Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Størrelse: px
Starte visningen fra side:

Download "Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable"

Transkript

1 Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

2 Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P β α β α ) 1 ( X Y P X Y P X Y Logit β α + ) 1 ( 1 ) 1 ( ln ) 1 (

3 Logit-forskelle og Odds-ratio Logit-forskel Logit( Y 1 X 1) Logit( Y 1 X 0) α + β α β Odds-ratio α + β Odds( Y 1 X 1) e OR ( Y 1) α Odds( Y 1 X 0) e e β

4 Likelihood-funktionen Definer Likelihood funktionen L( α, β ; data). L(α, β ; data) siger, hvor troelig (likely) data under vores model for givne α og β.

5 Estimation Lad αˆ og βˆ betegne estimaterne af de sande, men ukendte parametre α og β. Parametrene α og β estimeres ved maimum-likelihood metoden: Vi vælger αˆ og βˆ så L ( αˆ, βˆ ; data) er størst mulig (ordnes af SPSS). Vi kalder αˆ og βˆ maimum-likelihood (ML) estimater.

6 Estimaternes fordeling. Antag β er den sande værdi og βˆ er et ML estimat. For hver data-indsamling får vi lidt forskellige estimater af β pga. af tilfældig variation i data. Hvis vi har indsamlet data nok, så gælder der ˆ β ~ N ( 2 β, SE( β ) ) Dvs. βˆ i gennemsnit estimerer korrekt (central). Standard fejlen SE(β) afhænger af mængden af data.

7 Konfidensinterval for β ˆ ( ˆ, ( ) 2 ) Da β ~ N β SE β gælder følgende: P ( β 1.96 SE( β ) < ˆ β < β SE( β )) 0.95 P ( ˆ β 1.96SE( β ) < β < ˆ β SE( β )) 0. 95

8 Konfidensinterval for β Vi har altså at det sande β er indeholdt i intervallet [ ˆ β 1.96SE ( ˆ) β ; ˆ β SE( ˆ)] β med 95% sandsynlighed. Sandsynligheden gælder vel at mærke et endnu ikke udført eksperiment. Når data er indsamlet og konfidensintervallet er udregnet, så inderholder konfidensintervallet enten β ellers så gør det ikke. Derfor hedder det et 95% konfidens-interval og ikke et 95% sandsynligheds-interval.

9 Konfidens-interval for logit-forskel Et 95% konfidens-interval for logit-forskel β: [ ˆ β 1.96SE ( ˆ) β ; ˆ β SE( ˆ)] β Husk: Logit-forskel ln(odds-ratio), dvs. Odds-ratio ep(logit-forskel). Et 95% konfidens-interval for odds-ratio: [ e ˆ β 1.96SE( ˆ β ) ; e ˆ β SE( ˆ β ) ]

10 Signifikanstest Hypoteser H 0 : β 0 H 1 : β 0 (uafhængighed) (afhængighed) ( ) 2 Teststørrelse: 2 Z ˆ β SE( β) (Wald teststør.) Under H 0 gælder: Z 2 ~ χ 2 () 1 Store værdier af Z 2 er ufordelagtige for H 0.

11 Hypotesetest og Konfidensintervaller Betragt følgende hypoteser H 0 : β K H 1 : β K Lad [a,b] være et 95% konfidens-interval for β. Hvis K er udenfor intervallet [a,b], så kan vi afvise H 0 på signifikansniveau α Hvis K ligger i intervallet [a,b], kan vi ikke afvise H 0 på signifikansniveau α 0.05.

12 SPSS Output Model: Logit( Y 1 X ) α Model: Logit( Y 1 X ) α + β β SE(β) Ζ 2 p-værdi α e β 95% konf-int. for ep(β)

13 Kategorisk forklarende variabel Eksempel: Sammenhængen ml. læsehastighed og selvvurdering? Sætningslæsning Hurtig % Langsom % Usikker % Total % Er du en god læser Nej Ja Total % % % % % % % % Odds for Ja givet hastighed 1199/ / / Logit for Ja givet hastighed ln(14.99) ln(2.56) 0.94 ln(1.81) 0.59

14 Uafhængighed I den ideelle verden: Hvis der er uafhængighed skal de tre mulige Odds i tabellen være ens: Odds(God Ja Hastighed Hurtig) Odds(God Ja Hastighed Langsom) Odds(God Ja Hastighed Usikker) Vi sammenligner par af Odds vha et Odds-ratio. Her er der k (k-1) 3 26 mulige Odds-ratios!

