Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Størrelse: px
Starte visningen fra side:

Download "Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet"

Transkript

1 Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet

2 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem Reduktion på nettet x 1 + 2x 2 x 3 + 2x 4 + x 5 = 2 x 1 2x 2 + x 3 + 2x 4 + 3x 5 = 6 På echelonform x 1 + 4x 2 3x 3 + 2x 4 = 3 3x 1 6x 2 + 2x 3 + 3x 5 = 9

3 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem Reduktion på nettet x 1 + 2x 2 x 3 + 2x 4 + x 5 = 2 x 1 2x 2 + x 3 + 2x 4 + 3x 5 = 6 På echelonform x 1 + 4x 2 3x 3 + 2x 4 = 3 3x 1 6x 2 + 2x 3 + 3x 5 = 9

4 Løsningsmængde fra reduceret echelon Parameterfremstilling På reduceret echelonform Pivoter Et simpelt ligningssystem løses frie og bundne variable 1: 2: 3: 4:

5 Løsning på parameterform Frie variable som parametre Metode Giv (på skift) en af de frie variable værdien 1 og de andre værdien 0.

6 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix A og højreside b. Omvendt oversættes totalmatricen [A b] til matrixligningen Ax = b med den ubekendte vektor x = ligningssystem på kort form. x 1. x n et lineært

7 Elementære rækkeoperationer på ligningssystemer og matricer ledende koefficient i en række: det første element = 0! Navn Formål (i en søjle) Rækkeombytning ledende koefficient op, 0-taller ned! Rækkeaddition 0-taller under/over ledende koefficient! Rækkemultiplikation ledende koefficient 1! To matricer kaldes rækkeækvivalente hvis man kan overføre den ene i den anden ved en eller flere elementære rækkeoperationer. Hvorfor? To ligningssystemer svarende til rækkeækvivalente totalmatricer har samme løsningsmængde! Hvad kan man opnå gennem systematisk anvendelse af rækkeoperationer?

8 Elementære rækkeoperationer på ligningssystemer og matricer ledende koefficient i en række: det første element = 0! Navn Formål (i en søjle) Rækkeombytning ledende koefficient op, 0-taller ned! Rækkeaddition 0-taller under/over ledende koefficient! Rækkemultiplikation ledende koefficient 1! To matricer kaldes rækkeækvivalente hvis man kan overføre den ene i den anden ved en eller flere elementære rækkeoperationer. Hvorfor? To ligningssystemer svarende til rækkeækvivalente totalmatricer har samme løsningsmængde! Hvad kan man opnå gennem systematisk anvendelse af rækkeoperationer?

9 Elementære rækkeoperationer på ligningssystemer og matricer ledende koefficient i en række: det første element = 0! Navn Formål (i en søjle) Rækkeombytning ledende koefficient op, 0-taller ned! Rækkeaddition 0-taller under/over ledende koefficient! Rækkemultiplikation ledende koefficient 1! To matricer kaldes rækkeækvivalente hvis man kan overføre den ene i den anden ved en eller flere elementære rækkeoperationer. Hvorfor? To ligningssystemer svarende til rækkeækvivalente totalmatricer har samme løsningsmængde! Hvad kan man opnå gennem systematisk anvendelse af rækkeoperationer?

10 Elementære rækkeoperationer på ligningssystemer og matricer ledende koefficient i en række: det første element = 0! Navn Formål (i en søjle) Rækkeombytning ledende koefficient op, 0-taller ned! Rækkeaddition 0-taller under/over ledende koefficient! Rækkemultiplikation ledende koefficient 1! To matricer kaldes rækkeækvivalente hvis man kan overføre den ene i den anden ved en eller flere elementære rækkeoperationer. Hvorfor? To ligningssystemer svarende til rækkeækvivalente totalmatricer har samme løsningsmængde! Hvad kan man opnå gennem systematisk anvendelse af rækkeoperationer?

