Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Størrelse: px
Starte visningen fra side:

Download "Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet"

Transkript

1 Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet

2 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem Reduktion på nettet x 1 + 2x 2 x 3 + 2x 4 + x 5 = 2 x 1 2x 2 + x 3 + 2x 4 + 3x 5 = 6 På echelonform x 1 + 4x 2 3x 3 + 2x 4 = 3 3x 1 6x 2 + 2x 3 + 3x 5 = 9

3 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem Reduktion på nettet x 1 + 2x 2 x 3 + 2x 4 + x 5 = 2 x 1 2x 2 + x 3 + 2x 4 + 3x 5 = 6 På echelonform x 1 + 4x 2 3x 3 + 2x 4 = 3 3x 1 6x 2 + 2x 3 + 3x 5 = 9

4 Løsningsmængde fra reduceret echelon Parameterfremstilling På reduceret echelonform Pivoter Et simpelt ligningssystem løses frie og bundne variable 1: 2: 3: 4:

5 Løsning på parameterform Frie variable som parametre Metode Giv (på skift) en af de frie variable værdien 1 og de andre værdien 0.

6 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix A og højreside b. Omvendt oversættes totalmatricen [A b] til matrixligningen Ax = b med den ubekendte vektor x = ligningssystem på kort form. x 1. x n et lineært

7 Elementære rækkeoperationer på ligningssystemer og matricer ledende koefficient i en række: det første element = 0! Navn Formål (i en søjle) Rækkeombytning ledende koefficient op, 0-taller ned! Rækkeaddition 0-taller under/over ledende koefficient! Rækkemultiplikation ledende koefficient 1! To matricer kaldes rækkeækvivalente hvis man kan overføre den ene i den anden ved en eller flere elementære rækkeoperationer. Hvorfor? To ligningssystemer svarende til rækkeækvivalente totalmatricer har samme løsningsmængde! Hvad kan man opnå gennem systematisk anvendelse af rækkeoperationer?

8 Elementære rækkeoperationer på ligningssystemer og matricer ledende koefficient i en række: det første element = 0! Navn Formål (i en søjle) Rækkeombytning ledende koefficient op, 0-taller ned! Rækkeaddition 0-taller under/over ledende koefficient! Rækkemultiplikation ledende koefficient 1! To matricer kaldes rækkeækvivalente hvis man kan overføre den ene i den anden ved en eller flere elementære rækkeoperationer. Hvorfor? To ligningssystemer svarende til rækkeækvivalente totalmatricer har samme løsningsmængde! Hvad kan man opnå gennem systematisk anvendelse af rækkeoperationer?

9 Elementære rækkeoperationer på ligningssystemer og matricer ledende koefficient i en række: det første element = 0! Navn Formål (i en søjle) Rækkeombytning ledende koefficient op, 0-taller ned! Rækkeaddition 0-taller under/over ledende koefficient! Rækkemultiplikation ledende koefficient 1! To matricer kaldes rækkeækvivalente hvis man kan overføre den ene i den anden ved en eller flere elementære rækkeoperationer. Hvorfor? To ligningssystemer svarende til rækkeækvivalente totalmatricer har samme løsningsmængde! Hvad kan man opnå gennem systematisk anvendelse af rækkeoperationer?

10 Elementære rækkeoperationer på ligningssystemer og matricer ledende koefficient i en række: det første element = 0! Navn Formål (i en søjle) Rækkeombytning ledende koefficient op, 0-taller ned! Rækkeaddition 0-taller under/over ledende koefficient! Rækkemultiplikation ledende koefficient 1! To matricer kaldes rækkeækvivalente hvis man kan overføre den ene i den anden ved en eller flere elementære rækkeoperationer. Hvorfor? To ligningssystemer svarende til rækkeækvivalente totalmatricer har samme løsningsmængde! Hvad kan man opnå gennem systematisk anvendelse af rækkeoperationer?

11 Elementære rækkeoperationer på ligningssystemer og matricer ledende koefficient i en række: det første element = 0! Navn Formål (i en søjle) Rækkeombytning ledende koefficient op, 0-taller ned! Rækkeaddition 0-taller under/over ledende koefficient! Rækkemultiplikation ledende koefficient 1! To matricer kaldes rækkeækvivalente hvis man kan overføre den ene i den anden ved en eller flere elementære rækkeoperationer. Hvorfor? To ligningssystemer svarende til rækkeækvivalente totalmatricer har samme løsningsmængde! Hvad kan man opnå gennem systematisk anvendelse af rækkeoperationer?