15 Sammenligning af mange Odds Vi vælger en reference-kategori, f. Læsehastighed Hurtig. Vi sammenligner nu Odds for hver kategori med Odds for reference-kategorien, vha. et Odds-ratio. På den måde har vi kun (k-1) Odds-ratios. Uafhængighed i den ideelle verden: Alle Odds er ens og dermed er alle (k-1) Odds-ratios 1. Tilsvarende er alle logit-forskelle 0.

16 Logistisk Regressionsmodel Model: Logit(Ja Hastighed) α + β Hastighed Logit(Ja Hurtig) α + β Hurtig Logit(Ja Langsom) α + β Langsom Logit(Ja Usikker) α + β Usikker Overparametriseret! (hvorfor?) For reference-kategorien sæt β Hurtig 0.

17 Logit-forskelle Logit(Ja Langsom) - Logit(Ja Hurtig) (α + β Langsom ) - α β Langsom Logit(Ja Usikker) - Logit(Ja Hurtig) (α + β Usikker ) - α β Usikker Dvs. β Langsom og β Usikker er de to logit-forskelle af interesse.

18 Hypotesetest Uinteressant hypotse (hvorfor?) H 0 : β Langsom 0 H 1 : β Langsom 0 Interessant hypotese (hvorfor?) H 0 : β Langsom β Usikker 0 H 1 : β Langsom 0 og/eller β Usikker 0 Teststørrelse: Wald ~ χ 2 (df ) df antal parametre ivolveret i H 0.

19 SPSS Fortæl SPSS hvilke forklarende variable der er kategoriske og hvilken kategori er reference-kategorien.

20 SPSS Output NB! Bemærk hvordan SPSS koder den afhængige variabel. SPSS opskriver modellen som Logit(Y1 ). I dette tilfælde vil det sige Logit(Ja ). H 0 : β Lansom β Usikker 0 To parametre i H 0 : β Lansom og β Usikker. β Lansom β Usikker H 0 : β Usikker 0

21 Alternativ: Dummy-variable For hver kategori introducer en binær variabel: Hurtig Langsom og Usikker. Hurtig 0 altid Langsom 1 hvis Hastighed Langsom Langsom 0 hvis Hastighed Langsom Usikker 1 hvis Hastighed Usikker Usikker 0 hvis Hastighed Usikker

22 Dummy-variable: Nu Som Tabel Hastighed Langsom Usikker Hurtig 0 0 Langsom 1 0 Usikker 0 1

23 Dummy-variable Model: Eksempel: Usikker Usikker Langsom Langsom Hurtig Hurtig Hastighed Ja Logit β β β α ) ( Langsom Usikker Langsom Hurtig Langsom Ja Logit β α β β β α ) (

24 Logistisk Regression: Generel Form Med en omkodning til binære dummy-variable kan den logistiske regression skrives på den generelle form: + i i i X Y Logit β α ) 1 ( i i i i i i e e X Y P i i i i i i β α β α β α β α ep 1 ep 1 ) 1 (

25 Skala forklarende variabel Eksempel: Afhængig variabel: Er du en god læser (Ja/Nej) Forklarende variable: Antal rigtige i test (0 20) Plot: Andel Ja er for hver score sandsynlighed

26 Logistisk Regressionsmodel Model: Logit(Ja Score) α + β Sandsynlighed: P( Ja Score ) e 1+ e α + β α + β Plot: Logit(Ja Score) logit

27 Logistiske funktion e 1+ e e 1 + e

28 Fortolkning Logit-forskel: Logit( Ja Score + 1) ( α + β ( + 1) ) ( α + β) α + β + Logit( Ja β α β β Score ) Så hver gang score stiger med en stiger logit med β. Odds-ratio: Odds( Ja Score + 1) Odds( Ja Score ) e e ( + ) α + β 1 α + β e β Så hver gang score stiger med en ændres Odds et med en faktor e β.