11 Elementære rækkeoperationer på ligningssystemer og matricer ledende koefficient i en række: det første element = 0! Navn Formål (i en søjle) Rækkeombytning ledende koefficient op, 0-taller ned! Rækkeaddition 0-taller under/over ledende koefficient! Rækkemultiplikation ledende koefficient 1! To matricer kaldes rækkeækvivalente hvis man kan overføre den ene i den anden ved en eller flere elementære rækkeoperationer. Hvorfor? To ligningssystemer svarende til rækkeækvivalente totalmatricer har samme løsningsmængde! Hvad kan man opnå gennem systematisk anvendelse af rækkeoperationer?

12 Echelon-matricer Matricer på trappeform Række Echelon-matricer En matrix på echelonform har 1 alle 0-rækker nederst. 2 De ledende koefficienter (først i rækken = 0) flytter til højre når man vandrer ned ad rækkerne. (Konsekvens: I området under og til venstre for en ledende koefficient står der kun 0-taller). Reducerede række Echelon-matricer En matrix på reduceret echelonform opfylder desuden: 1 Ledende koefficienter = 1 kaldes Pivoter. 2 Også over Pivoter står der kun 0-taller. En matrix kan ved rækkeoperationer overføres til forskellige matricer på echelonform, men kun til en matrix på reduceret echelonform.

13 Echelon-matricer Matricer på trappeform Række Echelon-matricer En matrix på echelonform har 1 alle 0-rækker nederst. 2 De ledende koefficienter (først i rækken = 0) flytter til højre når man vandrer ned ad rækkerne. (Konsekvens: I området under og til venstre for en ledende koefficient står der kun 0-taller). Reducerede række Echelon-matricer En matrix på reduceret echelonform opfylder desuden: 1 Ledende koefficienter = 1 kaldes Pivoter. 2 Også over Pivoter står der kun 0-taller. En matrix kan ved rækkeoperationer overføres til forskellige matricer på echelonform, men kun til en matrix på reduceret echelonform.

14 Echelon-matricer Matricer på trappeform Række Echelon-matricer En matrix på echelonform har 1 alle 0-rækker nederst. 2 De ledende koefficienter (først i rækken = 0) flytter til højre når man vandrer ned ad rækkerne. (Konsekvens: I området under og til venstre for en ledende koefficient står der kun 0-taller). Reducerede række Echelon-matricer En matrix på reduceret echelonform opfylder desuden: 1 Ledende koefficienter = 1 kaldes Pivoter. 2 Også over Pivoter står der kun 0-taller. En matrix kan ved rækkeoperationer overføres til forskellige matricer på echelonform, men kun til en matrix på reduceret echelonform.

15 Rækkereduktion til echelonform Gauss-algoritmen (forlæns) Algoritmen (regnemetoden) går igennem matricens søjler fra venstre til højre. Den bruger r-ombytning for at opnå at ledende koefficienter længst vil venstre optræder i rækken lige under den sidst opnåede Pivotposition r-addition for at opnå at der kun står 0-taller under denne ledende koefficient. I hver søjle: højst en ombytning, men ofte flere additioner. Resultat: En rækkeækvivalent matrix på echelonform.

16 Rækkereduktion til echelonform Gauss-algoritmen (forlæns) Algoritmen (regnemetoden) går igennem matricens søjler fra venstre til højre. Den bruger r-ombytning for at opnå at ledende koefficienter længst vil venstre optræder i rækken lige under den sidst opnåede Pivotposition r-addition for at opnå at der kun står 0-taller under denne ledende koefficient. I hver søjle: højst en ombytning, men ofte flere additioner. Resultat: En rækkeækvivalent matrix på echelonform.

17 Rækkereduktion til reduceret echelonform Gauss-Jordan-algoritmen (baglæns) Algoritmen fortsætter fra en matrix på echelonform. Den går igennem Pivotelementer fra venstre til højre og bruger r-multiplikation for at opnå at Pivotelementet bliver 1. r-addition for at opnå at der også står 0-taller over Pivotelementet. Resultat: Den rækkeækvivalente matrix på reduceret echelonform. Ligningssystemet svarende til en matrix på reduceret echelonform løses nemt ved at isolere de bundne variable (svarende til Pivotsøjler).