12 Echelon-matricer Matricer på trappeform Række Echelon-matricer En matrix på echelonform har 1 alle 0-rækker nederst. 2 De ledende koefficienter (først i rækken = 0) flytter til højre når man vandrer ned ad rækkerne. (Konsekvens: I området under og til venstre for en ledende koefficient står der kun 0-taller). Reducerede række Echelon-matricer En matrix på reduceret echelonform opfylder desuden: 1 Ledende koefficienter = 1 kaldes Pivoter. 2 Også over Pivoter står der kun 0-taller. En matrix kan ved rækkeoperationer overføres til forskellige matricer på echelonform, men kun til en matrix på reduceret echelonform.

13 Echelon-matricer Matricer på trappeform Række Echelon-matricer En matrix på echelonform har 1 alle 0-rækker nederst. 2 De ledende koefficienter (først i rækken = 0) flytter til højre når man vandrer ned ad rækkerne. (Konsekvens: I området under og til venstre for en ledende koefficient står der kun 0-taller). Reducerede række Echelon-matricer En matrix på reduceret echelonform opfylder desuden: 1 Ledende koefficienter = 1 kaldes Pivoter. 2 Også over Pivoter står der kun 0-taller. En matrix kan ved rækkeoperationer overføres til forskellige matricer på echelonform, men kun til en matrix på reduceret echelonform.

14 Echelon-matricer Matricer på trappeform Række Echelon-matricer En matrix på echelonform har 1 alle 0-rækker nederst. 2 De ledende koefficienter (først i rækken = 0) flytter til højre når man vandrer ned ad rækkerne. (Konsekvens: I området under og til venstre for en ledende koefficient står der kun 0-taller). Reducerede række Echelon-matricer En matrix på reduceret echelonform opfylder desuden: 1 Ledende koefficienter = 1 kaldes Pivoter. 2 Også over Pivoter står der kun 0-taller. En matrix kan ved rækkeoperationer overføres til forskellige matricer på echelonform, men kun til en matrix på reduceret echelonform.

15 Rækkereduktion til echelonform Gauss-algoritmen (forlæns) Algoritmen (regnemetoden) går igennem matricens søjler fra venstre til højre. Den bruger r-ombytning for at opnå at ledende koefficienter længst vil venstre optræder i rækken lige under den sidst opnåede Pivotposition r-addition for at opnå at der kun står 0-taller under denne ledende koefficient. I hver søjle: højst en ombytning, men ofte flere additioner. Resultat: En rækkeækvivalent matrix på echelonform.

16 Rækkereduktion til echelonform Gauss-algoritmen (forlæns) Algoritmen (regnemetoden) går igennem matricens søjler fra venstre til højre. Den bruger r-ombytning for at opnå at ledende koefficienter længst vil venstre optræder i rækken lige under den sidst opnåede Pivotposition r-addition for at opnå at der kun står 0-taller under denne ledende koefficient. I hver søjle: højst en ombytning, men ofte flere additioner. Resultat: En rækkeækvivalent matrix på echelonform.

17 Rækkereduktion til reduceret echelonform Gauss-Jordan-algoritmen (baglæns) Algoritmen fortsætter fra en matrix på echelonform. Den går igennem Pivotelementer fra venstre til højre og bruger r-multiplikation for at opnå at Pivotelementet bliver 1. r-addition for at opnå at der også står 0-taller over Pivotelementet. Resultat: Den rækkeækvivalente matrix på reduceret echelonform. Ligningssystemet svarende til en matrix på reduceret echelonform løses nemt ved at isolere de bundne variable (svarende til Pivotsøjler).

18 Rækkereduktion til reduceret echelonform Gauss-Jordan-algoritmen (baglæns) Algoritmen fortsætter fra en matrix på echelonform. Den går igennem Pivotelementer fra venstre til højre og bruger r-multiplikation for at opnå at Pivotelementet bliver 1. r-addition for at opnå at der også står 0-taller over Pivotelementet. Resultat: Den rækkeækvivalente matrix på reduceret echelonform. Ligningssystemet svarende til en matrix på reduceret echelonform løses nemt ved at isolere de bundne variable (svarende til Pivotsøjler).