29 Hypotesetest H 0 : β 0 H 1 : β 0 Ingen logit-lineær sammenhæng mellem selvvurdering og test-score. Der er en logit-lineær sammenhæng mellem selvvurdering og test-score. Teststørrelse: Wald ˆ β SE ( β ) Hvis vi afviser H 0 siger vi at β er signifikant.

30 SPSS Output Estimerede model: Logit( Ja Score ) Fortolkning: Odds et for at svare Ja ændres med en faktor ep(β) 1,208, hver gang scoren stiger med 1.

31 Modelkontrol: Ikke logit-lineær Udvid model med ikke-lineært led, f: Logit(Ja Score) α + β 1 + β 2 2 Hvis β 2 ikke er signifikant, så er en logit-lineær model passende.

32 Modelkontrol: Hosmer-Lemeshows χ 2 -test Ide: Sammenlign observerede antal Ja er og forventede antal Ja er i den tilpassede model. O observerede antal personer med score, der svarer Ja. N antal personer med score. E forventede antal personer med score, der svarer Ja. E N P( Ja Score ) N e 1+ e α + β α + β

33 Modelkontrol: Hosmer-Lemeshows χ 2 -test Teststørrelse: 2 χ ( E O ) E 2 Hvis vores værdier af a og b er korrekte gælder χ 2 ~ χ 2 Hvor df antal led i summen ( df ) antal parametre i modellen Hvis χ 2 er for stor tror vi ikke på modellen. Hvis den tilsvarende p-værdi er < 0.05 er modelkontrollen kikset.

34 SPSS Output Data inddelt i 10 grupper. Modellen har to parametre. Dvs. df Da p-værdien > 0.05 kan vi ikke afvise at modellen er passende.

35 Multipel Logistisk Regression Ide: Mere end en forklarende variabel. Model: Logit( Ja Køn, Hastighed) α + β + β Køn Hastighed Reference-kategorier: Dreng og Hurtig Dvs: β Dreng 0 og β Hurtig 0 Logit(Ja Dreng,Hurtig) α+β Dreng +β Hurtig α+0+0 α Logit(Ja Pige,Langsom) α+β Pige +β Langsom

36 Logit-forskelle Logit(Ja Køn,Langsom) - Logit(Ja Dreng,Hurtig) (α+β Køn +β Langsom ) - (α+β Køn +β Hurtig ) β Langsom. Dvs. β Langsom beskriver logit-forskellen mellem hurtig og langsom læser uanset kønnet. Logit(Ja Pige,Hastighed) - Logit(Ja Dreng,Hastighed) (α+β Pige +β Hastighed ) - (α+β Dreng +β Hastighed ) β Pige. Dvs. β Pige beskriver logit-forskellen mellem piger og drenge uanset læsehastigheden.

37 Interaktion / Vekselvirkning Hvad nu hvis logit-forskellen mellem piger og drenge faktisk afhænger af hastigheden at der er en interaktion? Indfør interaktionsled β Køn,Hastighed. Model: Logit(Ja Køn,Hastighed) α + β Køn + β Hastighed + β Køn,Hastighed

38 Interaktion / Vekselvirkning Parametere der refererer til en eller flere referencekategorier sættes lig nul: β Dreng,Hurtig 0 β Pige, Hurtig 0 β Dreng, Langsom 0 β Pige, Langsom 0 β Dreng, Usikker 0 β Pige, Usikker 0

39 Logit Tabel Tabel over Logit(Ja Køn, Hastighed) Køn Dreng Pige Læsehastighed Hurtig α α+β Pige Langsom α+β Langsom α+β Pige +β Langsom +β Pige,Langsom Usikker α+β Usikker α+β Pige +β Usikker +β Pige,Usikker Bemærk: Hver celle har et individuelt logit. Vi kalder denne model den mættede model.