18 Rækkereduktion til reduceret echelonform Gauss-Jordan-algoritmen (baglæns) Algoritmen fortsætter fra en matrix på echelonform. Den går igennem Pivotelementer fra venstre til højre og bruger r-multiplikation for at opnå at Pivotelementet bliver 1. r-addition for at opnå at der også står 0-taller over Pivotelementet. Resultat: Den rækkeækvivalente matrix på reduceret echelonform. Ligningssystemet svarende til en matrix på reduceret echelonform løses nemt ved at isolere de bundne variable (svarende til Pivotsøjler).

19 Konsistente og inkonsistente ligningssystemer Echelonform afgør! Et lille ligningssystem x 1 + 2x 2 = 3 2x 1 x 2 = 5 5x 1 + 5x 2 = 0 Løsning (?) Konsistens/inkonsistens Et ligningssystem kaldes konsistent hvis det har mindst en løsning. Hvis system-matricen [A b] indeholder en række på formen [ c] med c =0, så er systemet inkonsistents; ellers konsistent.

20 Konsistente og inkonsistente ligningssystemer Echelonform afgør! Et lille ligningssystem x 1 + 2x 2 = 3 2x 1 x 2 = 5 5x 1 + 5x 2 = 0 Løsning (?) Konsistens/inkonsistens Et ligningssystem kaldes konsistent hvis det har mindst en løsning. Hvis system-matricen [A b] indeholder en række på formen [ c] med c =0, så er systemet inkonsistents; ellers konsistent.

21 Fra reduceret echelonform til parameterfremstilling for løsningsmængden Reduceret echelonmatrix Pivoter Pivotsøjler og bundne variable frie variable Løsning og parameterfremstilling L

22 Løsningsmængden L for et lineært ligningssystem I The general solution Løsningsmængden beskriver alle løsninger: L = {[x 1,..., x n ] R n x 1,... x n opylder alle m ligninger} R n Hvis en rækkeækvivalent echelonmatrix indeholder en række på formen [00 0 c] med c = 0, så er systemet inkonsistent ingen løsning L =. Hvis ikke, så svarer hver Pivotsøjle (som indeholder en ledende koefficient) til en bunden variabel og hver af de andre til en fri variabel. Er der kun bundne variable, så har systemet en entydig løsning L har netop ét element [x 1,, x n ]. Denne løsning findes umiddelbart ud fra den reducerede echelonmatrix.

23 Løsningsmængden L for et lineært ligningssystem I The general solution Løsningsmængden beskriver alle løsninger: L = {[x 1,..., x n ] R n x 1,... x n opylder alle m ligninger} R n Hvis en rækkeækvivalent echelonmatrix indeholder en række på formen [00 0 c] med c = 0, så er systemet inkonsistent ingen løsning L =. Hvis ikke, så svarer hver Pivotsøjle (som indeholder en ledende koefficient) til en bunden variabel og hver af de andre til en fri variabel. Er der kun bundne variable, så har systemet en entydig løsning L har netop ét element [x 1,, x n ]. Denne løsning findes umiddelbart ud fra den reducerede echelonmatrix.

24 Løsningsmængden L for et lineært ligningssystem I The general solution Løsningsmængden beskriver alle løsninger: L = {[x 1,..., x n ] R n x 1,... x n opylder alle m ligninger} R n Hvis en rækkeækvivalent echelonmatrix indeholder en række på formen [00 0 c] med c = 0, så er systemet inkonsistent ingen løsning L =. Hvis ikke, så svarer hver Pivotsøjle (som indeholder en ledende koefficient) til en bunden variabel og hver af de andre til en fri variabel. Er der kun bundne variable, så har systemet en entydig løsning L har netop ét element [x 1,, x n ]. Denne løsning findes umiddelbart ud fra den reducerede echelonmatrix.

25 Løsningsmængden L for et lineært ligningssystem I The general solution Løsningsmængden beskriver alle løsninger: L = {[x 1,..., x n ] R n x 1,... x n opylder alle m ligninger} R n Hvis en rækkeækvivalent echelonmatrix indeholder en række på formen [00 0 c] med c = 0, så er systemet inkonsistent ingen løsning L =. Hvis ikke, så svarer hver Pivotsøjle (som indeholder en ledende koefficient) til en bunden variabel og hver af de andre til en fri variabel. Er der kun bundne variable, så har systemet en entydig løsning L har netop ét element [x 1,, x n ]. Denne løsning findes umiddelbart ud fra den reducerede echelonmatrix.

