Epidemiologi Mål for association

Størrelse: px
Starte visningen fra side:

Download "Epidemiologi Mål for association"

Transkript

1 Epidemiologi Mål for association Carsten Bogh Juhl, fysioterapeut, MPH, Marianne Lindahl, fysioterapeut, MPH, Fysioterapeutuddannelsen CVU Syd, Næstved Juhl CB, Lindahl M, (2005, 25. februar) 2. udg. revideret 28. juni 2005 Epidemiologi mål for association. Forskning i Fysioterapi (online), 2. årg.), s. 1-9: URL: htpp:///sw4735.asp Denne artikel er den anden af to, som beskriver begreber, metoder og associationsmål inden for epidemiologien. Den første artikel beskriver design, begreber og mål for hyppighed, mens denne artikel giver en indføring i associationsmål. Det er enkle udregninger, der kan være anvendelige til vurdering af effekten af en behandling. Associationsmålene relativ risiko (RR) og odds ratio (OR) gennemgås, ligesom begrebet confounding præsenteres. De anvendte eksempler på fysioterapeutiske interventioner og problemstillinger er alle relateret til epidemiologien og giver læseren grundlag for at forstå og vurdere artikler, der anvender begreberne. Relativ risiko og odds ratio Relativ risiko (RR) og odds ratio (OR) er hyppigt anvendte mål for association inden for analytisk epidemiologi. Begge mål udtrykker en eller anden grad af sammenhæng eller association mellem forekomsten af en sygdom eller en tilstand, og det at have været udsat for en risikofaktor eller andet. I lighed med andre mål beregnes både RR og OR udfra en kontingenstabel, 2 x 2-tabellen, som er vist i tabel 1. I 2 x 2-tabellen placeres den afhængige variabel eller outcome normalt vandret, og den uafhængige variabel eller risikofaktoren placeres lodret (9). Principielt kan man sagtens bytte om, men for at forstå formlerne, som forklares i det følgende, har vi valgt at tage udgangspunkt i den mest anvendte opstilling. Relativ risiko udtrykker risikoen for at få sygdommen i en bestemt periode blandt de eksponerede i forhold til risikoen for at få sygdommen blandt de ikke-eksponerede. Vi skal derfor læse 2 x 2-tabellen vandret og først se på risikoen blandt de eksponerede, det vil sige cellerne a og b. Her ser, vi at risikoen eller incidensen (I) for at have fået sygdommen i en bestemt periode blandt alle de eksponerede er: a I = (a+b) Tilsvarende ses på cellerne c og d, at risikoen for at få sygdommen i en bestemt periode blandt de ikke-eksponerede udtrykkes som incidensen blandt denne gruppe, det vil sige: c I = (c+d) Tabel 1 viser eksempel på en 2 x 2-tabel. Sygdom Ja nej Eksposition ja a b a+b nej c d c+d a+c b+d I alt (N) a betegner det antal, som har fået sygdommen og har været udsat for risikofaktoren b betegner det antal, som ikke har fået sygdommen, men har været udsat for risikofaktoren c betegner det antal, som har fået sygdommen og ikke har været udsat for risikofaktoren d betegner det antal, som ikke har fået sygdommen og heller ikke har været udsat for risikofaktoren. 1 Epidemiologi Mål for association

2 De to incidenser divideres, og forholdet mellem disse to er således den relative risiko, det vil sige: a / (a+b) RR = c / (c+d) at være eksponeret blandt de raske. Formlen for OR er derfor: OR = a/c ad = b/d bc Af ovenstående ses, at ved at sætte incidensen i den eksponerede gruppe i forhold til incidensen i den ikke-eksponerede gruppe fås et mål for associationen mellem risikofaktoren og udvikling af sygdom. Samme udregningsmetode kan anvendes, hvis tallene i tabellen betegner de mennesker, der i en given population har en lidelse, og der derfor er tale om prævalenstal. Odds ratio udtrykker odds for at være eksponeret eller udsat for risikofaktoren blandt de syge i forhold til odds for at være eksponeret blandt de raske. For at beregne odds skal 2 x 2-tabellen læses lodret. Odds (O) for at være eksponeret blandt de syge er derfor forholdet mellem dem der er syge, som har været eksponeret (a) og dem der er syge, men ikke har været eksponeret (c): a O = c og tilsvarende ses, at odds for at være eksponeret blandt de raske er: b O = d Modsat beregningen af risikoen eller incidensen er tællerens antal ikke indeholdt i nævnerens. OR udtrykker således forholdet mellem det at være eksponeret blandt de syge i forhold til det Med udgangspunkt i nedenstående konstruerede eksempel gennemgås udregningerne af RR og OR, og der foretages en sammenligning af de to mål. Personforflytning og diskusprolaps Vi vil gerne vide, om der er en sammenhæng mellem manglende mulighed for at bruge lift til personforfl ytninger i plejearbejdet og udvikling af diskusprolaps hos social- og sundhedshjælpere. Den uafhængige variabel eller ekspositionen er her manglende lift til personforfl ytninger, og den afhængige variabel eller sygdommen er incidensen af diagnosticeret diskusprolaps inden for en bestemt periode. Dermed ønsker vi at undersøge, om social- og sundhedshjælpere, der ikke har lift til personforfl ytning, hyppigere udvikler diskusprolaps end dem, der har lift til rådighed. Der opstilles en 2 x 2-tabel med udviklet diskusprolaps i den pågældende periode. Cellerne i tabel 2 angiver følgende: a = antal social- og sundhedshjælpere som har fået diskusprolaps, som ikke har adgang til lift b = antal social- og sundhedshjælpere som ikke har fået diskusprolaps, som ikke har adgang til lift c = antal social- og sundhedshjælpere som har fået diskusprolaps, som har adgang til lift d = antal social- og sundhedshjælpere som ikke har fået diskusprolaps, som har adgang til lift. Tabel 2 viser antal social- og sundhedshjælpere med og uden diskusprolaps fordelt på afdelinger hhv. med og uden lift til rådighed. Social- og sundhedshjælpere med diskusprolaps Social- og sundhedshjælpere uden diskusprolaps I alt Afdeling uden lift a = 11 b = Afdelinger med lift c = 4 d = a + c = 15 b + d = Epidemiologi Mål for association