40 Logit-forskelle logit(ja pige,hurtig) logit(ja dreng,hurtig) β Pige logit(ja pige,usikker) logit(ja dreng,usikker) β Pige + β Pige,Usikker. Dvs. β Pige,Usikker er forskellen i logit-forskellen mellem hurtige og usikre læsere. logit(ja Dreng,Usikker) logit(ja Dreng,Hurtig) β Usikker logit(ja Pige,Usikker) logit(ja Pige,Hurtig) β Usikker + β Pige,Usikker. Dvs. β Pige,Usikker er forskellen i logit-forskellen mellem hurtige og usikre læsere.

41 Hypotse H 0 : β Pige,Langsom β Pige,Usikker 0 Dvs. der er ingen interaktion mellem Køn og Hastighed. H 1 : β Pige,Langsom 0 og/eller β Pige,Usikker 0 Dvs. der er interaktion mellem Køn og Hastighed.

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lktion Lidt sandsynlighdsrgning Lidt mr om signifikanstst Logistisk rgrssion Lidt sandsynlighdsrgning Lad A vær n hændls (t llr flr mulig udfald af t ksprimnt ) Fx A Dt rgnr i morgn P(A)

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Statistik og skalavalidering. Opgave 1

Statistik og skalavalidering. Opgave 1 Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression 1 Multipel lineær regression Regression med 2 eksponeringsvariable Fortolkning og estimation AnovaTabel og multipel R 2 Ensidet variansanalyse: Dummy kodning Kovariansanalyse og effektmodifikation Tosidet

Læs mere

Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab

Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab Eksamensnummer: 16, 23

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller. Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008

Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008 Indholdsfortegnelse 1 INDLEDNING OG PROBLEMSTILLING... 2 1.1 OVERVÆGT SOM CASE... 2 2 ANALYSEFORBEREDELSER... 4 2.1 HEPRO-UNDERSØGELSEN... 4 2.2 DEN AFHÆNGIGE VARIABEL VIGTIGHED AF ÆNDRINGEN AF VÆGT...

Læs mere

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4 Indholdsfortegnelse INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF OULATIONEN... 4 DELOGAVE 1...5 BEGREBSVALIDITET... 6 Differentiel item funktionsanalyser...7 Differentiel item effekt...10 Lokal

Læs mere

Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A)

Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A) Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A) Opgave 1 I nedenstående tabel ses resultaterne af samtlige hjerteklapoperationer i 007-08 ved Odense Universitetshospital (OUH) sammenlignet

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Rygtespredning: Et logistisk eksperiment

Rygtespredning: Et logistisk eksperiment Rygtespredning: Et logistisk eksperiment For at det nu ikke skal ende i en omgang teoretisk tørsvømning er det vist på tide vi kigger på et konkret logistisk eksperiment. Der er selvfølgelig flere muligheder,

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Morten Frydenberg 25. april 2006

Morten Frydenberg 25. april 2006 . gang: Introduktion til Logistisk Regression Morten Frydenberg 26 Afdeling for Biostatistik, Århus Universitet MPH. studieår specialmodul 4 Cand. San. uddannelsen. studieår Hvorfor logistisk regression

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes 25. april 2. gang: Introduktion til Logistisk Regression Morten Frydenberg 22 Institut for Biostatistik, Århus Universitet MPH. studieår specialmodul Cand. San. uddannelsen. studieår Hvorfor logistisk

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Simpel og multipel logistisk regression

Simpel og multipel logistisk regression Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende

Læs mere

Fokus på Forsyning. Datagrundlag og metode

Fokus på Forsyning. Datagrundlag og metode Fokus på Forsyning I notatet gennemgås datagrundlaget for brancheanalysen af forsyningssektoren sammen med variable, regressionsmodellen og tilhørende tests. Slutteligt sammenfattes analysens resultater

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Bilag I afrapportering af signifikanstest i tabeller i artikel er der benyttet følgende illustration af signifikans: * p

Læs mere

Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A

Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A Analyse af sociale baggrundsfaktorer for elever, der opnår Bonus A Forfattere: Jeppe Christiansen og Lone Juul Hune UNI C UNI C, juni

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2.