26 Løsningsmængden L for et lineært ligningssystem II Frie variable bundne variable Frie variable kan antage vilkårlige reelle tal som værdier, uafhængigt af hinanden. De bundne variable udtrykkes som linearkombinationer af de frie ved substitution med udgangspunkt i echelonmatrix. Resultat: en parameterfremstilling for løsningsmængden L. L har uendelig mange løsninger hvis et konsistent system giver anledning til en eller flere frie variable (søjler uden Pivot).

27 Fra ligningssystem til løsningsmængde Trin for trin 1 Overfør ligningssystemet til (udvidet) matrix 2 Rækkereduktion matrix på echelonform 1 Er højresiden en Pivotsøjle (er der en ledende koefficient i sidste søjle)? Systemet er inkonsistent. Stop! 2 Ellers er systemet konsistent. Fortsæt! 3 Rækkereduktion matrix på reduceret echelonform. 4 Overfør denne sidste matrix til et (ækvivalent) ligningssystem 5 Isoler bundne variable parameterfremstilling med de frie variable som parametre

28 Fra ligningssystem til løsningsmængde Trin for trin 1 Overfør ligningssystemet til (udvidet) matrix 2 Rækkereduktion matrix på echelonform 1 Er højresiden en Pivotsøjle (er der en ledende koefficient i sidste søjle)? Systemet er inkonsistent. Stop! 2 Ellers er systemet konsistent. Fortsæt! 3 Rækkereduktion matrix på reduceret echelonform. 4 Overfør denne sidste matrix til et (ækvivalent) ligningssystem 5 Isoler bundne variable parameterfremstilling med de frie variable som parametre

29 Fra ligningssystem til løsningsmængde Trin for trin 1 Overfør ligningssystemet til (udvidet) matrix 2 Rækkereduktion matrix på echelonform 1 Er højresiden en Pivotsøjle (er der en ledende koefficient i sidste søjle)? Systemet er inkonsistent. Stop! 2 Ellers er systemet konsistent. Fortsæt! 3 Rækkereduktion matrix på reduceret echelonform. 4 Overfør denne sidste matrix til et (ækvivalent) ligningssystem 5 Isoler bundne variable parameterfremstilling med de frie variable som parametre

30 Fra ligningssystem til løsningsmængde Trin for trin 1 Overfør ligningssystemet til (udvidet) matrix 2 Rækkereduktion matrix på echelonform 1 Er højresiden en Pivotsøjle (er der en ledende koefficient i sidste søjle)? Systemet er inkonsistent. Stop! 2 Ellers er systemet konsistent. Fortsæt! 3 Rækkereduktion matrix på reduceret echelonform. 4 Overfør denne sidste matrix til et (ækvivalent) ligningssystem 5 Isoler bundne variable parameterfremstilling med de frie variable som parametre

31 Fra ligningssystem til løsningsmængde Trin for trin 1 Overfør ligningssystemet til (udvidet) matrix 2 Rækkereduktion matrix på echelonform 1 Er højresiden en Pivotsøjle (er der en ledende koefficient i sidste søjle)? Systemet er inkonsistent. Stop! 2 Ellers er systemet konsistent. Fortsæt! 3 Rækkereduktion matrix på reduceret echelonform. 4 Overfør denne sidste matrix til et (ækvivalent) ligningssystem 5 Isoler bundne variable parameterfremstilling med de frie variable som parametre

32 Rang og nullitet Givet en m n-matrix A med rækkeækvivalent matrix R på reduceret række echelonform. Definition 1 As rang rank(a): Antal Pivotsøjler i R og dermed i A. 2 As nullitet (eller defekt) nullity(a): Antal søjjler uden Pivot. Sumformel rank(a) + nullity(a) = n. (Variablene er enten bundne eller fri!)

