ( ) Benytter: ˆβ N σ β, 2, s 2 n 2 σ2 χ2 [n 2] Teststørrelse: T = ˆβ β 0 s2 / t[n 2] Accept: t < t [n 2] Forkast: t t [n 2] p-værdi: 2F t[n 2] ( t ) 95% [ konfidensinterval: s ˆβ t [n 2], ˆβ + SSDx ] s t [n 2] SSDx Nanostatistik: Lineær regression p. 23/41

24 Tørvægt - levende vægt Estimater: ˆβ = 1.02, ˆα = 0.43 = , s 2 = Test for at β = 1: t = = 0.22, p-værdi = / % [ konfidensinterval for hældning: /1.3684, ] / [0.81, 1.24] = Nanostatistik: Lineær regression p. 24/41

25 Teste at skæringen er kendt Model: Y 1,...,Y n uafhængige, Y i N(α + βx i,σ 2 ) Hypotese: α = α 0, Alternativ: α α 0 test på niveau 5% Benytter: ˆα N (α,σ ( )) 2 1 n + SSD x2 x ˆα α Teststørrelse: T = 0 ( s 2 1 Accept: t < t [n 2] Forkast: t t [n 2] p-værdi: 2F t[n 2] ( t ) 95% konfidensinterval: [ ˆα s 1n + ) t[n 2] + x2 n SSD x2 t x [n 2], ˆα + s 1n + ] SSD x2 t x [n 2] Nanostatistik: Lineær regression p. 25/41

26 Hubble s law Hubble s law is as follows: Recession Velocity = Ho*Distance Teste α = 0 n = 24, x = , s 2 = , = , ˆα = t = ( p-værdi = 0.31 ) = 0.49 Nanostatistik: Lineær regression p. 26/41

27 Hubble s law: nye data The Astrophysical Journal 1990, 1-10 Hubbles lov: v = k H x, hvor x er afstand mellem galakser og v er hastigheden hvormed de bevæger sig væk fra hinanden. De nye data består af afstande x og et mål Z. Hvis Hubbles lov er gældende skal E{log(Z)} = α + βx med β = 0.2 log(10) For at bestemme konstanten k H i Hubbles lov skal man dividere exp(α) med en ny afstand µ 0. Man har skønnet µ 0 til ˆµ 0 = 21.9 hvor den stokastiske variabel ˆµ 0 har spredning 0.9. Vis data, to regressionslinier, kontrolplots Nanostatistik: Lineær regression p. 27/41

28 Hubble s law: nye data Teste β = 0.2 log(10): ˆβ = , = , s 2 = t = = / Estimere α når β er kendt: Y i βx i N(α,σ 2 ) ˆα = Ȳ β x, s2 = n 1 1 n 1 (Y i Ȳ β(x i x)) 2 V (ˆα) = σ2 n Resultat: ˆα = 7.075, spredning = ˆk H = exp(ˆα) ˆµ 0 = 54.0 V (ˆk H ) = ( exp(7.075) 21.9 ) ( exp(7.075) ) = = Nanostatistik: Lineær regression p. 28/41

29 Hubble s law: nye data Tl beregning af varians er brugt: h(α,µ 0 ) = exp(α) µ 0, h α (α,µ 0 ) = exp(α) µ 0, h µ0 (α,µ 0 ) = exp(α) µ 2 0 Approksimativt 95% konfidensinterval: [ , ] = [49.2, 58.8] Nanostatistik: Lineær regression p. 29/41

30 Estimat af β for kendt α Model: Y 1,...,Y n uafhængige, Y i N(α 0 + βx i,σ 2 ), α 0 kendt Finde ˆβ ved at minimere R(β) = n i=1 (Y i α 0 βx i ) 2 Da R (β) = 0 er det samme som 2 n 1 x i(y i α 0 βx i ) = 0 eller n 1 x i(y i α 0 ) = β n 1 x i ) får vi ˆβ = 1 n 1 x2 i n 1 x i(y i α 0 ) N (β, σ 2 n 1 x2 i Nanostatistik: Lineær regression p. 30/41

31 Prediktion Ud fra et datasæt har jeg bestemt ˆβ og ˆα Hvad kan jeg sige om en fremtidig værdi af Y givet at den tilhørende x-værdi er x 0? Vi har at E(Y ) = α + βx 0. Det er derfor naturligt at prediktere Y ved Y pred = ˆα + ˆβx 0 Vi kan skrive Y pred som Y pred = n i=1 { 1 Y i n + (x i x) x } 0 x Det ses herfra at Y pred er normalfordelt og vi får ( 1n Y pred N (α + βx 0,σ 2 + (x 0 x) 2 )) Nanostatistik: Lineær regression p. 31/41