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2. C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b. 5.000 4.800 4.600 4.400 4.00 4.000 3.800 3.600 3.400 3.00 3.000 1.19% 14.9% 7.38% 40.48% 53.57% 66.67% 79.76% 9.86% 010 011

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvalitative egenskaber og dummyvariabler Kvantitative metoder 2 Dummyvariabler 28. marts 2007 Vi har (hovedsagligt) set på kvantitative variabler (løn, priser, forbrug, indkomst, )... Men hvad med kvalitative

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Cox regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside:

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Analyse af binære responsvariable

Analyse af binære responsvariable Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley

Læs mere

Statistik & Skalavalidering

Statistik & Skalavalidering å Statistik & Skalavalidering Synopsis til mundtlig eksamen d. 24. januar 2011 K ø b e n h a v n s U n i v e r s i t e t K a n d i d a t u d d a n n e l s e n i F o l k e s u n d h e d s v i d e n s k

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Kapitel 1 Statistiske grundbegreber

Kapitel 1 Statistiske grundbegreber Kapitel 1 Statistiske grundbegreber Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Population versus stikprøve 3 Variabeltyper og måleskalaer 4 Parametrisk versus ikke-parametrisk

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

BILAG 3: DETALJERET REDEGØ- RELSE FOR REGISTER- ANALYSER

BILAG 3: DETALJERET REDEGØ- RELSE FOR REGISTER- ANALYSER Til Undervisningsministeriet (Kvalitets- og Tilsynsstyrelsen) Dokumenttype Bilag til Evaluering af de nationale test i folkeskolen Dato September 2013 BILAG 3: DETALJERET REDEGØ- RELSE FOR REGISTER- ANALYSER

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder Spar Nord Banks ansøgningsscoremodel - et ekspertbaseret ratingsystem for nye udlånskunder Mål for ansøgningsscoremodel Rating af nye udlånskunder som beskrives vha. en række variable: alder, boligform,

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Dansk Erhvervs gymnasieeffekt - sådan gjorde vi

Dansk Erhvervs gymnasieeffekt - sådan gjorde vi Dansk Erhvervs gymnasieeffekt - sådan gjorde vi INDHOLD Formålet har været at undersøge, hvor dygtige de enkelte gymnasier er til at løfte elevernes faglige niveau. Dette kan man ikke undersøge blot ved

Læs mere

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4.

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4. 1 af 12 MAT A HHX Udskriv siden FACITLISTE TIL KAPITEL 8 Øvelser Øvelse 1 Graf tegnes med CAS. Øvelse 2 Bedste rette linie: Øvelse 3 Bedste rette linie: Øvelse 4 Bedste rette linie: Øvelse 5 ad øvelse

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller Statkstk II 3. Lekton Multpel Logstsk regresson Generelle Lneære Modeller Defntoner: Repetton Sandsynlghed for at Ja tl at være en god læser gvet at man er en dreng skrves: P( God læser Ja Køn Dreng) Sandsynlghed

Læs mere

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif).

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif). Vi vil formulere en model for et kvalitativ variabel y i med to udfald, at bestå og ikke at bestå første årsprøve. Derefter modeller vi respons-sandsynligheden: Specifikation af sandsynligheden for at

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

Test nr. 6 af centrale elementer 02402

Test nr. 6 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 6 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1 Økonometri 1 Prediktion. Dummyvariabler 9. oktober 2006 Økonometri 1: F9 1 Program frem til efterårsferien Om goodness-of-fit, prediktion og residualer (kap. 6.3-4) Kvalitative egenskaber i den multiple

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

Program. 1. Flersidet variansanalyse 1/11

Program. 1. Flersidet variansanalyse 1/11 Program 1. Flersidet variansanalyse 1/11 To-sidet variansanalyse Eksempel: (opgave 14.2 side 587) vitamin indhold i frossen juice målt for ialt 9 kombinationer af mærke (Rich food, Sealed-sweet, Minute

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger

Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger Af Karen Helle Sloth og Flemming Skjøth, AgroTech Sammendrag

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Vejledende løsninger kapitel 9 opgaver

Vejledende løsninger kapitel 9 opgaver KAPITEL 9 OPGAVE 1 a) Hypoteser H 0 : Der er uafhængighed (ingen sammenhæng) i kontingenstabellen H 1 : Der er afhængighed (sammenhæng) i kontingenstabellen Observerede værdier Ny metode Gammel metode

Læs mere