19 Konsistente og inkonsistente ligningssystemer Echelonform afgør! Et lille ligningssystem x 1 + 2x 2 = 3 2x 1 x 2 = 5 5x 1 + 5x 2 = 0 Løsning (?) Konsistens/inkonsistens Et ligningssystem kaldes konsistent hvis det har mindst en løsning. Hvis system-matricen [A b] indeholder en række på formen [ c] med c =0, så er systemet inkonsistents; ellers konsistent.

20 Konsistente og inkonsistente ligningssystemer Echelonform afgør! Et lille ligningssystem x 1 + 2x 2 = 3 2x 1 x 2 = 5 5x 1 + 5x 2 = 0 Løsning (?) Konsistens/inkonsistens Et ligningssystem kaldes konsistent hvis det har mindst en løsning. Hvis system-matricen [A b] indeholder en række på formen [ c] med c =0, så er systemet inkonsistents; ellers konsistent.

21 Fra reduceret echelonform til parameterfremstilling for løsningsmængden Reduceret echelonmatrix Pivoter Pivotsøjler og bundne variable frie variable Løsning og parameterfremstilling L

22 Løsningsmængden L for et lineært ligningssystem I The general solution Løsningsmængden beskriver alle løsninger: L = {[x 1,..., x n ] R n x 1,... x n opylder alle m ligninger} R n Hvis en rækkeækvivalent echelonmatrix indeholder en række på formen [00 0 c] med c = 0, så er systemet inkonsistent ingen løsning L =. Hvis ikke, så svarer hver Pivotsøjle (som indeholder en ledende koefficient) til en bunden variabel og hver af de andre til en fri variabel. Er der kun bundne variable, så har systemet en entydig løsning L har netop ét element [x 1,, x n ]. Denne løsning findes umiddelbart ud fra den reducerede echelonmatrix.

23 Løsningsmængden L for et lineært ligningssystem I The general solution Løsningsmængden beskriver alle løsninger: L = {[x 1,..., x n ] R n x 1,... x n opylder alle m ligninger} R n Hvis en rækkeækvivalent echelonmatrix indeholder en række på formen [00 0 c] med c = 0, så er systemet inkonsistent ingen løsning L =. Hvis ikke, så svarer hver Pivotsøjle (som indeholder en ledende koefficient) til en bunden variabel og hver af de andre til en fri variabel. Er der kun bundne variable, så har systemet en entydig løsning L har netop ét element [x 1,, x n ]. Denne løsning findes umiddelbart ud fra den reducerede echelonmatrix.

24 Løsningsmængden L for et lineært ligningssystem I The general solution Løsningsmængden beskriver alle løsninger: L = {[x 1,..., x n ] R n x 1,... x n opylder alle m ligninger} R n Hvis en rækkeækvivalent echelonmatrix indeholder en række på formen [00 0 c] med c = 0, så er systemet inkonsistent ingen løsning L =. Hvis ikke, så svarer hver Pivotsøjle (som indeholder en ledende koefficient) til en bunden variabel og hver af de andre til en fri variabel. Er der kun bundne variable, så har systemet en entydig løsning L har netop ét element [x 1,, x n ]. Denne løsning findes umiddelbart ud fra den reducerede echelonmatrix.

25 Løsningsmængden L for et lineært ligningssystem I The general solution Løsningsmængden beskriver alle løsninger: L = {[x 1,..., x n ] R n x 1,... x n opylder alle m ligninger} R n Hvis en rækkeækvivalent echelonmatrix indeholder en række på formen [00 0 c] med c = 0, så er systemet inkonsistent ingen løsning L =. Hvis ikke, så svarer hver Pivotsøjle (som indeholder en ledende koefficient) til en bunden variabel og hver af de andre til en fri variabel. Er der kun bundne variable, så har systemet en entydig løsning L har netop ét element [x 1,, x n ]. Denne løsning findes umiddelbart ud fra den reducerede echelonmatrix.

26 Løsningsmængden L for et lineært ligningssystem II Frie variable bundne variable Frie variable kan antage vilkårlige reelle tal som værdier, uafhængigt af hinanden. De bundne variable udtrykkes som linearkombinationer af de frie ved substitution med udgangspunkt i echelonmatrix. Resultat: en parameterfremstilling for løsningsmængden L. L har uendelig mange løsninger hvis et konsistent system giver anledning til en eller flere frie variable (søjler uden Pivot).