32 Forurening Til undersøgelse af forureningen i en flod har man indsamlet 10 vandprøver forskellige steder i floden. For hver vandprøve bestemmes logaritmen til koncentrationen af colibakterier. I en afstand af 250 yds fra flodens udløb i havet er der indsamlet prøver i afstandene 0 feet, 50 feet, og 100 feet fra flodbredden. Tilsvarende er der i en afstand af 1300 yds fra flodens udløb i havet indsamlet prøver i afstandene 0 feet, 50 feet, og 100 feet fra flodbredden. Plot af logkoncentration som funktion af afstand fra bredden Plot af gennemsnit som funktion af afstand fra bredden qqplot for normalitet Spørgsmål: Er der samme afhængighed af afstanden til bredden de to steder? Er der forskel på de to steder? Nanostatistik: Lineær regression p. 32/41

33 To regressioner: Teste β 1 = β 2 Model: Y 11,...,Y 1n1 uafhængige, Y 1i N(α 1 + β 1 x 1i,σ 2 1 ) Y 21,...,Y 2n2 uafhængige, Y 2i N(α 2 + β 2 x 2i,σ 2 2 ) Hypotese: β 1 = β 2, Alternativ: β 1 β 2 Vi har: ˆβ 1 N ( β 1, ) σ1 2 SSD 1, ˆβ2 N ( β 2, ) σ2 2 SSD 2 s 2 1 σ2 1 n 1 2 χ2 [n 1 2], s 2 2 σ2 2 n 2 2 χ2 [n 2 2] Under hypotesen gælder der: ˆβ 1 ˆβ ( 2 N 0, ) σ1 2 + σ2 2 SSD 1 SSD 2 Hvis σ 2 1 = σ2 2 er s2 = (n 1 2)s 2 1+(n 2 2)s 2 2 n 1 +n 2 4 σ 2 n 1 +n 2 4 χ2 [n 1 +n 2 4] Nanostatistik: Lineær regression p. 33/41

34 To regressioner: Teste β 1 = β 2 σ1 2 = σ2 2 : Test på niveau 5% Teststørrelse: T = s 2 ( ˆβ 1 ˆβ 2 1 SSD SSD 2 Accept: t < t [n 1 + n 2 4] Forkast: t t [n 1 + n 2 4] p-værdi: 2F t[n1 +n 2 4]( t ) ) t[n 1 + n 2 4] Nanostatistik: Lineær regression p. 34/41

35 To regressioner: Teste β 1 = β 2 σ1 2 σ2 2 : Test på niveau 5% ˆβ 1 ˆβ 2 Teststørrelse: T = t[f] s s2 2 SSD 1 SSD 2 Accept: t < t [f] Forkast: t t [f] p-værdi: 2F t[f] ( t ) f = 1 n 1 2 ( s 2 1 ) 2 + s2 2 SSD 1 SSD 2 ( ) s 2 2 ( ) 1 SSD + 1 s n 2 2 SSD 2 Nanostatistik: Lineær regression p. 35/41

36 Forurening Estimater: 250yds: ˆβ = , ˆα = 2.25, s 2 = yds: ˆβ = , ˆα = 2.16, s 2 = Test for lineær sammenhæng (ikke gennegået): 250yds: F = 1.33, p-værdi = yds: F = 0.007, p-værdi = 0.93 Test for hældning lig med nul: 250yds: t = 3.00, p-værdi = yds: t = 1.59, p-værdi = 0.12 Test for ens varianser: F = 0.93, p-værdi = 0.84 Test for ens hældning: t = 0.93, p-værdi = 0.36 Nanostatistik: Lineær regression p. 36/41

37 Arbedsløshed i USA Variable: Year Federal Reserve Board Index of industrial production Unemployment rate Data: Year FRB y Hvordan afhænger Unemployment rate af FRB og year? Nanostatistik: Lineær regression p. 37/41