3 Nederst til højre står det samlede antal socialog sundhedshjælpere, nemlig i alt 360, og i de øvrige celler ses, hvordan de fordeler sig med hensyn til risikofaktor og sygdom. Cellerne a + c (15 i alt) er det samlede antal social- og sundhedshjælpere, der har udviklet diskusprolaps i den pågældende periode ud af alle 360 deltagere, og udtrykker antallet af cases (syge) i den gruppe, der er undersøgt. Det vil sige incidensen. En RR på 3,89 som vi fi k i ovenstående regneeksempel, skal tolkes således, at der er en 289 % øget risiko for at udvikle diskusprolaps, hvis man er social- og sundhedshjælper på en afdeling uden lift, end hvis man er på en afdeling med lift. Det ses, at man tager det beregnede tal, trækker 1 fra og ganger med 100, og dermed har man risikoforøgelsen i procent. Hvis tallet havde været mindre end 1, f.eks. 0,75 trækker vi igen 1 fra tallet og ganger med 100. Dermed får vi så, at den mindre risiko eller beskyttelsen er 25 %. På samme måde tolkes OR. En OR på 4,18 udtrykker, at odds for at have diskusprolaps blandt social- og sundhedshjælpere uden adgang til lift er 318 % større end odds for dem med adgang til lift. Igen har vi taget tallet og trukket 1 fra og ganget med 100. Da det ikke umiddelbart er til at se af tallene, om der er flere, der får diskusprolaps på de afdelinger, hvor der ikke er lift til rådighed, kan det undersøges ved at regne på tallene. Vi anvender nu formlen for RR og sætter tallene fra tabel 2 ind: 11 / ( ) 0,074 RR = 4/( ) = 0,019 = 3,89 Det vil sige at den relative risiko er 3,89. Hvis vi tager de samme tal og udregner OR, vil det se sådan ud: 11 x OR = 4 x 137 = 548 = 4,18 Det vil sige at odds ratio er 4,18. Hvad fortæller RR og OR Spørgsmålet er så, hvad disse to tal fortæller os. Men uanset om vi ser på RR eller OR, tolkes tallene på samme måde. Er tallet større end 1, betyder det en risikoforøgelse, mens hvis tallet er mindre end 1, betyder det mindre risiko, det vil sige en beskyttelse mod sygdommen. Jo længere væk fra 1 det beregnede tal ligger, jo stærkere er sammenhængen og principielt kan tallet ligge uendelig langt væk fra 1. En RR eller OR på 1 viser derimod, at der ikke er forskel blandt de eksponerede og de ikke-eksponerede, idet 1 er den neutrale værdi. Begge udregninger fortæller os, at der er mere end tre gange så stor risiko for diskusprolaps, når man arbejder på afdelinger uden lift til personforfl ytning i forhold til at arbejde på afdelinger med lift til personforfl ytning. Ikke overraskende ligger OR længere væk fra 1 end RR, da OR altid er et mere ekstremt udtryk for sammenhængen end RR. OR og RR er næsten det samme i undersøgelser, hvor outcome er relativt sjældent som i ovenstående undersøgelse. Hvis derimod det er et relativt hyppigt outcome som i nedenstående eksempel omkring lyskeproblemer, er der væsentlig forskel på OR og RR. Men det ses altid, at OR ligger længere væk fra 1 end RR, og dermed har tendens til at overestimere effekten (1). Det er vigtigt at pointere, at associationsmål ikke er udtryk for kausalitet (årsags-virkning-sammenhæng). Der kan således godt være andre grunde til, at fl ere social- og sundhedsassistenter på afdelingerne uden lift har diskusprolaps. Det kan skyldes aldersforskelle på de to grupper, deres tidligere beskæftigelse, at patienterne er mere plejekrævende, social- og sundhedshjælpernes forfl ytningsteknik og mange andre faktorer, som skal vurderes, inden vi kan udtale os om en årsag-virkning sammenhæng. Der er mange sammenfald i anvendelsesområderne for RR og OR, men grundlæggende er RR velegnet til kohorteundersøgelser, men OR er velegnet til både kohorte og case-kontrol undersøgelser. Forskellen er, at i en kohorteundersøgelse finder man, hvor mange, der udvikler sygdommen i en stor gruppe eksponerede og ikke-eksponerede. Ved case-kontrol undersøgelser ved man godt, hvor mange personer, der har sygdommen. Man undersøger derfor, hvem der har været udsat for ekspositionen blandt de syge 3 Epidemiologi Mål for association

4 og i en matchende kontrolgruppe. Man bestemmer således selv forholdet mellem de to grupper. Da OR beregnes i kolonnerne i 2 x 2 tabellen med udgangspunkt i syge/ikke-syge er dette associationsmål velegnet i case-kontrol undersøgelser. Her bestemmer man qua sin udvælgelse af antal raske kontroller forholdet mellem syge og raske, og OR beregnes i forhold til udsættelse for ekspositionen. Begge mål kan imidlertid anvendes, hvis udvælgelsen er sket uafhængig af viden om, hvorvidt deltagerne har været udsat eller ikke udsat for ekspositionen, som det er tilfældet i en kohorte undersøgelse. I ovenstående er eksposition og sygdom beskrevet, men 2 x 2 tabellen og formlerne kan også anvendes med andre variable. Ekspositionen kan for eksempel være, om man dyrker motion og i stedet for sygdom kunne det være god funktionsevne eller ikke. OR kan også anvendes til vurdering af effekt af intervention (1,6). Her anvender man helbredelse/ikke helbredelse i stedet for sygdom/ikke sygdom og i stedet for eksposition anvendes intervention/ikke intervention. OR viser i sådanne tilfælde forholdet imellem antal helbredte, der var udsat for interventionen i forhold til antal ikke-helbredte, der ikke var udsat for interventionen. For at kunne benytte 2 x 2-tabeller skal man anvende outcomevariable, som kan dikotomiseres til en bi-nominalskala 1 og således reduceres til to muligheder. Det vil typisk være, om sygdommen forekommer eller ikke forekommer, og om risikofaktoren er til stede eller ikke. Det udelukker ikke, at man har fl ere svarmuligheder i sine målinger på en ordinal 2 - eller interval/ratioskala 3, men for at benytte 2 x 2-tabeller og dermed associationsmålene RR og OR, skal man beslutte sig for et skæringspunkt. Det kræver nøje overvejelser om operationalisering. Det vil sige, hvad skal der til, for at man beslutter om sygdommen er til stede eller ikke, og hvor lægger man skæringspunktet for, om deltagerne har været udsat for risikofaktoren eller ikke. Eksempelvis kan man vælge at klassifi cere patienter med en Bergs balance score under 45 som havende dårlig balance og dermed stor risiko for at falde. Man mister muligvis værdifuld information ved at reducere data fra kontinuerte til dikotome variable. Det er derfor en god ide at søge hjælp i den videnskabelige litteratur og undersøge, hvordan de samme variable er kommet til udtryk. For eksempel hvor højt/lavt skal man score på en funktionsevnetest, for at der er tale om en betydelig grad af nedsat funktionsevne. Det kan også gøres ved at anvende median, eller kvartiler Ved de to sidstnævnte foretager man en opdeling i grupper (strata) for eksempel forskellige grader af udsættelse for ekspositionen og derefter beregnes OR for hvert strata. Der vælges typisk det strata med den laveste værdi som referencekategori (cellerne c og d i tabel 1 side 1). Det vil sige, at hver af de øvrige kategorier i en 2 x n-tabel holdes op imod referencekategorien. På denne måde er det muligt at se, om der er en trend ved at risikoen stiger med stigende udsættelse for ekspositionen. Sikkerhedsgrænser Én ting er dog, at vi fi nder en risikoforøgelse på 289 % for at udvikle diskusprolaps, hvis man er social- og sundhedshjælper på en afdeling uden lift i forhold til, hvis man arbejder på en afdeling med lift. Problemet er imidlertid, hvor sikkert vi kan regne med, at dette tal nu også er udtryk for den sande risiko. Hertil kan vi udregne sikkerhedsgrænser, også kaldet konfi densintervaller, forkortet efter engelsk CI. 1 Nominalskala er en måleskala med kvalitative måleenheder f.eks. navne, behandlingstyper, sygdomsklassifi kation. Bi-nominalskalaen har kun to svarmuligheder, f.eks. køn eller ja/nej. Den ene måleenhed er ikke overordnet den anden. 2 Ordinalskala kaldes også rangskala, og heri ligger, at måleenhederne har en rangorden, men det er ikke muligt at sige, hvor stor afstand der er imellem enhederne eller om der er lige stor afstand imellem dem, hvis der er fl ere end to. Et eksempel på en er, at patienten har intet, lidt, noget eller meget nedsat bevægelighed. For at dikotomisere svarene skal man beslutte at slå måleenhederne sammen til f.eks. intet og lidt som den ene kategori, og noget og meget som den anden. 3 Interval/ratioskalaer har måleenheder som f.eks. kilo, cm, grader, osv. Alle karakteriseret ved, at der er lige stor afstand imellem måleenhederne. En intervalskala har et arbitrært nulpunkt, f.eks. temperatur, hvor 0 grader 4 Epidemiologi Mål for association