27 Fra ligningssystem til løsningsmængde Trin for trin 1 Overfør ligningssystemet til (udvidet) matrix 2 Rækkereduktion matrix på echelonform 1 Er højresiden en Pivotsøjle (er der en ledende koefficient i sidste søjle)? Systemet er inkonsistent. Stop! 2 Ellers er systemet konsistent. Fortsæt! 3 Rækkereduktion matrix på reduceret echelonform. 4 Overfør denne sidste matrix til et (ækvivalent) ligningssystem 5 Isoler bundne variable parameterfremstilling med de frie variable som parametre

28 Fra ligningssystem til løsningsmængde Trin for trin 1 Overfør ligningssystemet til (udvidet) matrix 2 Rækkereduktion matrix på echelonform 1 Er højresiden en Pivotsøjle (er der en ledende koefficient i sidste søjle)? Systemet er inkonsistent. Stop! 2 Ellers er systemet konsistent. Fortsæt! 3 Rækkereduktion matrix på reduceret echelonform. 4 Overfør denne sidste matrix til et (ækvivalent) ligningssystem 5 Isoler bundne variable parameterfremstilling med de frie variable som parametre

29 Fra ligningssystem til løsningsmængde Trin for trin 1 Overfør ligningssystemet til (udvidet) matrix 2 Rækkereduktion matrix på echelonform 1 Er højresiden en Pivotsøjle (er der en ledende koefficient i sidste søjle)? Systemet er inkonsistent. Stop! 2 Ellers er systemet konsistent. Fortsæt! 3 Rækkereduktion matrix på reduceret echelonform. 4 Overfør denne sidste matrix til et (ækvivalent) ligningssystem 5 Isoler bundne variable parameterfremstilling med de frie variable som parametre

30 Fra ligningssystem til løsningsmængde Trin for trin 1 Overfør ligningssystemet til (udvidet) matrix 2 Rækkereduktion matrix på echelonform 1 Er højresiden en Pivotsøjle (er der en ledende koefficient i sidste søjle)? Systemet er inkonsistent. Stop! 2 Ellers er systemet konsistent. Fortsæt! 3 Rækkereduktion matrix på reduceret echelonform. 4 Overfør denne sidste matrix til et (ækvivalent) ligningssystem 5 Isoler bundne variable parameterfremstilling med de frie variable som parametre

31 Fra ligningssystem til løsningsmængde Trin for trin 1 Overfør ligningssystemet til (udvidet) matrix 2 Rækkereduktion matrix på echelonform 1 Er højresiden en Pivotsøjle (er der en ledende koefficient i sidste søjle)? Systemet er inkonsistent. Stop! 2 Ellers er systemet konsistent. Fortsæt! 3 Rækkereduktion matrix på reduceret echelonform. 4 Overfør denne sidste matrix til et (ækvivalent) ligningssystem 5 Isoler bundne variable parameterfremstilling med de frie variable som parametre

32 Rang og nullitet Givet en m n-matrix A med rækkeækvivalent matrix R på reduceret række echelonform. Definition 1 As rang rank(a): Antal Pivotsøjler i R og dermed i A. 2 As nullitet (eller defekt) nullity(a): Antal søjjler uden Pivot. Sumformel rank(a) + nullity(a) = n. (Variablene er enten bundne eller fri!)

33 Rang og nullitet Givet en m n-matrix A med rækkeækvivalent matrix R på reduceret række echelonform. Definition 1 As rang rank(a): Antal Pivotsøjler i R og dermed i A. 2 As nullitet (eller defekt) nullity(a): Antal søjjler uden Pivot. Sumformel rank(a) + nullity(a) = n. (Variablene er enten bundne eller fri!)

34 Rang og nullitet Et eksempel på nettet Gaussian elimination Sample 5

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

To ligninger i to ubekendte

To ligninger i to ubekendte Oversigt [LA] 6, 7 Nøgleord og begreber Løs ligninger Eliminer ubekendte Rækkereduktion Reduceret matrix Enten-eller princippet Test ligningssystem Rækkeoperationsmatricer Beregn invers matrix Calculus

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

DesignMat Lineære ligningssystemer og Gauss-elimination

DesignMat Lineære ligningssystemer og Gauss-elimination DesignMat Lineære ligningssystemer og Gauss-elimination Preben Alsholm Uge Forår 010 1 Lineære ligningssystemer og Gauss-elimination 11 Om talrummet R n Om talsæt bestående af n tal R n er blot mængden