33 Rang og nullitet Givet en m n-matrix A med rækkeækvivalent matrix R på reduceret række echelonform. Definition 1 As rang rank(a): Antal Pivotsøjler i R og dermed i A. 2 As nullitet (eller defekt) nullity(a): Antal søjjler uden Pivot. Sumformel rank(a) + nullity(a) = n. (Variablene er enten bundne eller fri!)

34 Rang og nullitet Et eksempel på nettet Gaussian elimination Sample 5

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

DesignMat Lineære ligningssystemer og Gauss-elimination

DesignMat Lineære ligningssystemer og Gauss-elimination DesignMat Lineære ligningssystemer og Gauss-elimination Preben Alsholm Uge Forår 010 1 Lineære ligningssystemer og Gauss-elimination 11 Om talrummet R n Om talsæt bestående af n tal R n er blot mængden

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Lineære ligningssystemer

Lineære ligningssystemer enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 0 4 4 0 0 0 4 x x x x 6 udgave 06 FORORD Dette notat viser hvorledes man kan løse lineære ligningssystemer ved Gaussmetode dels uden regnemidler

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

De fire elementers kostbare spejl

De fire elementers kostbare spejl Projekt.6 Lineær algebra moderne og klassisk kinesisk De fire elementers kostbare spejl "Som bekendt anses matematikken for at være en meget vigtig videnskab. Denne bog om matematik vil derfor være af

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af programmerne TI-Nspire og Maple 0 3 4 3 4 0 3 0 3 0 3 4 x x x x 4 udgave 04 FORORD Dette notat giver en gennemgang af de matrixoperationer,

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af programmerne TI-Nspire og Maple 0 4 4 0 0 0 4 x x x x 5 udgave 05 FORORD Dette notat viser hvorledes man kan dels kan løse lineære

Læs mere

Indhold. 5. Vektorrum og matricer Koordinattransformationer

Indhold. 5. Vektorrum og matricer Koordinattransformationer Indhold Lineære afbildninger og matricer Talrummene R n, C n Matricer 8 3 Lineære afbildninger 4 Matrix algebra 8 5 Invers matrix 6 6 Transponeret og adjungeret matrix 9 Række- og søjleoperationer Lineære

Læs mere

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge Oversigt [LA] 8 Her skal du lære om 1. Helt simple determinanter 2. En udvidelse der vil noget 3. Effektive regneregler 4. Genkend determinant nul 5. Produktreglen 6. Inversreglen 7. Potensreglen 8. Entydig

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af lommeregner (TI89) og programmerne TI-Nspire og Mathcad 0 3 4 3 4 0 3 0 3 0 3 4 x x x x 3 udgave 03 FORORD Dette notat giver en

Læs mere

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001.

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001. Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni og Juni. Preben Alsholm 9. november 9 Juni Opgave 3 f : P (R) R 3 er givet ved f (P (x)) P () a + P () b, hvor a (,, ) og b (, 3, ). Vi viser,

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling Forelæsningsnoter til Lineær Algebra Niels Vigand Pedersen Udgivet af Asmus L Schmidt Københavns Universitet Matematisk Afdeling August Revideret 9 ii udgave, oktober 9 Forord Gennem en særlig aftale varetages

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Mat10 eksamensspørgsmål

Mat10 eksamensspørgsmål Mat10 eksamensspørgsmål Martin Geisler 9. januar 2002 Resumé Dette dokument er en gennemgang af de eksamensspørgsmål der blev stillet til den mundtlige eksamen i Mat10, januar 2002

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 0 4 4 0 0 0 4 x x x x 6 udgave 06 FORORD Dette notat viser hvorledes man kan løse lineære ligningssystemer ved Gaussmetode dels uden regnemidler

Læs mere

Ugeseddel 12(10.12 14.12)

Ugeseddel 12(10.12 14.12) Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen

Læs mere

2. gang. Det bliver den 18. februar, idet jeg er på ferie den 11/2. Med venlig hilsen Jon Johnsen

2. gang. Det bliver den 18. februar, idet jeg er på ferie den 11/2. Med venlig hilsen Jon Johnsen LINEÆR ALGEBRA 31. januar 2003 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, 3. udgave Addison Wesley 2003. Udtrykt meget groft gennemgås kapitel 1 3. Som regel