5 Sikkerhedsgrænser giver læseren fl ere oplysninger end en p-værdi, idet bredden af sikkerhedsgrænserne fortæller om usikkerheden på estimaterne. Det vil sige, jo bredere interval jo større usikkerhed. Ud af sikkerhedsgrænserne kan man afl æse, om 0-hypotesen er sand, dvs. om der er en signifi kant øget risiko eller en signifi - kant forskel på effekten af behandling mellem to grupper. Omvendt giver sikkerhedsgrænserne ikke en p-værdi i form af et enkelt tal. Det kræver en ekstra udregning. I Fysisk aktivitet håndbog om forebyggelse og behandling (6) er ofte angivet RR eller OR fra forskellige undersøgelser, men desværre konsekvent uden sikkerhedsgrænser, det betyder, at man skal tilbage til originalundersøgelsen for fi n- de usikkerheden for risikoen. Det er altid relevant at oplyse sikkerhedsgrænser, der kan beregnes ud fra forskellige formler alt afhængig af, om det er sikkerhedsgrænser for hyppigheder, gennemsnit, RR eller OR. En hyppigt anvendt metode til OR er imidlertid Wolfs metode, som vises nedenfor. I den formel anvendes logaritmen til OR. 95 % sikkerhedsgrænser på OR findes således med udgangspunkt i, at man har sin 2 x 2 tabel og har udregnet OR, hvorefter man finder logaritmen til tallet. Derefter er formlen følgende: logor =+1, a b c d Bemærk at kvadratroden gælder for alt, hvad der står efter kvadratrodstegnet. Man regner formlen igennem to gange, nemlig med henholdsvis + 1,96 og 1,96. For hvert af de to tal tager man så eksponentialfunktionen og får dermed 95 % sikkerhedsgrænsernes nedre og øvre værdi. For yderligere læsning henvises til litteraturen, f.eks. Rothman 2002 (9). Formlen for udregning af sikkerhedsgrænser for RR er følgende: logrr =+1, a a + b c c + d Herefter er proceduren den samme som ovenfor. OR i en interventionsundersøgelse OR og RR kan også bruges i interventionsundersøgelser (7), men det kræver dog, at der er ændringer i begge grupper, således at alle 2 x 2 tabellens fi re celler bliver fyldt ud. Hvis der for eksempel i kontrolgruppen ikke sker nogen forbedringer, kan OR og RR ikke anvendes (1). Ligeledes kan OR heller ikke anvendes, hvis alle i interventionsgruppen forbedrer sig, for så har vi igen en tom celle. I det følgende tages udgangspunkt i en interventionsundersøgelse, og gives samtidig eksempel på, hvordan OR kan anvendes som mål for effekt af en behandling. Hølmich et al gennemførte en intervention, hvor 68 fodboldspillere med lyskesmerter blev randomiseret til enten en træningsgruppe, der fi k aktiv træning eller en kontrolgruppe, der fi k gængs behandling af en fysioterapeut (4). Nedenstående tabel er opstillet på baggrund af tal fra undersøgelsen. At have opnået et excellent behandlingsresultat krævede opfyldelse af alle tre behandlingsmål, som var: ingen palpationssmerter eller smerter ved adduktion (Adduktion med modstand) ingen lyskesmerter i forbindelse med idræt genoptagelse af idrætsaktivitet på samme niveau som før ellers blev behandlingsresultatet klassifi ceret som ikke excellent. Tabel 3 viser behandlingsresultaterne efter i interventionsgruppe og kontrolgruppe Behandlingsresultat Excellent Ikke excellent Total Interventionsgruppe Kontrolgruppe celsius er sat til den temperatur, hvor vand fryser til is, mens ratioskalaens nulpunkt er absolut, som f.eks. antal kilo, der kan løftes. 5 Epidemiologi Mål for association

6 I tabel 3 ses et eksempel på, at man i undersøgelsen har dikotomiseret outcomemålet til excellent eller ikke excellent. OR beregnes efter formlen: ad 23 x 30 OR = bc dvs. 11 x 4 = 15,68 (4,4-55,7) Tallene i parentes angiver sikkerhedsintervallet. Det vil sige, at den sande OR med 95 % sikkerhed ligger mellem 4,4 og 55,7. De her beskrevne associationsmål er enkle, og som nævnt baseret på dikotome outcomemål. Det er imidlertid også muligt at benytte kontingenstabeller med flere kolonner eller rækker, Det kræver, at der udføres beregninger for et strata (gruppe) ad gangen sammenlignet med referencegruppen og der fremkommer således en OR eller RR for hver gruppe udover referencegruppen Ligeledes kan man beregne, hvor stor indfl ydelse forskellige uafhængige variable har på outcome ved det, der kaldes regressionsanalyse, og her fremkommer resultatet som OR. Ved en regressionsanalyse beregner man således, hvor meget betydning forskellige variable har for sygdommens opståen. Vi henviser til litteraturen for nærmere gennemgang (2,8,9). Bias I epidemiologiske undersøgelser såvel som i andre undersøgelser kan der optræde forskellige former for bias. Det vil sige systematiske fejl, der skævvrider resultatet i en bestemt retning. Overordnet kan bias opdeles i selektionsbias og informationsbias. RR beregnes efter formlen: a l (a + b) 23 / ( ) RR = c l (c + d) = 4 / (4 + 30) = 5,75 (2,2-14,9) Det ses, at der er forholdsvis stor forskel på RR og OR, hvilket skyldes, at det undersøgte outcome (behandlingsresultatet) var relativt hyppigt. Sikkerhedsgrænserne er ret brede, da det er en lille undersøgelse, og usikkerheden på estimaterne for OR og RR bliver derfor ganske betydelig. Alligevel er forskellen på de to grupper signifi kant, hvilket ses af, at den laveste værdi på sikkerhedsintervallet ikke kommer under 1. Hvis den gjorde det (f.eks. ved CI 95 % 0,81-55,72), ville forskellen mellem grupperne ikke have været signifi kant. I epidemiologiske undersøgelser drejer det sig hyppigt om relative sjældne outcome, som for eksempel spondylitis ankylopoietica, hvor prævalensen er 1-2 promille. I sådanne tilfælde kan OR betragtes som et tilnærmet udtryk for RR, men hvis prævalensen er langt højere, som den ofte vil være i interventionsundersøgelser, er OR et væsentligt mere ekstremt udtryk for effekt end RR. Selektionsbias forekommer, når den population, der undersøges, ikke er repræsentativ for den population, som man ønsker at få viden om. Der vil for eksempel kunne forekomme selektionsbias, hvis vi rekrutterede patienter til et forsøg udfra en annonce, idet der er en risiko for, at det er en bestemt gruppe, der har tid, lyst, kan transportere sig selv eller lignende. Det kan betyde, at de, der deltager i forsøget, ikke er repræsentative for den gruppe, vi gerne vil vide noget om - måske har de lidt flere ressourcer. Det har muligvis ikke betydning for forsøget, men det er vanskeligt for forskeren at vurdere. Selektionsbias kan også opstå, hvis forskeren selv har indflydelse på, hvem der deltager i forsøget. Han kan for eksempel ønske kun at medtage de gode patienter for derved at sikre sig et godt resultat. Selektionsbias kan også forekomme ved systematisk frafald af eksempelvis dem, der ikke ønsker hård fysisk træning. Den resterende gruppe er dermed ikke repræsentativ for populationen. Informationsbias opstår ofte, når man for eksempel beder folk rapportere om noget, der ligger langt tilbage i tiden, som belastninger i arbejdet for 10 år siden (recallbias). Det kan være svært at huske for de fl este, men dem, der har pådraget sig en skade, husker den pågældende periode bedre. Det kan også være, at man rapporterer lidt for positivt om en bestemt adfærd, hvor man for eksempel gerne vil fremstå til at have været mere fysisk aktiv end man egentlig var (social desirability bias). Informationsbias kan også opstå, hvis undersøgeren anvender et forkert måleinstrument (test, spørgeskema eller klinisk undersøgelse), hvor der for eksempel kan opstå en fejl i klassificeringen af patienterne med hensyn til, om de har sygdommen eller ikke. Det kaldes misklassifikation, forkert kategorisering. Hvis man kun vurderer den fysiske 6 Epidemiologi Mål for association