38 To forklarende variable Fordeling af Y i afhænger både af x i og z i Model: Y 1,...,Y n uafhængige, Y i N(α + βx i + γz i,σ 2 ) Estimater: ˆβ = SPD xyssd z SPD xz SPD zy SSD z SPD 2 xz ˆγ = SPD zy SPD xz SPD xy SSD z SPD 2 xz ˆα = Ȳ ˆβ x ˆγ z N N N ( β, σ 2 SSD z SSD z SPD 2 xz ( β, σ 2 SSD z SPD 2 xz ( β,σ 2 { 1n + x2 SSD z + z 2 x zspd xz SSD z SPD 2 xz ) ) }) s 2 = 1 n 3 n i=1 (Y i ˆα ˆβx i ˆγz i ) 2 σ2 n 3 χ2 [n 3] Nanostatistik: Lineær regression p. 38/41

39 Bevis For fast γ kan vi erstatte Y i med Ỹi = Y i γz i og bruge tidligere estimater: ˆβ = SPD xỹ = SPD xy γ SSD SPD xz x Indsætter vi dette i kvadratsummen skal vi minimere R(α, γ) = = n 1 { Y i α {( Y i SPD xy x i ( SPDxy γ SPD xz ) α γ )x i γz i } 2 ( z i SPD xz x i )} 2 Vi kan nu bruge tidligere resultater med Ỹi = Y i SPD xy x i og med x i = z i SPD xz x i Nanostatistik: Lineær regression p. 39/41

40 Bevis Dette giver: ˆγ = = SPD xỹ SSD x SPD zy SPD xy SPD x SPD ( xz SPD x y SPD ) xy SSD x x SSD z 2 SPD xz SPD SSD zx + SPD2 xz x SSD 2 x = SPD zy SPD xz SPD xy SSD z SPD 2 xz Dette indsættes nu i det tidligere ˆβ hvorved formlen for ˆβ findes. Nanostatistik: Lineær regression p. 40/41

41 Arbedsløshed i USA Regression paa FRB: ˆβ = 0.021, ˆα = 0.035, s 2 = 0.94 Teste β = 0: t = 0.93, p-værdi = 0.38 Regression paa year: ˆβ = 0.208, ˆα = 1.67, s 2 = 0.60 Teste β = 0: t = 2.45, p-værdi = Regression paa (FRB,year): ˆβ = 0.10, ˆγ = 0.65, ˆα = 13.45, s 2 = 0.16 Teste β = 0: t = 4.77, p-værdi = Teste γ = 0: t = 6.32, p-værdi = Nanostatistik: Lineær regression p. 41/41

Perspektiver i Matematik-Økonomi: Linær regression

Perspektiver i Matematik-Økonomi: Linær regression Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: jlj@imf.au.dk Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Nanostatistik: Opgavebesvarelser

Nanostatistik: Opgavebesvarelser Nanostatistik: Opgavebesvarelser JLJ Nanostatistik: Opgavebesvarelser p. 1/16 Pakkemaskine En producent hævder at poserne indeholder i gennemsnit 16 ounces sukker. Data: 10 pakker sukker: 16.1, 15.8, 15.8,

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde...

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde... Modul 13: Exercises 13.1 Substrat.......................... 1 13.2 Polynomiel regression.................. 3 13.3 Biomasse.......................... 4 13.4 Kreatinin.......................... 7 13.5 Læsefærdighed......................

Læs mere

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde...

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde... Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 13: Exercises 13.1 Substrat........................................ 1 13.2 Polynomiel regression................................

Læs mere

Nanostatistik: Test af hypotese

Nanostatistik: Test af hypotese Nanostatistik: Test af hypotese JLJ Nanostatistik: Test af hypotese p. 1/50 Repetition n uafhængige gentagne målinger: Fordelingsundersøgelse: Pindediagram / Histogram qq-plot Parameter: egenskab ved fordeling

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ

Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Per Bruun Brockhoff, DTU Compute, Claus Thorn Ekstrøm, KU Biostatistik, Ernst Hansen, KU Matematik January 17, 2017 Abstract

Læs mere

Simpel Lineær Regression: Model

Simpel Lineær Regression: Model Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i Da er r i = e i ˆσ ei t(n 3) (tæt på N(0,1) hvis n ikke alt for lille). Program 1. lineær regression: opgave 3 og 13 (sukker-temperatur). 2. studentiserede residualer, multipel regression. Tommelfinger-regel:

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/33

Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Nanostatistik: Opgaver

Nanostatistik: Opgaver Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m.

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m. 1 Uge 11 Teoretisk Statistik 8. marts 2004 Kapitel 3: Fordeling af en stokastisk variabel, X Kapitel 4: Fordeling af flere stokastiske variable, X 1,,X m (på en gang). NB: X 1,,X m kan være gentagne observationer

Læs mere

ELISA. ELISA (enzyme-linked immunosorbent assay) forsøg bruges til at detektere og kvantificere stoffer såsom proteiner, peptider, antistoffer o.lig.