Læs mere

MATRICER LINEÆRE LIGNINGER. Usikkerhedsberegning

MATRICER LINEÆRE LIGNINGER. Usikkerhedsberegning MOGENS ODDERSHEDE LARSEN MATRICER LINEÆRE LIGNINGER Usikkerhedsberegning med inddragelse af lommeregner (TI89) og programmerne TI-Nspire og Mathcad 0 3 4 3 4 0 3 0 3 0 3 4 = x x x x. udgave 0 FORORD Dette

Læs mere

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley;

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; LINEÆR ALGEBRA 1. februar 2008 Oversigt nr. 1 I kurset Lineær Algebra skal vi bruge D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; man kan også anvende Third Edition

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 0 4 4 0 0 0 4 x x x x 6 udgave 06 FORORD Dette notat viser hvorledes man kan dels kan løse lineære ligningssystemer ved Gaussmetode (håndregning),

Læs mere

DesignMat Uge 11 Vektorrum

DesignMat Uge 11 Vektorrum DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

LINALG JULENØD 2013 SUNE PRECHT REEH

LINALG JULENØD 2013 SUNE PRECHT REEH LINALG JULENØD 203 SUNE PRECHT REEH Resumé I denne julenød skal vi se på lineær algebra for heltallene Z Hvad går stadig godt? og hvad går galt? I de reelle tal R kan vi for ethvert a 0 altid finde R som

Læs mere

Lineære Afbildninger. enote 8. 8.1 Om afbildninger

Lineære Afbildninger. enote 8. 8.1 Om afbildninger enote 8 enote 8 Lineære Afbildninger Denne enote undersøger afbildninger mellem vektorrum af en bestemt type, nemlig lineære afbildninger Det vises, at kernen og billedrummet for lineære afbildninger er

Læs mere

Lineær Algebra, 2015 1. kursusgang

Lineær Algebra, 2015 1. kursusgang Lineær Algebra, 2015 1. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg September 2015 Velkommen til Lineær algebra Kursusholder - Lisbeth Fajstrup. Kontor: Fredrik

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Program for de næste 3 1/4 dobbeltlektion

Program for de næste 3 1/4 dobbeltlektion Matricer Program for de næste 3 1/4 dobbeltlektion Tirsdag 3. september 11.00 12.00: Afsnit 8.1, 8.2, 8.3 og 8.5 Torsdag 5. september 12.30 16.15 12.30 14.15: Opgaveregning lokale 261/409 14.30: Vi mødes

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Lineære 2. ordens differentialligninger med konstante koefficienter

Lineære 2. ordens differentialligninger med konstante koefficienter enote 13 1 enote 13 Lineære 2. ordens differentialligninger med konstante koefficienter I forlængelse af enote 11 og enote 12 om differentialligninger, kommer nu denne enote omkring 2. ordens differentialligninger.

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

OPGAVER 1. Løsning af ligningssystemer Disse første opgaver er introducerer til løsning af lineære ligningssystemer. De løses alle ved håndregning.

OPGAVER 1. Løsning af ligningssystemer Disse første opgaver er introducerer til løsning af lineære ligningssystemer. De løses alle ved håndregning. OPGAVER 1 Opgaver til Uge 5 Store Dag Opgave 1 Løsning af ligningssystemer Disse første opgaver er introducerer til løsning af lineære ligningssystemer. De løses alle ved håndregning. a) Find den fuldstændige

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

DesignMat Uge 11. Vektorrum

DesignMat Uge 11. Vektorrum DesignMat Uge 11 (fortsat) Forår 2010 Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation med skalar. (fortsat) Lad L betegne R eller C. Lad V være en

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet Forberedelsesmateriale frs-matn/a-270420 Onsdag den 27. april 20 Forberedelsesmateriale til stx-a-net MATEMATIK Der skal afsættes

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides 01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers matrix Matrix potens Lineære ligningssystemer Løsningsmængdens

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

1 Om funktioner. 1.1 Hvad er en funktion?

1 Om funktioner. 1.1 Hvad er en funktion? 1 Om funktioner 1.1 Hvad er en funktion? Man lærer allerede om funktioner i folkeskolen, hvor funktioner typisk bliver introduceret som maskiner, der tager et tal ind, og spytter et tal ud. Dette er også

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET H.A. NIELSEN INDHOLD. Lineær ligning 2 2. Lineært system 8 3. Generel ligning 6 4. Stabilitet 8 Litteratur 2 Noterne er til 4 timers forelæsninger

Læs mere

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitutionernes fest 53 Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitution en masse Vi vil i denne artikel vise, hvorledes man kan løse den generelle tredjegradsligning

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Differentialligninger med TI-Interactive!