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Lineære ligningssystemer

Lineære ligningssystemer enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 1 Modulpakke 3: Lineære Ligningssystemer 1.1 Indledning - typer af ligningesystemer og løsninger Den lineære ligning 2x=3 kan løses umiddelbart ved at dividere med 2 på begge sider, så vi får:

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 0 4 4 0 0 0 4 x x x x 6 udgave 06 FORORD Dette notat viser hvorledes man kan løse lineære ligningssystemer ved Gaussmetode dels uden regnemidler

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

De fire elementers kostbare spejl

De fire elementers kostbare spejl Projekt.6 Lineær algebra moderne og klassisk kinesisk De fire elementers kostbare spejl "Som bekendt anses matematikken for at være en meget vigtig videnskab. Denne bog om matematik vil derfor være af

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Vektorrum. enote Generalisering af begrebet vektor

Vektorrum. enote Generalisering af begrebet vektor enote 7 1 enote 7 Vektorrum I denne enote opstilles en generel teori for mængder, for hvilke der er defineret addition og multiplikation med skalar, og som opfylder de samme regneregler som geometriske

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Chapter 5: Simplex metoden til løsning af LP. -> max problem alle uligheder af typen ì alle højresider ikke-negative alle variable ikke-negative

Chapter 5: Simplex metoden til løsning af LP. -> max problem alle uligheder af typen ì alle højresider ikke-negative alle variable ikke-negative Chapter 5: Simplex metoden til løsning af LP Formål: Udvikling af generel metode til løsning af enhver type LP. Metoden udvikles først for LP i standard form -> max problem alle uligheder af typen ì alle

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af programmerne TI-Nspire og Maple 0 3 4 3 4 0 3 0 3 0 3 4 x x x x 4 udgave 04 FORORD Dette notat giver en gennemgang af de matrixoperationer,

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af programmerne TI-Nspire og Maple 0 4 4 0 0 0 4 x x x x 5 udgave 05 FORORD Dette notat viser hvorledes man kan dels kan løse lineære

Læs mere

Indhold. 5. Vektorrum og matricer Koordinattransformationer

Indhold. 5. Vektorrum og matricer Koordinattransformationer Indhold Lineære afbildninger og matricer Talrummene R n, C n Matricer 8 3 Lineære afbildninger 4 Matrix algebra 8 5 Invers matrix 6 6 Transponeret og adjungeret matrix 9 Række- og søjleoperationer Lineære

Læs mere

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge Oversigt [LA] 8 Her skal du lære om 1. Helt simple determinanter 2. En udvidelse der vil noget 3. Effektive regneregler 4. Genkend determinant nul 5. Produktreglen 6. Inversreglen 7. Potensreglen 8. Entydig

Læs mere

Simplex metoden til løsning af LP

Simplex metoden til løsning af LP Chapter : Simplex metoden til løsning af LP Formål: Udvikling af generel metode til løsning af enhver type LP. Metoden udvikles først for LP i standard form -> max problem alle uligheder af typen Ÿ alle

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af lommeregner (TI89) og programmerne TI-Nspire og Mathcad 0 3 4 3 4 0 3 0 3 0 3 4 x x x x 3 udgave 03 FORORD Dette notat giver en

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal. SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret

Læs mere

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001.

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001. Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni og Juni. Preben Alsholm 9. november 9 Juni Opgave 3 f : P (R) R 3 er givet ved f (P (x)) P () a + P () b, hvor a (,, ) og b (, 3, ). Vi viser,

Læs mere

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A = OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling Forelæsningsnoter til Lineær Algebra Niels Vigand Pedersen Udgivet af Asmus L Schmidt Københavns Universitet Matematisk Afdeling August Revideret 9 ii udgave, oktober 9 Forord Gennem en særlig aftale varetages

Læs mere

Sandt/falsk-opgave: Diskuter opgave 23 side 12 i gruppen, men husk at begrunde jeres svar, som teksten før opgave 23 kræver!