7 aktivitet udfra sportsaktiviteter, vil folk, der er cykler på arbejde, laver have- eller husarbejde eller er meget fysisk aktive i deres arbejde, men ikke dyrker sport, blive klassificeret som fysisk inaktive. Det er et eksempel på misklassifi kation, som skyldes forskerens operationalisering af begrebet fysisk aktiv. En confounder er en med determinanten forbundet risikofaktor der helt eller delvist kan forklare den fundne association mellem determinant og outcome. En confounder må ikke være en intermediær effekt mellem determinant og outcome. Confounding Confounding betyder egentlig forvirring og opstår, når der forekommer en anden faktor (eller fl ere), der helt eller delvis kan forklare sammenhængen mellem determinant og outcome (se faktaboks 1. En confounder er defi neret ved: at være associeret med determinanten at være en selvstændig risikofaktor for outcome samt ikke at være en del af den kausale forbindelse mellem risikofaktor og outcome. Behandling med intensiv træning Faktaboks 1. Den præcise defi nition af begrebet confounder Typiske confoundere i mange sammenhænge er køn, alder, socialgruppe og lignende, men andre determinanter end det undersøgte kan også være confoundere som i nedenstående eksempel. Confounding kan være et vanskeligt begreb at forstå, men det illustreres i fi g. 1, og ved at tage udgangspunkt i nedenstående eksempel. I undersøgelsen af incidensen af diskusprolaps blandt social- og sundhedshjælperne, der arbejder på afdelinger med og uden lift, kan tidligere rygbesvær være en mulig confounder. Tidligere *** Excellent behandlingsresultat (outcome) Unilaterale lyskesmerter i forhold til bilaterale Lavt smerteniveau i forhold til højt smerteniveau Figur 1 fremstiller, hvordan unilaterale lyskesmerter og lavt smerteniveau er confoundere for behandlingsresultatet. ***markerer den ønskede association. 7 Epidemiologi Mål for association

8 rygbesvær er associeret med udvikling af diskusprolaps og kan også være have en sammenhæng med, at afdelingen har anskaffet sig lifte. Det har man måske gjort, fordi der var mange blandt social- og sundhedshjælperne, der klagede over lænderygbesvær. Samtidig kunne man forestille sig, at netop dem med tidligere rygbesvær var ekstra opmærksomme på brugen af tekniske hjælpemidler. Herved har vi en faktor, der både er associeret med outcome (diskusprolaps) og med risikofaktoren (lift på afdelingen). I undersøgelsen af effekten af en træningsintervention overfor lyskesmerter hos fodboldspillere af Hølmich et al. viste det sig, at der var langt flere i interventionsgruppen, der opnåede et bestemt funktionsmål. Det var dog således, at deltagerne i interventionsgruppen ved baseline havde væsentligt færre smerter, og der var ligeledes færre med bilaterale lyskesmerter. Da lavt smerteniveau og unilaterale smerter i forhold til bilaterale lyskesmerter viste sig at være faktorer, der bidrog til at få et godt outcome i denne undersøgelse, og disse faktorer var skævt fordelt mellem de to grupper, kan dele af forskellen mellem de to grupper skyldes forskel i smerteniveau og antallet af bilaterale lyskesmerter. Smerter (i form at smerteniveau eller om det er unilaterale eller bilaterale smerter) er dermed en confounder i denne undersøgelse. Tidligere viste beregningen en OR som udtryk for den samlede association mellem intervention og outcome. Det ses imidlertid af figur 1 (side 7), at der er påvirkning af effekten, der kan løbe udenom forholdet mellem behandling og outcome. Associationen mellem determinant og outcome kan således være blevet både større eller mindre afhængig af fordelingen af dem, der har mange smerter, og dem der har bilaterale lyskesmerter. For god orden skyld vil vi gøre opmærksom på, at der i undersøgelsen foretages en multipel logistisk regressionsanalyse, hvorved associationen mellem interventionen og outcome bliver lidt mindre, nemlig 12,7 (3,4 47,2). I en sådan analyse justeres behandlingsresultatet for effekten af andre variable end interventionen. Det vil sige, at man justerer for sine confoundere. For nærmere forklaring henvises til speciallitteraturen (3). Confounding skal undgås eller kontrolleres, hvilket til dels kan gøres gennem undersøgelsens tilrettelæggelse og ikke mindst gennem den rette anvendelse af statistiske metoder. En velgennemført randomiseret undersøgelse vil som udgangspunkt være den bedste måde at begrænse confounding, da en justering for confounding kræver større undersøgelser end interventionsundersøgelser almindeligvis er. Derfor ses confounding analyse hyppigst i store kohorteundersøgelser eller case-kontrolundersøgelser. Man kan på forskellig måde kontrollere for confounding, men første skridt på vejen er at være klar over, hvilke variable der kan være. Den viden indhenter man i vidt omfang fra videnskabelig litteratur, men det endegyldige svar fi ndes ikke altid her. Så må man støtte sig til egen faglige viden, erfaring og fantasi om, hvad man kan forestille sig, kan forvirre udfaldet. Viden om confounding vil afspejle sig i den måde man statistisk behandler sine data, som i ovenstående undersøgelse af Hølmich et al, hvor man søgte at justere for den skæve fordeling af uniog bilaterale lyskeproblemer og smerte. Effektmodifikation Ved effektmodifi kation har vi en situation, hvor der er en eller fl ere faktorer, som direkte påvirker forholdet mellem risikofaktor og outcome, eller mellem intervention og behandlingsresultat. Det betyder, at der er en tredje variabel, som går ind og påvirker (modifi cerer) styrken af associationen mellem risikofaktor og sygdom (eller mellem intervention og outcome) i enten positiv eller negativ retning (3), se fi g. 2. Det kan for eksempel være en undersøgelse af styrketilvæksten ved styrketræning af knæpatienter. Her kan køn være en effektmodifi kator, idet kvinder typisk vil opnå mindre styrketilvækst end mænd. Det betyder, at man statistisk skal behandle data på de to køn hver for sig. Hvis man udelukkende ser på deltagerne som én gruppe, vil styrketilvæksten fremstå som et gennemsnit mellem mændenes høje tilvækst og kvindernes noget mindre. Når man tager højde for effektmodifikation anvendes ofte stratificering, det vil sige lagdeling. I ovennævnte eksempel vil der være to lag, nemlig ét for mænd og ét for kvinder. Det er vigtigt at overveje effektmodifikation i tilrettelæggelsen af undersøgelsen. I ovennævnte eksempel risikerer man at stå med en population, hvor der ikke kan vises nogen særlig fremgang, eller, hvis man så finder ud af, at man skal stratificere, kan man stå med to alt for små populationer. 8 Epidemiologi Mål for association