Differentialligninger med TI-Interactive! Differentialligninger med TI-Interactive! Jan Leffers (2008) Indholdsfortegnelse Indholdsfortegnelse...3 1. ordens differentialligninger... 4 Den fuldstændige løsning... 4 Løsning med bibetingelse...4

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Fejlkorrigerende koder, secret sharing (og kryptografi)

Fejlkorrigerende koder, secret sharing (og kryptografi) Fejlkorrigerende koder, secret sharing (og kryptografi) Olav Geil Afdeling for Matematiske Fag Aalborg Universitet Møde for Matematiklærere i Viborg og Ringkøbing amter 7. november, 2006 Oversigt Fejlkorrigerende

Læs mere

Vejledning i udtræk af input-output data fra Statistikbanken

Vejledning i udtræk af input-output data fra Statistikbanken - 1 - Vejledning i udtræk af input-output data fra Statistikbanken Introduktion Input-output tabellerne er konsistente med nationalregnskabet og udarbejdes i tilknytning hertil. De opdateres årligt i december

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Matroider Majbritt Felleki

Matroider Majbritt Felleki 18 Rejselegatsformidlingsaktivitet Matroider Majbritt Felleki Den amerikanske matematiker Hassler Whitney fandt i 1935 sammenhænge mellem sætninger i grafteori og sætninger i lineær algebra. Dette førte

Læs mere

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe.

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe. 0.1: Ringe 1. Definition: Ring En algebraisk struktur (R, +,, 0,, 1) kaldes en ring hvis (R, +,, 0) er en kommutativ gruppe og (R,, 1) er en monoide og hvis er såvel venstre som højredistributiv mht +.

Læs mere

Chapter 7: Transport-, assignment- & transshipmentproblemer

Chapter 7: Transport-, assignment- & transshipmentproblemer Chapter 7: Transport-, assignment- & transshipmentproblemer 1) Formulering af de 3 problemtyper 2) Algoritme for det balancerede transportproblem 3) Algoritme for assignmentproblemet Samtlige 3 problemtyper

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Kofi Mensah 7Ama1S15

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Komplekse tal og Kaos

Komplekse tal og Kaos Komplekse tal og Kaos Jon Sporring Datalogisk Institut ved Københavns Universitet Universitetsparken 1, 2100 København Ø August, 2006 1 Forord Denne opgave er tiltænkt gymnasiestuderende med matematik

Læs mere

Diskriminantformlen. Frank Nasser. 11. juli 2011

Diskriminantformlen. Frank Nasser. 11. juli 2011 Diskriminantformlen Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Elektriske netværk. Køreplan 01005 Matematik 1 - FORÅR 2005

Elektriske netværk. Køreplan 01005 Matematik 1 - FORÅR 2005 Elektriske netværk Køreplan 01005 Matematik 1 - FORÅR 2005 1 Indledning. Formålet med projektet er at anvende lineær algebra til at etablere det matematiske grundlag for elektriske netværk betstående af

Læs mere

Lineær algebra: Lineære afbildninger. Standardmatricer

Lineær algebra: Lineære afbildninger. Standardmatricer Lineær algebra: Lineære afbildninger. Standardmatricer Institut for Matematiske Fag Aalborg Universitet 2011 Lineære afbildninger En afbildning T : R n R m fra definitionsmængden R n ind i dispositionsmængden

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

G r u p p e G

G r u p p e G M a t e m a t i s k o p t i m e r i n g ( E k s t r e m a, t e o r i o g p r a k s i s ) P 3 p r o j e k t G r u p p e G 3-1 1 7 V e j l e d e r : N i k o l a j H e s s - N i e l s e n 1 4. d e c e m b

Læs mere

DesignMat Egenværdier og Egenvektorer

DesignMat Egenværdier og Egenvektorer DesignMat Egenværdier og Egenvektorer Preben Alsholm September 008 1 Egenværdier og Egenvektorer 1.1 Definition og Eksempel 1 Definition og Eksempel 1 Lad V være et vektorrum over L (enten R eller C).

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum)

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum) Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Forelæsningsnote 8 NB: Noten er ikke en del af pensum Eksempel på brug af egenværdier og egenvektorer Måske er det stadig

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2011 HTX

Læs mere

Flere ligninger med flere ukendte

Flere ligninger med flere ukendte Flere ligninger med flere ukendte Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

MATEMATIK FOR INGENIØRER BIND 3

MATEMATIK FOR INGENIØRER BIND 3 BJARNE HELLESEN og MOGENS ODDERSHEDE LARSEN MATEMATIK FOR INGENIØRER BIND 3 4. UDGAVE DANMARKS TEKNISKE UNIVERSITET INSTITUT FOR ANVENDT KEMI 2000 FORORD Med nærværende bind 3 er forfatternes lærebogsserie

Læs mere

En forståelsesramme for de reelle tal med kompositioner.

En forståelsesramme for de reelle tal med kompositioner. 1 En forståelsesramme for de reelle tal med kompositioner. af Ulrich Christiansen, sem.lekt. KDAS. Den traditionelle tallinjemodel, hvor tallene svarer til punkter langs tallinjen, dækker fornuftigt (R,

Læs mere

Polynomier af én variabel

Polynomier af én variabel enote 30 1 enote 30 Polynomier af én variabel I denne enote introduceres komplekse polynomier af én variabel. Der forudsættes elementært kendskab til komplekse tal, og kendskab til reelle polynomier af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold December 2015 vinter VUC Vestegnen stx Mat A Gert Friis

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Mat1GA Minilex. Indhold. Henrik Dahl, Hold januar Definitioner 2. 2 Sætninger m.v Regneregler Kriterier 43.

Mat1GA Minilex. Indhold. Henrik Dahl, Hold januar Definitioner 2. 2 Sætninger m.v Regneregler Kriterier 43. Mat1GA Minilex Henrik Dahl, Hold 10 3. januar 2003 Indhold 1 Definitioner 2 2 Sætninger m.v. 17 3 Regneregler 36 4 Kriterier 43 5 Kogebog 44 Resumé ADVARSEL - dette er livsfarligt at bruge ukritisk. Der

Læs mere

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com Matrix Algebra med Excel Forelæsningsnoter til FR86 Jesper Lund mail@jesperlund.com http://www.jesperlund.com 28. august 2002 1 Indledning Matrix algebra er et uundværligt redskab til økonometri, herunder

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Nihal Günaydin 1maA04

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Geometriske vektorer. enote En geometrisk vektor

Geometriske vektorer. enote En geometrisk vektor enote 6 1 enote 6 Geometriske vektorer Formålet med denne note er at give en introduktion til geometriske vektorer i planen og rummet, som sigter mod at introducere en række af de metoder, der gør sig

Læs mere

Lineær programmering. med Derive. Børge Jørgensen

Lineær programmering. med Derive. Børge Jørgensen Lineær programmering med Derive Børge Jørgensen 1 Indholdsfortegnelse. Forord ---------------------------------------------------------------------------------- 2 Introduktion til lineær programmering

Læs mere

Eleverne skal lave tre forskellige typer af svar på opgaven: Almindelige, vanskelige og smarte.

Eleverne skal lave tre forskellige typer af svar på opgaven: Almindelige, vanskelige og smarte. Åben og undersøgende julematematik Jul er jo en herlig tid, og jeg har givet mig selv den opgave at finde på en juleopgave, inden for hver af de seks typer af åbne og undersøgende aktiviteter, som jeg

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 15 Institution VUC Thy-Mors Uddannelse Fag og niveau Lærer(e) Hold stx Matematik niveau A Knud Søgaard

Læs mere