Sandt/falsk-opgave: Diskuter opgave 23 side 12 i gruppen, men husk at begrunde jeres svar, som teksten før opgave 23 kræver! LINEÆR ALGEBRA 30. januar 2004 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, 3. udgave Addison Wesley 2003; i store træk bliver det kapitel 1 3 og 5.1 5.3. Som

Læs mere

Mat10 eksamensspørgsmål

Mat10 eksamensspørgsmål Mat10 eksamensspørgsmål Martin Geisler 9. januar 2002 Resumé Dette dokument er en gennemgang af de eksamensspørgsmål der blev stillet til den mundtlige eksamen i Mat10, januar 2002

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum:

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum: Forslag til hjemmeopgaver, som forbereder arbejdet med de ne emner den pågældende kursusgang, men primært er baseret på gmnasiepensum: Ordinær kursusgang : Introduktion til vektorer og matricer. Regning

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

2. gang. Det bliver den 18. februar, idet jeg er på ferie den 11/2. Med venlig hilsen Jon Johnsen

2. gang. Det bliver den 18. februar, idet jeg er på ferie den 11/2. Med venlig hilsen Jon Johnsen LINEÆR ALGEBRA 31. januar 2003 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, 3. udgave Addison Wesley 2003. Udtrykt meget groft gennemgås kapitel 1 3. Som regel

Læs mere

Ugeseddel 12(10.12 14.12)

Ugeseddel 12(10.12 14.12) Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen

Læs mere

MATRICER LINEÆRE LIGNINGER. Usikkerhedsberegning

MATRICER LINEÆRE LIGNINGER. Usikkerhedsberegning MOGENS ODDERSHEDE LARSEN MATRICER LINEÆRE LIGNINGER Usikkerhedsberegning med inddragelse af lommeregner (TI89) og programmerne TI-Nspire og Mathcad 0 3 4 3 4 0 3 0 3 0 3 4 = x x x x. udgave 0 FORORD Dette

Læs mere

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley;

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; LINEÆR ALGEBRA 2. februar 2007 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; man kan også anvende Third Edition (men ej anden

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Matematik og Form Splines. NURBS

Matematik og Form Splines. NURBS Matematik og Form Splines. NURBS Institut for Matematiske Fag Aalborg Universitet 2012 Opgave: Find 3.grads polynomium p(t) = a 0 + a 1 t + a 2 t 2 + a 3 t 3 sål. at y b = p(0) = a 0 y s = p(1) = a 0 +

Læs mere

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley;

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; LINEÆR ALGEBRA 1. februar 2008 Oversigt nr. 1 I kurset Lineær Algebra skal vi bruge D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; man kan også anvende Third Edition

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 0 4 4 0 0 0 4 x x x x 6 udgave 06 FORORD Dette notat viser hvorledes man kan løse lineære ligningssystemer ved Gaussmetode dels uden regnemidler

Læs mere

DesignMat Uge 11 Vektorrum

DesignMat Uge 11 Vektorrum DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 0 4 4 0 0 0 4 x x x x 6 udgave 06 FORORD Dette notat viser hvorledes man kan dels kan løse lineære ligningssystemer ved Gaussmetode (håndregning),

Læs mere

Lineære Afbildninger. enote 8. 8.1 Om afbildninger

Lineære Afbildninger. enote 8. 8.1 Om afbildninger enote 8 enote 8 Lineære Afbildninger Denne enote undersøger afbildninger mellem vektorrum af en bestemt type, nemlig lineære afbildninger Det vises, at kernen og billedrummet for lineære afbildninger er

Læs mere

Lineær Algebra, 2015 1. kursusgang

Lineær Algebra, 2015 1. kursusgang Lineær Algebra, 2015 1. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg September 2015 Velkommen til Lineær algebra Kursusholder - Lisbeth Fajstrup. Kontor: Fredrik

Læs mere

Program for de næste 3 1/4 dobbeltlektion

Program for de næste 3 1/4 dobbeltlektion Matricer Program for de næste 3 1/4 dobbeltlektion Tirsdag 3. september 11.00 12.00: Afsnit 8.1, 8.2, 8.3 og 8.5 Torsdag 5. september 12.30 16.15 12.30 14.15: Opgaveregning lokale 261/409 14.30: Vi mødes

Læs mere

Lineære 2. ordens differentialligninger med konstante koefficienter

Lineære 2. ordens differentialligninger med konstante koefficienter enote 13 1 enote 13 Lineære 2. ordens differentialligninger med konstante koefficienter I forlængelse af enote 11 og enote 12 om differentialligninger, kommer nu denne enote omkring 2. ordens differentialligninger.

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

LINALG JULENØD 2013 SUNE PRECHT REEH

LINALG JULENØD 2013 SUNE PRECHT REEH LINALG JULENØD 203 SUNE PRECHT REEH Resumé I denne julenød skal vi se på lineær algebra for heltallene Z Hvad går stadig godt? og hvad går galt? I de reelle tal R kan vi for ethvert a 0 altid finde R som

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

OPGAVER 1. Løsning af ligningssystemer Disse første opgaver er introducerer til løsning af lineære ligningssystemer. De løses alle ved håndregning.

OPGAVER 1. Løsning af ligningssystemer Disse første opgaver er introducerer til løsning af lineære ligningssystemer. De løses alle ved håndregning. OPGAVER 1 Opgaver til Uge 5 Store Dag Opgave 1 Løsning af ligningssystemer Disse første opgaver er introducerer til løsning af lineære ligningssystemer. De løses alle ved håndregning. a) Find den fuldstændige

Læs mere

DesignMat Uge 11. Vektorrum

DesignMat Uge 11. Vektorrum DesignMat Uge 11 (fortsat) Forår 2010 Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation med skalar. (fortsat) Lad L betegne R eller C. Lad V være en

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet Forberedelsesmateriale frs-matn/a-270420 Onsdag den 27. april 20 Forberedelsesmateriale til stx-a-net MATEMATIK Der skal afsættes

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Operationsanalyse 1 Obligatorisk opgave 2

Operationsanalyse 1 Obligatorisk opgave 2 Operationsanalyse Obligatorisk opgave Anders Bongo Bjerg Pedersen. juni Opgave (i) Vi tilføjer først slack-variable til (P ): Minimize Z = x + x + x subject to x + x + x x 4 = x x + x x 5 = x + x x x =

Læs mere

Udeladelse af én observation. Note til kapitlerne 4, 5 og 6

Udeladelse af én observation. Note til kapitlerne 4, 5 og 6 Udeladelse af én observation Note til kapitlerne 4, 5 og 6 I de følgende resultater 1-10 bevises en række resultater, der alle vedrører udeladelse af én observation. Derved bevises og uddybes en række

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

Undervisningsnotat. Matricer

Undervisningsnotat. Matricer Undervisningsnotat. Matricer januar, C Definition En matrix er en ordnet mængde tal opstillet i m rækker og n søjler. Matricen A kunne være defineret som vist nedenfor. Hvert element i matricen er forsynet

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers matrix Matrix potens Lineære ligningssystemer Løsningsmængdens

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides 01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...

Læs mere

Omskrivningsregler. Frank Nasser. 10. december 2011

Omskrivningsregler. Frank Nasser. 10. december 2011 Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Lineær Algebra. Differentialligninger

Lineær Algebra. Differentialligninger Lineær Algebra og Differentialligninger til Calculus 1 og 2 Århus 2005 Anders Kock og Holger Andreas Nielsen Indhold 1 Koordinatvektorer........................ 1 2 Matricer..............................

Læs mere

Lineær Algebra. Differentialligninger

Lineær Algebra. Differentialligninger Lineær Algebra og Differentialligninger til Calculus 1 og 2 Århus 2004 Anders Kock og Holger Andreas Nielsen Indhold 1 Koordinatvektorer........................ 1 2 Matricer..............................

Læs mere

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET H.A. NIELSEN INDHOLD. Lineær ligning 2 2. Lineært system 8 3. Generel ligning 6 4. Stabilitet 8 Litteratur 2 Noterne er til 4 timers forelæsninger

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She

Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitutionernes fest 53 Løsning af tredjegradsligningen Jens Siegstad, Kasper Fabæch Brandt og Jingyu She Substitution en masse Vi vil i denne artikel vise, hvorledes man kan løse den generelle tredjegradsligning

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Vejledning i udtræk af input-output data fra Statistikbanken

Vejledning i udtræk af input-output data fra Statistikbanken - 1 - Vejledning i udtræk af input-output data fra Statistikbanken Introduktion Input-output tabellerne er konsistente med nationalregnskabet og udarbejdes i tilknytning hertil. De opdateres årligt i december

Læs mere

Matroider Majbritt Felleki

Matroider Majbritt Felleki 18 Rejselegatsformidlingsaktivitet Matroider Majbritt Felleki Den amerikanske matematiker Hassler Whitney fandt i 1935 sammenhænge mellem sætninger i grafteori og sætninger i lineær algebra. Dette førte

Læs mere

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe.

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe. 0.1: Ringe 1. Definition: Ring En algebraisk struktur (R, +,, 0,, 1) kaldes en ring hvis (R, +,, 0) er en kommutativ gruppe og (R,, 1) er en monoide og hvis er såvel venstre som højredistributiv mht +.

Læs mere