9 Køn som modificerende faktor Styrketræning Styrkeforøgelse Figur 2. Effektmodifi kation forstyrrer den undersøgte association. Referencer 1. Deeks JJ, Higgins JPT, Altman DG, editors. Analyzing and presenting results. In: Alderson P. Green S, Higgins J, editors. (Electronic version) Cochrane Reviewers Handbook (updated March 2004); Section 8. Retrieved juli 2004, from 2. Gerstmann B. Epidemiology kept simple. An introduction to classic and modern epidemiology. Toronto: Wiley-Liss, Hennekens C, Buring J. Epidemiology in medicine. Boston/Toronto: Little Brown and Company; Hølmich P, Uhrskou P, Ulnits L, Kanstrup IL, Bachmann MN, Bjerg AM, Krogsgaard K. Effektiviteten af aktiv fysisk træning ved langvarige, adduktor-relaterede lyskesmerter hos sportsudøvere. En randomiseret undersøgelse. Nyt om Forskning 1999; 8(1): Friis J. Junker P, Manniche C, Petersen J, Steengaard-Pedersen K. Reumatologi. København: FADL s Forlag; Levangie P. Application and interpretation of simple odds ratios in physical therapy-related research. JOSPT 2001; 31(9): Olsen J, Overvad K, Juul S. Analytisk epidemiologi. En introduktion. København: Munksgaard Danmark, Osler M. Befolkningsundersøgelsers bidrag til forskning i folkesygdomme med fokus på danske kohorter. Ugeskr Læger 2004;166: Rothman K. Epidemiology. An introduction. New York: Oxford University Press; Epidemiologi Begreber og metoder

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann. februar 00 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser. Traditionelt

Læs mere

Effektmålsmodifikation

Effektmålsmodifikation Effektmålsmodifikation Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2015 l Dias nummer 1 Sidste gang Vi snakkede

Læs mere

Vurdering af epidemiologiske undersøgelser. Epidemiologisk forskning

Vurdering af epidemiologiske undersøgelser. Epidemiologisk forskning Vurdering af epidemiologiske undersøgelser Epidemiologisk forskning Mogens Vestergaard Institut for Epidemiologi og Socialmedicin Aarhus Universitet mv@soci.au.dk At belyse en videnskabelig hypotese ved

Læs mere

Vurdering af det Randomiserede kliniske forsøg RCT

Vurdering af det Randomiserede kliniske forsøg RCT Vurdering af det Randomiserede kliniske forsøg RCT Evidensbaseret Praksis DF Region Nord Marts 2011 Jane Andreasen, udviklingsterapeut og forskningsansvarlig, MLP. Ergoterapi- og fysioterapiafdelingen,

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

Besvarelse af opgavesættet ved Reeksamen forår 2008

Besvarelse af opgavesættet ved Reeksamen forår 2008 Besvarelse af opgavesættet ved Reeksamen forår 2008 10. marts 2008 1. Angiv formål med undersøgelsen. Beskriv kort hvordan cases og kontroller er udvalgt. Vurder om kontrolgruppen i det aktuelle studie

Læs mere

Analyse af binære responsvariable

Analyse af binære responsvariable Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley

Læs mere

Confounding. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Confounding. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Afdeling for Social medicin Confounding Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 28. maj 2015 l Dias nummer 1 Sidste

Læs mere

Epidemiologi Begreber og metoder

Epidemiologi Begreber og metoder Epidemiologi Begreber og metoder Marianne Lindahl, fysioterapeut, MPH, Carsten Bogh Juhl, fysioterapeut, MPH Fysioterapeutuddannelsen CVU Syd, Næstved Lindahl M, Juhl CB 2005, 25. februar) Epidemiologi

Læs mere

Vurdering af epidemiologiske undersøgelser igen

Vurdering af epidemiologiske undersøgelser igen Vurdering af epidemiologiske undersøgelser igen kob Grove 12. september, 2005 Program Confounding og effektmodifikation Hvad er confounding Hvad er effektmodifikation Er der confounding eller effektmodifikation

Læs mere

Udbrændthed og brancheskift

Udbrændthed og brancheskift Morten Bue Rath Oktober 2009 Udbrændthed og brancheskift Hospitalsansatte sygeplejersker der viser tegn på at være udbrændte som konsekvens af deres arbejde, har en væsentligt forøget risiko for, at forlade

Læs mere

Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Informationsbias Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 19. maj 2015 l Dias nummer 1 Sidste gang Vi snakkede om

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 16. april 2015 l Dias nummer 1 Sidste gang

Læs mere

Epidemiologisk evidens og opsummering

Epidemiologisk evidens og opsummering Epidemiologisk evidens og opsummering Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 12. juni 2014 l Dias nummer 1 Sidste

Læs mere

Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel

Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel Rigshospitalet Århus Sygehus Epidemiologi. Hvad er det? Definition Læren om sygdommes udbredelse og årsager Indhold To hovedopgaver: Deskriptiv

Læs mere

Epidemiologiske metoder

Epidemiologiske metoder Bacheloruddannelsen i IT og Sundhed Københavns Universitet Epidemiologiske metoder 2. semester Forårssemesteret 2014 Kursusleder Mads Kamper-Jørgensen, lektor, Afdeling for Social Medicin, Institut for

Læs mere

Population attributable fraction

Population attributable fraction Population attributable fraction Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 2. juni 2015 l Dias nummer 1 Sidste gang

Læs mere

Studiedesigns: Alternative designs

Studiedesigns: Alternative designs Studiedesigns: Alternative designs Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 20. maj 2014 l Dias nummer 1 Sidste gang

Læs mere

Afsluttende statistisk evaluering af SSD-projektet, Vejle kommune

Afsluttende statistisk evaluering af SSD-projektet, Vejle kommune Afsluttende statistisk evaluering af SSD-projektet, Vejle kommune Nedenstående er en beskrivelse af den kvantitative evaluering af projekt Trivsel gennem bevægelseslæring og forflytningskundskab. Vær opmærksom

Læs mere

CENTER FOR KLINISKE RETNINGSLINJER

CENTER FOR KLINISKE RETNINGSLINJER BILAG 5 - CLEARINGHOUSE Bilag 5. SfR Checkliste kilde 18. SfR Checkliste 3: Kohorteundersøgelser Forfatter, titel: Deuling J, Smit M, Maass A, Van den Heuvel A, Nieuwland W, Zijlstra F, Gelder I. The Value

Læs mere

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003 Opgave 1 (mandag) Figuren nedenfor viser tilfælde af mononukleose i en lille population bestående af 20 personer. Start og slut på en sygdoms periode er angivet med. 20 15 person number 10 5 1 July 1970

Læs mere

Udarbejdelse af kliniske retningslinjer: Systematisk og kritisk læsning

Udarbejdelse af kliniske retningslinjer: Systematisk og kritisk læsning Udarbejdelse af kliniske retningslinjer: Systematisk og kritisk læsning Anden del: systematisk og kritisk læsning DMCG-PAL, 8. april 2010 Annette de Thurah Sygeplejerske, MPH, ph.d. Århus Universitetshospital

Læs mere

Selektionsbias. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Selektionsbias. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Selektionsbias Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. maj 2015 l Dias nummer 1 Sidste gang Vi snakkede om Præcision:

Læs mere

Kritisk vurdering af en oversigtsartikel

Kritisk vurdering af en oversigtsartikel Metodeartikel af Hans Lund, fysioterapeut, ph.d., Parker Instituttet, Frederiksberg Hospital Lund H. (2000) (online 2003, 4. november). Forskning i Fysioterapi (1. årg.), s. 1-6 URL: htpp:///sw1250.asp

Læs mere

Studiedesigns: Kohorteundersøgelser

Studiedesigns: Kohorteundersøgelser Studiedesigns: Kohorteundersøgelser Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 28. april 2015 l Dias nummer 1 Sidste

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

Statistiske data. Datamatricen. Variable j. ... X ij = x ij... Anonymiserede og ækvivalente dataindivider. Datamodellen

Statistiske data. Datamatricen. Variable j. ... X ij = x ij... Anonymiserede og ækvivalente dataindivider. Datamodellen Statistiske data Datamatricen Variable j Individer i X ij = x ij Anonymiserede og ækvivalente dataindivider Datamodellen Hvis dataindividerne er udvalgte repræsentanter fra en population, så er datamatrice

Læs mere

Introduktion til epidemiologi

Introduktion til epidemiologi Introduktion til epidemiologi Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab, Københavns Universitet It og sundhed l 9. april 2015 l Dias

Læs mere

Epidemiologiske metoder

Epidemiologiske metoder Bacheloruddannelsen i IT og Sundhed Københavns Universitet Epidemiologiske metoder 2. semester Forårssemesteret 2014 Kursusleder Mads Kamper-Jørgensen, lektor, Afdeling for Social Medicin, Institut for

Læs mere

UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER

UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER Undervisningseffekten udregnes som forskellen mellem den forventede og den faktiske karakter i 9. klasses afgangsprøve. Undervisningseffekten udregnes

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med

Læs mere

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer)

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer) D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

Sommereksamen 2015. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering

Sommereksamen 2015. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering Sommereksamen 2015 Titel på kursus: Uddannelse: Semester: Statistik og evidensbaseret medicin Bacheloruddannelsen i Medicin/Medicin med industriel specialisering 2. semester Eksamensdato: 16-06-2015 Tid:

Læs mere

Behandling af kvantitative data 19.11.2012

Behandling af kvantitative data 19.11.2012 Behandling af kvantitative data 19.11.2012 I dag skal vi snakke om Kvantitativ metode i kort form Hvordan man kan kode og indtaste data Data på forskellig måleniveau Hvilke muligheder, der er for at analysere

Læs mere

CENTER FOR KLINISKE RETNINGSLINJER - CLEARINGHOUSE

CENTER FOR KLINISKE RETNINGSLINJER - CLEARINGHOUSE Bilag 8: Checkliste Estey SfR Checkliste 2: Randomiserede kontrollerede undersøgelser Forfatter, titel: Estey, William: Subjective Effects og Dry versus Humidified Low Flow Oxygen Tidsskrift, år: Respiratory

Læs mere

Kausalitet. Introduktion til samfundsvidenskabelig metode. Samfundsvidenskabelig metode. Hvad er metode? Hvad er kausalitet.

Kausalitet. Introduktion til samfundsvidenskabelig metode. Samfundsvidenskabelig metode. Hvad er metode? Hvad er kausalitet. Introduktion til samfundsvidenskabelig metode Samfundsvidenskabelig metode IT-Universitetet September 2007 Mikkel Leihardt Hvad er metode? Metode er regler og retningslinjer for, hvordan vi undersøger

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Trivselsundersøgelse Yngre Læger 2012 - nogle hovedresultater

Trivselsundersøgelse Yngre Læger 2012 - nogle hovedresultater Trivselsundersøgelse Yngre Læger 2012 - nogle hovedresultater Baggrund Et af Yngre Lægers vigtigste opgaver er at arbejde for et bedre arbejdsmiljø for yngre læger. Et godt arbejdsmiljø har betydning for

Læs mere

CENTER FOR KLINISKE RETNINGSLINJER - CLEARINGHOUSE

CENTER FOR KLINISKE RETNINGSLINJER - CLEARINGHOUSE Bilag 5: Checkliste Andres et.al. SfR Checkliste 2: Randomiserede kontrollerede undersøgelser Forfatter, titel: Andres D et al.: Randomized double-blind trial of the effects of humidified compared with

Læs mere

Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler:

Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler: Kære MPH-studerende Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler: 1. E.A. Mitchell et al. Ethnic differences

Læs mere

TRIVSELSUNDERSØGELSE PÅ SKOLERNE BØRN OG UNGE 2014

TRIVSELSUNDERSØGELSE PÅ SKOLERNE BØRN OG UNGE 2014 TRIVSELSUNDERSØGELSE PÅ SKOLERNE BØRN OG UNGE 2014 FORORD Baggrunden for undersøgelsen: Ifølge arbejdsmiljølovgivningen skal APV en på en arbejdsplads opdateres, når der sker store forandringer, som påvirker

Læs mere

Hvad siger statistikken?

Hvad siger statistikken? Eleverne har tidligere (fx i Kolorit 7, matematik grundbog) arbejdet med især beskrivende statistik (deskriptiv statistik). I dette kapitel fokuseres i højere grad på, hvordan datamateriale kan tolkes

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test.

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test. Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ -test og Goodness of Fit test. Anvendelser af statistik Statistik er et levende og fascinerende emne, men at læse om det er alt

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

PATIENTOPLEVETKVALITET 2013

PATIENTOPLEVETKVALITET 2013 Patientoplevetkvalitet Antal besvarelser: 59 Svarprocent: 45% PATIENTOPLEVETKVALITET 213 Patientoplevetkvalitet 213 FORORD 1 Patientoplevet kvalitet Her er dine resultater fra undersøgelsen af den patientoplevede

Læs mere

Tillæg til Studieordning for Folkesundhedsvidenskab

Tillæg til Studieordning for Folkesundhedsvidenskab Tillæg til Studieordning for Folkesundhedsvidenskab Det Sundhedsvidenskabelige Fakultet Aalborg Universitet 2015 Tillæg til studieordningen for kandidatuddannelsen i Folkesundhedsvidenskab - 2013 Modulerne

Læs mere

Resultater. Formål. Results. Results. Må ikke indeholde. At fåf. kendskab til rapportering af resultater. beskrivelse

Resultater. Formål. Results. Results. Må ikke indeholde. At fåf. kendskab til rapportering af resultater. beskrivelse Formål Resultater kendskab til rapportering af resultater Andreas H. Lundh Infektionsmedicinsk Afdeling, Hvidovre Hospital Anders W. JørgensenJ Øre-næse-halsafdeling, Århus Universitetshospital Mål At

Læs mere

- Medlemsundersøgelse, Danske Fysioterapeuter, Juni 2010. Danske Fysioterapeuter. Kvalitet i træning

- Medlemsundersøgelse, Danske Fysioterapeuter, Juni 2010. Danske Fysioterapeuter. Kvalitet i træning Danske Fysioterapeuter Kvalitet i træning Undersøgelse blandt Danske Fysioterapeuters paneldeltagere 2010 Udarbejdet af Scharling Research for Danske Fysioterapeuter juni 2010 Scharling.dk Side 1 af 84

Læs mere

Workshop 6 Sundhedsprofilen metode og muligheder. Anne Helms Andreasen, Forskningscenter for Forebyggelse og Sundhed

Workshop 6 Sundhedsprofilen metode og muligheder. Anne Helms Andreasen, Forskningscenter for Forebyggelse og Sundhed Workshop 6 Sundhedsprofilen metode og muligheder Anne Helms Andreasen, Forskningscenter for Forebyggelse og Sundhed Metode og muligheder Design Beskrivelse af deltagere og ikke-deltagere Vægtning for design

Læs mere

Kvaliteten i behandlingen af patienter. med KOL

Kvaliteten i behandlingen af patienter. med KOL Kvaliteten i behandlingen af patienter med KOL Region Syddanmark Sundhedsfaglig delrapport til den nationale sundhedsfaglige rapport januar 2010 december 2010 - 2 - Indholdsfortegnelse Indholdsfortegnelse...

Læs mere

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom.

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. For at I skal kunne regne på tallene fra undersøgelsen har vi taget en delmængde af variablene

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

PATIENTOPLEVETKVALITET 2013

PATIENTOPLEVETKVALITET 2013 Patientoplevetkvalitet Antal besvarelser: 59 PATIENTOPLEVETKVALITET 23 Svarprocent: 45% FORORD Patientoplevet kvalitet Her er dine resultater fra undersøgelsen af den patientoplevede kvalitet i speciallægepraksis,

Læs mere

Estimatet for standardfejlen i stikprøven, som anvendes i udregningen af konfidensintervallet ( ) ( )

Estimatet for standardfejlen i stikprøven, som anvendes i udregningen af konfidensintervallet ( ) ( ) Enhed Administrationspolitisk kontor Sagsbehandler KHS, STJO Koordineret med CWU, APK Sagsnr. 2014-13042 Doknr. 200174 Dato 24-06-2014 Overvejelser om svarprocenter i brugertilfredshedsundersøgelser Dette

Læs mere

PATIENTOPLEVETKVALITET 2013

PATIENTOPLEVETKVALITET 2013 Patientoplevetkvalitet Antal besvarelser: 8 PATIENTOPLEVETKVALITET 23 Svarprocent: 62% FORORD Patientoplevet kvalitet Her er dine resultater fra undersøgelsen af den patientoplevede kvalitet i speciallægepraksis,

Læs mere

LØNSPREDNINGSOPGØRELSER NU TILGÆNGELIG I LOPAKS

LØNSPREDNINGSOPGØRELSER NU TILGÆNGELIG I LOPAKS LØNSPREDNINGSOPGØRELSER NU TILGÆNGELIG I LOPAKS INDHOLD 2 Formål 2 LOPAKS 3 Begreber 6 Eksempler 6. december 2010 LOPAKS er nu udvidet med en ny tabel, der giver mulighed for at opgøre lønspredning på

Læs mere

Fordeling af midler til specialundervisning

Fordeling af midler til specialundervisning NOTAT Fordeling af midler til specialundervisning Model for Norddjurs Kommune Søren Teglgaard Jakobsen December 2012 Købmagergade 22. 1150 København K. tlf. 444 555 00. kora@kora.dk. www.kora.dk Indholdsfortegnelse

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Rapport vedrørende. etniske minoriteter i Vestre Fængsel. Januar 2007

Rapport vedrørende. etniske minoriteter i Vestre Fængsel. Januar 2007 Rapport vedrørende etniske minoriteter i Vestre Fængsel Januar 2007 Ved Sigrid Ingeborg Knap og Hans Monrad Graunbøl 1 1. Introduktion Denne rapport om etniske minoriteter på KF, Vestre Fængsel er en del

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 25 Indledning I kapitel 2 omsatte vi de rå data til en tabel, der bedre viste materialets fordeling

Læs mere

Epidemiologi og Biostatistik (version 19.09.2008)

Epidemiologi og Biostatistik (version 19.09.2008) En model Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser Jørn Attermann. september 008 For meningsfuldt at kunne diskutere fejlkilder og fortolkningsproblemer må vi have en model for det,

Læs mere

Grundlæggende metode og videnskabsteori. 5. september 2011

Grundlæggende metode og videnskabsteori. 5. september 2011 Grundlæggende metode og videnskabsteori 5. september 2011 Dagsorden Metodiske overvejelser Kvantitativ >< Kvalitativ metode Kvalitet i kvantitative undersøgelser: Validitet og reliabilitet Dataindsamling

Læs mere

FREMME AF MENTAL SUNDHED HOS UNGE

FREMME AF MENTAL SUNDHED HOS UNGE FREMME AF MENTAL SUNDHED HOS UNGE VEJLEDNING TIL TRIVSELSMÅLINGEN WHO-5 2014-2016 PSYKIATRIFONDEN.DK VEJLEDNING TIL TRIVSELSMÅLINGEN WHO-5 WHO-5 Sundhedsstyrelsen skriver: WHO-5 er et mål for trivsel.

Læs mere

Brugerundersøgelse af IDAs portal 2004

Brugerundersøgelse af IDAs portal 2004 Brugerundersøgelse af IDAs portal 2004 Som led i realiseringen af IDAs IT-strategi blev IDAs hjemmeside, portalen, i august 2004 relanceret med nyt design og ny struktur. For at undersøge hvordan brugerne

Læs mere

Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008

Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008 Indholdsfortegnelse 1 INDLEDNING OG PROBLEMSTILLING... 2 1.1 OVERVÆGT SOM CASE... 2 2 ANALYSEFORBEREDELSER... 4 2.1 HEPRO-UNDERSØGELSEN... 4 2.2 DEN AFHÆNGIGE VARIABEL VIGTIGHED AF ÆNDRINGEN AF VÆGT...

Læs mere

Using sequence analysis to assess labor market participation following intervention for patients with low back pain preliminary results

Using sequence analysis to assess labor market participation following intervention for patients with low back pain preliminary results Using sequence analysis to assess labor market participation following intervention for patients with low back pain preliminary results Louise Lindholdt 1,2, Merete Labriola 1,2, Claus Vinther Nielsen

Læs mere

CENTER FOR KLINISKE RETNINGSLINJER - CLEARINGHOUSE

CENTER FOR KLINISKE RETNINGSLINJER - CLEARINGHOUSE Bilag 7: Checkliste Campbell et.al. SfR Checkliste 2: Randomiserede kontrollerede undersøgelser Forfatter, titel: E J Campbell, M D Baker. Subjective effects of humidification of oxygen for delivery by

Læs mere

Baggrundsnotat: Søskendes uddannelsesvalg og indkomst

Baggrundsnotat: Søskendes uddannelsesvalg og indkomst 17. december 2013 Baggrundsnotat: Søskendes uddannelsesvalg og indkomst Dette notat redegør for den økonometriske analyse af indkomstforskelle mellem personer med forskellige lange videregående uddannelser

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere DET ØKONOMISKE RÅD S E K R E T A R I A T E T d. 20. maj 2005 SG Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere Baggrundsnotat vedr. Dansk Økonomi, forår 2005, kapitel

Læs mere

Epidemiologiske hyppighedsmål

Epidemiologiske hyppighedsmål Epidemiologiske hyppighedsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 14. april 2015 l Dias nummer 1 Sidste gang

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Fri og uafhængig Selvstændiges motivation

Fri og uafhængig Selvstændiges motivation Fri og uafhængig Selvstændiges motivation Uafhængighed af andre og frihed til at tilrettelægge sit eget arbejde er de stærkeste drivkræfter for et flertal af Danmarks selvstændige erhvervdrivende. For

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

CENTER FOR KLINISKE RETNINGSLINJER

CENTER FOR KLINISKE RETNINGSLINJER BILAG 7 Bilag 7. Evidenstabel Forfatter og år Studiedesig n Intervention Endpoint/ målepunkter Resultater Mulige bias/ confounder Konklusion Komm entar Eviden s- styrke/ niveau Daniel s et al 2011 Randomisere

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

for matematik pä B-niveau i hf

for matematik pä B-niveau i hf for matematik pä B-niveau i hf 75 50 5 016 Karsten Juul GRUPPEREDE DATA 1.1 Hvad er deskriptiv statistik?...1 1. Hvad er grupperede og ugrupperede data?...1 1.1 Eksempel pä ugrupperede data...1 1. Eksempel

Læs mere

Bilag 1. Om læsning og tolkning af kort udformet ved hjælp af korrespondanceanalysen.

Bilag 1. Om læsning og tolkning af kort udformet ved hjælp af korrespondanceanalysen. Bilag 1. Om læsning og tolkning af kort udformet ved hjælp af korrespondanceanalysen. Korrespondanceanalysen er en multivariat statistisk analyseform, som i modsætning til mange af de mere traditionelle

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Hvad er meningen? Et forløb om opinionsundersøgelser

Hvad er meningen? Et forløb om opinionsundersøgelser Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004

Læs mere

enige i, at der er et godt psykisk arbejdsmiljø. For begge enige i, at arbejdsmiljøet er godt. Hovedparten af sikkerhedsrepræsentanterne

enige i, at der er et godt psykisk arbejdsmiljø. For begge enige i, at arbejdsmiljøet er godt. Hovedparten af sikkerhedsrepræsentanterne 3. ARBEJDSMILJØET OG ARBEJDSMILJØARBEJDET I dette afsnit beskrives arbejdsmiljøet og arbejdsmiljøarbejdet på de fem FTF-områder. Desuden beskrives resultaterne af arbejdsmiljøarbejdet, og det undersøges

Læs mere

ALMINDELIGT ANVENDTE FUNKTIONER

ALMINDELIGT ANVENDTE FUNKTIONER ALMINDELIGT ANVENDTE FUNKTIONER I dette kapitel gennemgås de almindelige regnefunktioner, samt en række af de mest nødvendige redigerings- og formateringsfunktioner. De øvrige redigerings- og formateringsfunktioner

Læs mere

LØNFORSKELLE MELLEM KVINDER OG MÆND I KØBENHAVNS KOMMUNE

LØNFORSKELLE MELLEM KVINDER OG MÆND I KØBENHAVNS KOMMUNE NOTAT Mona Larsen Anders Bruun Jonassen Lise Sand Ellerbæk LØNFORSKELLE MELLEM KVINDER OG MÆND I KØBENHAVNS KOMMUNE - BEREGNINGER FOR 9 UDVALGTE FAGGRUPPER FORSKNINGSAFDELINGEN FOR BESKÆFTIGELSE OG INTEGRATION

Læs mere

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium Man kan nemt lave χ 2 -test i GeoGebra både goodness-of-fit-test og uafhængighedstest. Den følgende vejledning bygger på GeoGebra version

Læs mere

Helt overordnet er der to skridt i udvælgelsen af sammenlignelige kommuner:

Helt overordnet er der to skridt i udvælgelsen af sammenlignelige kommuner: N OTAT Metode, FLIS sammenligningskommuner Dette notat præsenterer metoden bag udregning af sammenligningskommuner i FLIS. Derudover præsenteres de første tre modeller der anvendes til at finde sammenligningskommuner

Læs mere

Den Motiverende Rygskole

Den Motiverende Rygskole Den Motiverende Rygskole Skemaer og test Nr. 1 FORVENTNINGSSKEMA Navn: Dato: Mine forventninger til dette kursus er: Jeg ønsker/har brug for mere viden om: Jeg ønsker at blive bedre til: Jeg ønsker at

Læs mere

Kundernes tilfredshed med skadesforsikringsselskaberne i Danmark

Kundernes tilfredshed med skadesforsikringsselskaberne i Danmark [0] Dansk KundeIndex 2003 skadesforsikring Kundernes tilfredshed med skadesforsikringsselskaberne i Danmark Hovedresultater Indledning og metode For tredje år i træk gennemføres en samlet kundetilfredshedsundersøgelse

Læs mere

Simpsons Paradoks. Et emnearbejde om årsag og sammenhæng i kvantitative undersøgelser. Inge Henningsen

Simpsons Paradoks. Et emnearbejde om årsag og sammenhæng i kvantitative undersøgelser. Inge Henningsen Simpsons Paradoks Et emnearbejde om årsag og sammenhæng i kvantitative undersøgelser Afdeling for Anvendt Matematik og Statistik Københavns Universitet 1 Simpsons Paradoks -Et emnearbejde om årsag og sammenhæng

Læs mere

Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge

Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge Redegørelsen ovenfor er baseret på statistiske analyser, der detaljeres i det følgende, et appendiks for hvert afsnit. Problematikken

Læs mere

HVAD ER UNDERVISNINGSEFFEKTEN

HVAD ER UNDERVISNINGSEFFEKTEN HVAD ER UNDERVISNINGSEFFEKTEN Undervisningseffekten viser, hvordan eleverne på en given skole klarer sig sammenlignet med, hvordan man skulle forvente, at de ville klare sig ud fra forældrenes baggrund.

Læs mere