ELISA. ELISA (enzyme-linked immunosorbent assay) forsøg bruges til at detektere og kvantificere stoffer såsom proteiner, peptider, antistoffer o.lig. ELISA ELISA (enzyme-linked immunosorbent assay) forsøg bruges til at detektere og kvantificere stoffer såsom proteiner, peptider, antistoffer o.lig. Teknikken er ganske snedig, og muliggør at man inddirekte

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 22 sider. Skriftlig prøve: 13. december 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

Module 9: Residualanalyse

Module 9: Residualanalyse Mathematical Statistics ST6: Linear Models Bent Jørgensen og Pia Larsen Module 9: Residualanalyse 9 Rå residualer 92 Standardiserede residualer 3 93 Ensidig variansanalyse 4 94 Studentiserede residualer

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data.

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. 1 / 32 Motivation Eksempel: Savings = β 0 + β 1 Income + u Vi ved allerede, hvordan vi estimerer regresseionlinjen:

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Basal Statistik. Simpel lineær regression. Simpel lineær regression. Data. Faculty of Health Sciences

Basal Statistik. Simpel lineær regression. Simpel lineær regression. Data. Faculty of Health Sciences Faculty of Health Sciences Simpel lineær regression Basal Statistik Regressionsanalyse. Lene Theil Skovgaard 21. februar 2017 Regression og korrelation Simpel lineær regression Todimensionale normalfordelinger

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Institut for Matematiske Fag Aalborg Universitet 1/1 Vægtet

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

2 X 2 = gennemsnitligt indhold af aktivt stof i én tablet fra et glas med 200 tabletter

2 X 2 = gennemsnitligt indhold af aktivt stof i én tablet fra et glas med 200 tabletter Opgave I I mange statistiske undersøgelser benytter man binomialfordelingen til at beskrive den tilfældige variation. Spørgsmål I.1 (1): For hvilken af følgende 5 stokastiske variable kunne binomialfordelingen

Læs mere

Statistik 1 og Statistiske Modeller 2: Todimensionale normalfordelte data Flerdimensionale normalfordelte data. Jørgen Granfeldt

Statistik 1 og Statistiske Modeller 2: Todimensionale normalfordelte data Flerdimensionale normalfordelte data. Jørgen Granfeldt Statistik 1 og Statistiske Modeller : Todimensionale normalfordelte data Flerdimensionale normalfordelte data Jørgen Granfeldt Institut for Matematiske Fag Det Naturvidenskabelige Fakultet Aarhus Universitet

Læs mere

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen STATISTIK Skriftlig evaluering, 3. semester, mandag den 6. januar 004 kl. 9.00-13.00. Alle hjælpemidler er tilladt. Opgaveløsningen forsynes med navn og CPR-nr. OPGAVE 1 Et firma tuner biler. Antallet

Læs mere

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen Vægte motiverende eksempel Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@mathaaudk Institut for Matematiske Fag Aalborg Universitet Højdeforskellen mellem punkterne P

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data)

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data) Dagens program Økonometri 1 Specifikation, og dataproblemer 10. april 003 Emnet for denne forelæsning er specifikation (Wooldridge kap. 9.-9.4)! Proxy variable! Målefejl! Manglende observationer! Dataudvælgelse!

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Matematisk Modellering 1 Cheat Sheet

Matematisk Modellering 1 Cheat Sheet By a team of brave computer scientists: Mads P. Buch, Tobias Brixen, Troels Thorsen, Peder Detlefsen, Mark Gottenborg, Peter Krogshede - 1 Contents 1 Basalt 3 1.1 Varianser...............................

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl?

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl? Module 6: Exercises 6.1 To laboranter....................... 2 6.2 Nicotamid i piller..................... 3 6.3 Karakterer......................... 5 6.4 Blodtryk hos kvinder................... 6 6.5

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Løsninger til kapitel 14

Løsninger til kapitel 14 Opgave 14.1 a) Linjetilpasningsplottet bliver: Løsninger til kapitel 14 Idet datapunkterne ligger tæt på og jævnt fordelt omkring den rette linje, så ser det ud til, at der med rimelighed er tale om en

Læs mere

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k Dagens program: Likelihoodfunktion, begreber : Mandag den 4. februar Den generelle lineære model score-funktion: første afledede af log-likelihood har middelværdien nul observeret information: anden afledede

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere