Mm1: Introduction to analysis and design of algorithms - October 6, 2009

Størrelse: px
Starte visningen fra side:

Download "Mm1: Introduction to analysis and design of algorithms - October 6, 2009"

Transkript

1 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm1: Introduction to analysis and design of algorithms - October 6, 2009

2 Algorithms and Architectures I 1. Introduction to analysis and design of algorithms 2. Recursive algorithms and recurrences 3. Self study 4. Sorting Algorithms 5. Self study 6. Hash tables, binary search trees 7. Self study 8. Binary search trees, red-black trees 9. Self study 10. Misc + Q&A

3 Dagsorden Introduktion og formål med kursus Introduktion til algoritmer Eksempler Fra problem til algoritme Analyse af algoritmers korrekthed Metode Eksempler Insert sorterings algoritme Merge algoritme Metoder til analyse af algoritmer Notationer Kompleksitet Opsummering og konklusion Opgaver

4 Formål og mål med kursus (taget fra studieordningen) Kursets formål er at understøtte den studerende i at: Forstå og anvende fundamentale algoritmer til organisation af og beregninger på data. Analysere og konstruere hensigtsmæssige repræsentationer af og beregninger på data. Den studerende skal ved den afsluttende prøve kunne: Anvende begreber, teorier og metoder til at analysere og designe algoritmer. Dokumentere forståelse for simple og sammensatte datastrukturer og deres anvendelser. Dokumentere forståelse for algoritmers og datastrukturers effektivitet, og anvende denne forståelse i forbindelse med konstruktion og analyse af algoritmer og datastrukturer. Redegøre for de overvejelser, der er forbundet med at implementere datastrukturer og algoritmer i praksis Benytte korrekt fagterminologi

5 Dagsorden Introduktion og formål med kursus Introduktion til algoritmer Eksempler Fra problem til algoritme Analyse af algoritmers korrekthed Metode Eksempler Insert sorterings algoritme Merge algoritme Metoder til analyse af algoritmer Notationer Kompleksitet Opsummering og konklusion Opgaver

6 Hvad er algoritmer Ordet algoritmer stammer fra den persiske matematiker fra det 9. århundrede: Abu Abdullah Muhammed ibn Musa al-khwarizmi Algoritmer findes overalt i dagligdagen, f.eks. for lyspærer De tidligst kendte algoritmer blev lavet af Babylonerne omkring år 1600 BC til faktorisering af tal og uddragelse af kvadratrødder Et spørgsmål: Hvorfor skal vi studere algoritmer når vi nu har super hurtige computere, der kværner tal en zillion gange hurtigere end vi selv gør? Lamp does not work Lamp plugged In? Bulp burned Out? Buy new lamp Plug in lamp Replace bulp

7 Et spørgsmål om computer kraft? Lommeregner Desktop Mainframe Distribuerede computere Nogle problemer er mere komplekse end andre. Tænk bare på f.eks. Skak og alle de kombinationsmuligheder der findes, valg af næste træk Søgning og organisering af data på Internettet, data baser, billet systemer osv. Rutning af data over store netværk (evt. ad-hoc) Planlægning af kabel nedgravning for fiber udlægning

8 En analogi til kompleksitet Fire rejsende med forskellige transportmidler L rejser x meter på x tid P rejser x^2 meter på x tid E rejser e^x meters på x tid F rejser x! meters på x tid hver tager en lille tur.

9 En analogi til kompleksitet #2 Så de starter hver deres rejse Når L har taget 18 skridt, har E næsten nået sin anden gang rundt om jorden og F vil have været nået til Månen og tilbage igen næsten gange L linear P polynomial E exponential F - factorial E vil have taget 12 ture rundt om jorden før L har taget 20 skridt

10 En analogi til kompleksitet #3 Fortsat Eller hvad med F har taget Solen-Jorden tur/retur ca. 5*10^127 gange mens L stadig mangler 10 meter på 100 m banen? L linear P polynomial E exponential F - factorial Konklusion: Kompleksitet betyder virkelig noget! Overvej hvad i sætter maskinen igang med at lave!

11 Klassifikation af algoritmer efter design metode Del og hersk Nedbrydning af problem til mindre problemer der er lettere at løse Dynamisk programming Genanvendelse af tidligere opnåede resultater Ligner Del-og-hersk men er typisk hurtigere i udførsel pga. genanvendelse af resultater Lineær programming Løsning af lineære uligheder, eks. Ax<b Grådige algoritmer Valg af umiddelbart mest optimal løsning til et givet delproblem Giver ikke nødvendigvis bedste resultat, men typisk et ret godt resultat Reduktion Inkludere problem transformering til et kendt og mindre kompleks løsning Søg og nummerering Til problemer der kan løses som grafer, f.eks. Skak eller kryds og bolle Probabilistiske and heuristiske algoritmer Algoritmer der er baseret på tilfældigheder, f.eks. genetiske algoritmer

12 Klassifikation af algoritmer efter implementationsmetode Rekursion eller iteration Algoritmer der baserer sig på gentagne kald af sig selv Typisk del-og-hersk type algoritme Logiske Anvendelse af logiske aksiomer der leder til kontrollerede, logiske udledninger baseret på input Serielle, parallelle eller distribuerede Serielle algoritmer kræver instruktioner udført en ad gangen Parallelle algoritmer kan dele sine opgaver op i mindre delopgaver (f.eks. del-og-hersk) Distribuerede algoritmer, arbejder ikke bare på en enkelt maskine, men over et helt netværk Deterministiske eller non-deterministiske Deterministiske algoritmer baserer sine beslutninger på et deterministik grundlag Non-deterministiske algoritmer baserer ikke altid sine beslutninger på et deterministisk grundlag, f.eks. probabilistiske algoritmer Præcise eller upræcise Nogen algoritmer (præcise) leverer et eksakt resultat, mens andre algoritmer leverer et næsten, eller ret godt resultat.

13 Fra problem til algoritme hvad kræves der? Hvad er problemet? Hvordan beskriver vi en løsning, der utvetydigt kan forstås af alle? Samling af Ikea møbler Olie kontrol på bilen Madlavning Sortering af og søgning i millioner af data elementer En computer er ikke indforstået med ret mange ting! Den er DUM! Nogle vigtige krav til algoritmer Korrekthed (skal kunne løse problemet tilfredsstillende præcist) Effektivitet (skal kunne løse problemet indenfor given tids/ressource rammer) Let forståelige og vedligeholdelsesvenlig (andre skal også kunne forstå algoritmen og evt. lave opdateringer) Genbrugelighed og generalitet (må gerne kunne genbruges i andre sammenhæng) Nogle gange er det et trade-off mellem køretid og udviklingstid.

14 Dagsorden Introduktion og formål med kursus Introduktion til algoritmer Eksempler Fra problem til algoritme Analyse af algoritmers korrekthed Metode Eksempler Insert sorterings algoritme Merge algoritme Metoder til analyse af algoritmer Notationer Kompleksitet Opsummering og konklusion Opgaver

15 Loop invarianter I familie med matematisk induktion Beskriver egenskaber for variable, og skal leve op til tre egenskaber Initialisering: Skal være sand før første iteration i et loop Vedligheholdelse: Hvis den er sand før loopet, er den også sand efter Slutning: Når loopet afsluttes, skal invarianten have et brugbart egenskab der hjælper med at afgøre hvornår algoritmen sluttes

16 Insertion sort algoritme Et problem simpelt nok til at starte med

17 Insertion sort algoritmen grafisk representation

18 Insertion sort algoritmen pseudo kode - reminder Insertion - sort(a) 1 for j=2 to length(a) 2 do key=a[j] 3 insert A[j] into sorted sequence A[1..j-1] 4 i=j-1 5 while i>0 and A[i]>key 6 do A[i+1]=A[i] 7 i=i-1 8 A[i+1]=key Loop Invariant: I starten af for loopet, indeholder A[1..j-1] de originale elementer i A[1..j-1] men i ordnet rækkefølge!

19 Bevis for loop invariant i insert-sort algoritmen 1. Initialisering: Første iteration, j=2 -> A[1..j-1] kun indeholder A[1] Denne er sorteret og dermed holder punkt 1 i loop invariant kravet 2. Vedligeholdelse: For hvert j, skal A[1..j-1] være ordnet ved start af loop, og A[i..j-1] skal være ordnet ved slut af loop (ikke nødvendigvis samme orden, men stadig i en orden) Det kræver at den indre while loop overholder samme invarians, hvormed samme type analyse bør udføres for dette loop 3. Slutning: Hvad sker der når det ydre loop når j>n? Sæt j=n+1, og indsæt i array A[1..n+1-1] = A[1..n] (hele det originale array) Pga. 2. med j=n+1 er vi sikker på at arrayet er sorteret ved slutning! Konklusion: Algoritmen virker efter hensigten

20 Merge algoritmen - antagelser og parametre Formål med algoritmen er Umiddelbart: At samle et delvist sorteret array A På længere sigt: At fungere i en rekursiv sorteringsalgoritme Parametrene p, q og r angiver steder i et array A[1..N], hvormed algoritmen skal arbejde p: startangivelse q: midterpunkt r: stopangivelse Algoritmen antager at arrayet A er delvist sorteret A[p.. q] er sorteret A[q+1.. r] er sorteret

21 Merge algoritmen grafisk representation

22 Merge algoritmen grafisk representation p q r L R L R L R L R

23 Loop invariant for merge algoritme Nu definerer vi loop invarianten som I starten af loopet ved linje 10, indeholder delarrayet A[p..k-1] k-p mindste elementer af L[1..n1+1] og R[1..n2+1] i ordnet rækkefølge. Derudover, er L[i] og R[j] de mindste elementer i de respektive arrays der endnu ikke er kopieret over i A[]. Så skal vi igen til at vise 1. Loop invarianten holder før den første iteration 2. Hver iteration holder invarianten 3. Invarianten leder til et brugbart egenskab der afgører algoritmens afslutning

24 Dagsorden Introduktion og formål med kursus Introduktion til algoritmer Eksempler Fra problem til algoritme Analyse af algoritmers korrekthed Metode Eksempler Insert sorterings algoritme Merge algoritme Metoder til analyse af algoritmer Notationer Kompleksitet Opsummering og konklusion Opgaver

25 Vurderinger af algoritme kompleksitet Ultimate goal: Determining calculation time for the algorithms design (well, that is if we don t look at usage of other ressources such as memory, network, other kinds of I/O). Challenge: Even in this case the calculation time depends on factors such as hardware, OS, set of instructions and inputs for the algorithm. In any case we would like to make an estimate of runtimes. Usual method: Analyse the worst-case complexity using Big-O notation (asymptotic notation). This is often fine, but be aware that in some situations best-case or averagecase analysis may be more informative.

26 Vurderinger af algoritme kompleksitet Tre forskellige vurderinger af algoritmer Værste tilfælde Det kan i hvert fald ikke blive værre en det Sker for nogle algoritmer ofte, f.eks. Søgealgoritmer i databaser når data ikke findes Bedste tilfælde Det kan ikke blive bedre end det her Gennemsnitlig tilfælde Et billede af typiske tilfælde Minder ofte om værste tilfælde mere end bedste tilfælde

27 Den store O notation (the big-o) O(g(n)): angiver en asymptotisk øvre grænse for kompleksiteten Ω(g(n)): angiver en asymptotisk nedre grænse for kompleksiteten Θ(g(n)): indikere en øvre og nedre grænse, hvor g(n) er den asymptotiske tætte grænse

28 Udspecificerede notation og definition Θ(g(n)) = { f(n): there exist positive constants c 1, c 2 and n 0 such that 0 c 1 g(n) f(n) c 2 g(n) for all n n 0 } Eksempler på tavlen O(g(n)) = {f(n): there exist positive constants c and n 0, such that 0 f(n) cg(n) for all n n 0 } Hvis en funktion tilhører Θ(g(n)), så tilhører den også automatisk O(g(n)) I meget andet litteratur benyttes O(g(n)) om hvad bogen/vi opfatter som Θ(g(n)) Ω(g(n)) = {f(n): there exist positive constants c and n 0 such that 0 cg(n) f(n) for all n n 0 } For at en funktion f(n) skal tilhøre Θ(g(n)), skal den også tilhøre O(g(n)) OG Ω(g(n))!!

29 Insertion sort algoritmen pseudo kode Den tager vi lige manuelt på tavlen...

30 Udførselstid T(n)= Σalle bidrag fra hvert led Insert-sort på tavlen I bedste tilfælde ved en allerede sorteret struktur T(n)=an+b I værste tilfælde hvis strukturen er omvendt sorteret T(n)=an 2 +bn+c Men hvad kan vi bruge det til? Vi har jo ikke altid bedst eller værst tilfælde Hvad med merge sort?

31 Algoritme kompleksitet sammenligning. To sorterings algoritmer insertion og merge-sort bruger forskellig tid til at løse samme opgave: Insertion bruger c 1 n 2 til at sortere n elementer Merge-sort bruger c 2 *n*log(n) til at sortere n elementer Computer A er hurtig: 1 mia. instruktioner per sekund Computer B er langsommere: 10 mio. instruktioner per sekund Med c 1 =2 og c 2 =50 bruger Computer A: 2000 sekunder Computer B: 100 sekunder Og det til trods at konstanterne c 1 og c 2 favoriserer den hurtige computer!

32 Algoritme kompleksitet grafisk sammenligning Insertion Merge-sort

33 Konklusion og opsummering Først og fremmest svare på spørgsmålet: Virker min algoritme efter hensigten? Programmøren: Ja, den virker da, jeg har prøvet 20 tilfældige test data Dig: Se her er min loop invariant og her er beviset på papir Det kan betale sig at analysere sin algoritme, eventuelt sammenligne med andre der løser samme opgaver: versus Vi kan godt løse problemet med Algoritme A, men det tager.. År Hmmm. Du ved godt Algoritme B tager. Sekunder?

34 Divide and Conquer: Multiplication of integers

35 Problem: How to multiply two integers X and Y, each of n bits? Solution 1: School method O(n 2 ) Solution 2: Divide-and-conquer algorithm (Yes, that is true). Divide the problem into two subproblems of size n/2: X=AB, X=A2 n/2 +B Y=CD, Y=C2 n/2 +D We can now write: XY=AC2 n + (AD+BC)2 n/2 + BD Calculating this way, we have to perform: 4 multiplications (of n/2 bit integers) 3 additions of integers (at most 2n bits) 2 shifts In total T(1) = 1, T(n)=4T(n/2)+cn. Verify that this is O(n 2 ) Question: Can we do this smarter??

36 We had: XY =AC2 n + (AD+BC)2 n/2 + BD =AC2 n +((A-B)(D-C)+AC+BD)2 n/2 +BD Calculating this way, we have to perform: 3 multiplications (of n/2 bit integers) 6 additions of integers (at most 2n bits) 2 shifts In total T(1) = 1, T(n)=3T(n/2)+cn. Verify that this is 3T(n/2) + cn So, that was smart!

37 More examples: Greedy Algorithms Giving back change Greedy Algorithm Travelling Salesman Dynamic Programming World Series Odds

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm1: Introduction to analysis and design of algorithms - October 11, 2010

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm1: Introduction to analysis and design of algorithms - October 11, 2010 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm1: Introduction to analysis and design of algorithms - October 11, 2010 1 Algorithms and Architectures II 1. Introduction to analysis and

Læs mere

Mm1: Introduction to analysis and design of algorithms - October 7, 2008

Mm1: Introduction to analysis and design of algorithms - October 7, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm1: Introduction to analysis and design of algorithms - October 7, 2008 Algorithms and Architectures II 1. Introduction

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010 1 Algorithms and Architectures II 1. Introduction to analysis and design of algorithms

Læs mere

Algorithms & Architectures I 2. lektion

Algorithms & Architectures I 2. lektion Algorithms & Architectures I 2. lektion Design-teknikker: Divide-and-conquer Rekursive algoritmer (Recurrences) Dynamisk programmering Greedy algorithms Backtracking Dagens lektion Case eksempel: Triple

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm4: Sorting algorithms - October 23, 2009

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm4: Sorting algorithms - October 23, 2009 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm4: Sorting algorithms - October 3, 009 Algorithms and Architectures II. Introduction to analysis and design of

Læs mere

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid Philip Bille Mål. At bestemme og forudsige resourceforbrug og korrekthed af algoritmer Eks. Virker min algoritme til at beregne korteste veje i grafer? Hvor hurtigt kører min algoritme til at søge efter

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]

Læs mere

Mm4: Greedy algorithms, backtracking and more recurrences - October 21, 2008

Mm4: Greedy algorithms, backtracking and more recurrences - October 21, 2008 Algorithms and Architectures I Rasmus Løvenstein lsen (RL), Jimmy Jessen Nielsen (JJE) Mm4: Greedy algorithms, backtracking and more recurrences - ctober 21, 2008 Algorithms and Architectures II 1. Introduction

Læs mere

Introduktion til DM507

Introduktion til DM507 Introduktion til DM507 Rolf Fagerberg Forår 2017 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA Forskningsområde: algoritmer og datastrukturer 2 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

BRP Sortering og søgning. Hægtede lister

BRP Sortering og søgning. Hægtede lister BRP 18.10.2006 Sortering og søgning. Hægtede lister 1. Opgaver 2. Selection sort (udvælgelsessortering) 3. Kompleksitetsanalyse 4. Merge sort (flettesortering) 5. Binær søgning 6. Hægtede lister 7. Øvelser:

Læs mere

Rolf Fagerberg. Forår 2014

Rolf Fagerberg. Forår 2014 Forår 2014 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: Format: Programmering og Diskret matematik I (forelæsninger), TE (øvelser), S (arbejde selv og i studiegrupper) Eksamenform: Skriftlig

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

Rolf Fagerberg. Forår 2012

Rolf Fagerberg. Forår 2012 Forår 2012 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM502 og DM503 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM502 og DM503 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software Engineering BA i Matematik-Økonomi BA i Anvendt Matematik BA

Læs mere

Rekursion og dynamisk programmering

Rekursion og dynamisk programmering Rekursion og dynamisk programmering Datastrukturer & Algoritmer, Dat C Forelæsning 12/10-2004 Henning Christiansen Rekursion: at en procedure kalder sig selv eller et antal metoder kalder hinanden gensidigt.

Læs mere

Søgning og Sortering. Philip Bille

Søgning og Sortering. Philip Bille Søgning og Sortering Philip Bille Plan Søgning Linæer søgning Binær søgning Sortering Indsættelsesortering Flettesortering Søgning Søgning 1 4 7 12 16 18 25 28 31 33 36 42 45 47 50 1 2 3 4 5 6 7 8 9 10

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528) Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM58) Institut for Matematik og Datalogi Syddansk Universitet, Odense Torsdag den 1. januar 01 kl. 9 13 Alle sædvanlige hjælpemidler

Læs mere

Beat the Clock Sorteringsnetværk

Beat the Clock Sorteringsnetværk Aktivitet 8 Beat the Clock Sorteringsnetværk Resumé Selvom computer er hurtige, er der en grænse for, hvor hurtigt de kan løse et problem. En måde at speed e det op på er at bruge flere computere til at

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm8: Hash tables og Hashing - November 10, 2010

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm8: Hash tables og Hashing - November 10, 2010 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm8: Hash tables og Hashing - November 10, 2010 1 Algorithms and Architectures II 1. Introduction to analysis and design of algorithms (RLO

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer

Læs mere

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort Sortering Sortering ved fletning (merge-sort) 7 2 9 4! 2 4 7 9 7 2! 2 7 9 4! 4 9 7! 7 2! 2 9! 9 4! 4 1 2 Del-og-hersk Merge-sort Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer 1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer på disse. Typer af lister: Array Enkelt linket liste Dobbelt linket Cirkulære lister Typer af køer: FILO FIFO

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen The X Factor Målgruppe 7-10 klasse & ungdomsuddannelser Engelskundervisningen Læringsmål Eleven kan give sammenhængende fremstillinger på basis af indhentede informationer Eleven har viden om at søge og

Læs mere

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal Philip Bille Algoritmer og datastrukturer Algoritmisk problem. Præcist defineret relation mellem input og output. Algoritme. Metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)}

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)} Procedure Dijkstra(G = (V, E): vægtet sh. graf,. a, z: punkter) { Det antages at w(e) > 0 for alle e E} For alle v V : L(v) := L(a) := 0, S := while z / S begin. u := punkt ikke i S, så L(u) er mindst

Læs mere

Sortering fra A-Z. Henrik Dorf Chefkonsulent SAS Institute

Sortering fra A-Z. Henrik Dorf Chefkonsulent SAS Institute Sortering fra A-Z Henrik Dorf Chefkonsulent SAS Institute Hvorfor ikke sortering fra A-Å? Det er for svært Hvorfor ikke sortering fra A-Å? Hvorfor ikke sortering fra A-Å? Hvorfor ikke sortering fra A-Å?

Læs mere

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign 28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tretten) Eksamensdag: Tirsdag den 8. april 2008,

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n Eksamen. kvarter 00 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) Ja Nej n er O(n )? n er O(n )? n er O(n + 0 n)? n + n er O(n )? n log n er Ω(n )? Opgave (%) Opskriv følgende funktioner

Læs mere

DM02 Kogt ned. Kokken. Januar 2006

DM02 Kogt ned. Kokken. Januar 2006 DM02 Kogt ned Kokken Januar 2006 1 INDHOLD Indhold 1 Asymptotisk notation 2 2 Algoritme analyse 2 3 Sorterings algoritmer 2 4 Basale datastrukturer 3 5 Grafer 5 6 Letteste udspændende træer 7 7 Disjunkte

Læs mere

14 Algoritmeanalyse. Noter. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. Køretid for forskellige kontrolstrukturer.

14 Algoritmeanalyse. Noter. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. Køretid for forskellige kontrolstrukturer. 14 Algoritmeanalyse. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. O og Ω. Køretid for forskellige kontrolstrukturer. Eksempler på algoritmeanalyse. Eksponentiel og polynomiel

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider anmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 02326. Varighed: 4 timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Algoritmer og Datastrukturer 1

Algoritmer og Datastrukturer 1 Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Analyseværktøjer [CLRS, 1-3.1] Eksempler på en beregningsprocess Puslespil ved ombytninger Maximum delsum Hvad er udførselstiden for en algoritme? Maskinkode

Læs mere

Design by Contract. Design and Programming by Contract. Oversigt. Prædikater

Design by Contract. Design and Programming by Contract. Oversigt. Prædikater Design by Contract Design and Programming by Contract Anne Haxthausen ah@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark Design by Contract er en teknik til at specificere

Læs mere

Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )?

Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )? Eksamen juni Algoritmer og Datastrukturer (-ordning) Side af sider Opgave (%) I det følgende angiver log n -tals-logaritmen af n. n+n er O(n)? n 6 er O(n )? nlogn er O(n /logn)? n er O(n )? n er O(n )?

Læs mere

Asymptotisk analyse af algoritmers køretider

Asymptotisk analyse af algoritmers køretider Asymptotisk analyse af algoritmers køretider Analyse af køretid (RAM-modellen vs. virkeligheden) public class Linear { public static void main(string[] args) { long time = System.currentTimeMillis(); long

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4 Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende

Læs mere

Perspektiverende Datalogikursus

Perspektiverende Datalogikursus Perspektiverende Datalogikursus Uge 1 - Algoritmer og kompleksitet Gerth Stølting Brodal 27. august 2004 1 Indhold Mere om Eksempler på beregningsproblemer Algoritmer og deres analyse Korrekthed af algoritmer

Læs mere

Introduktion. Philip Bille

Introduktion. Philip Bille Introduktion Philip Bille Plan Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer og datastrukturer Hvad er det? Algoritmisk problem: præcist defineret relation mellem

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 036, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 036. Varighed: timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Aarhus Universitet

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Aarhus Universitet Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Aarhus Universitet Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer

Læs mere

University of Copenhagen Faculty of Science Written Exam - 8. April 2008. Algebra 3

University of Copenhagen Faculty of Science Written Exam - 8. April 2008. Algebra 3 University of Copenhagen Faculty of Science Written Exam - 8. April 2008 Algebra 3 This exam contains 5 exercises which are to be solved in 3 hours. The exercises are posed in an English and in a Danish

Læs mere

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer.

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. Merging og Hashing Tilgang til data To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. API for sekventiel tilgang (API =

Læs mere

DM02 opgaver ugeseddel 2

DM02 opgaver ugeseddel 2 DM0 opgaver ugeseddel af Fiona Nielsen 16. september 003 Øvelsesopgaver 9/9, 10/9 og 11/9 1. Vis, at 1 3 + 3 3 + 5 3 +... + (n 1) 3 = n 4 n. Omskriver til summationsformel: (i 1) 3 = n 4 n Bevis ved induktion

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Programmering, algoritmik og matematik en nødvendig sammenblanding?

Programmering, algoritmik og matematik en nødvendig sammenblanding? Programmering, algoritmik og matematik en nødvendig sammenblanding? Oplæg til IDA møde, 29. november 2004 Martin Zachariasen DIKU 1 Egen baggrund B.Sc. i datalogi 1989; Kandidat i datalogi 1995; Ph.D.

Læs mere

BRP 6.9.2006 Kursusintroduktion og Java-oversigt

BRP 6.9.2006 Kursusintroduktion og Java-oversigt BRP 6.9.2006 Kursusintroduktion og Java-oversigt 1. Kursusintroduktion 2. Java-oversigt (A): Opgave P4.4 3. Java-oversigt (B): Ny omvendings -opgave 4. Introduktion til næste kursusgang Kursusintroduktion:

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Algorithms & Architectures II

Algorithms & Architectures II Algorithms & Architectures II Algorithms & Architectures II Jens Myrup Pedersen Hans Peter Schwefel Kursusholdere Dagens lektion Overordnet mål: At etablere en forståelse for hvordan hardware og hardwarearkitekturer

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer som model for sekventielle

Læs mere

how to save excel as pdf

how to save excel as pdf 1 how to save excel as pdf This guide will show you how to save your Excel workbook as PDF files. Before you do so, you may want to copy several sheets from several documents into one document. To do so,

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

AT-1. Oktober 09 + December 10 + November 11. CL+JW. Stenhus. side 1/5

AT-1. Oktober 09 + December 10 + November 11. CL+JW. Stenhus. side 1/5 AT-1. Oktober 09 + December 10 + November 11. CL+JW. Stenhus. side 1/5 1. 2. 3. 4. AT-1. Metodemæssig baggrund. Oktober 09. (NB: Til inspiration da disse papirer har været anvendt i gamle AT-forløb med

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Symmetrisk Traveling Salesman Problemet

Symmetrisk Traveling Salesman Problemet Symmetrisk Traveling Salesman Problemet Videregående Algoritmik, Blok 2 2008/2009, Projektopgave 2 Bjørn Petersen 9. december 2008 Dette er den anden af to projektopgaver på kurset Videregående Algoritmik,

Læs mere

Perspektiverende Datalogi Klassiske Algoritmer

Perspektiverende Datalogi Klassiske Algoritmer Perspektiverende Datalogi Klassiske Algoritmer Gerth Stølting Brodal 1 Indhold Eksempler på beregningsproblemer Algoritmer og deres analyse Korrekthed af algoritmer Ressourceforbrug for algoritmer Kompleksitet

Læs mere

Projektopgave Rumlige figurer. Matematik & Programmering Lars Thomsen Klasse 3.4 HTX Roskilde Vejledere: Jørn & Karl 05/10-2009

Projektopgave Rumlige figurer. Matematik & Programmering Lars Thomsen Klasse 3.4 HTX Roskilde Vejledere: Jørn & Karl 05/10-2009 Projektopgave Rumlige figurer Lars Thomsen HTX Roskilde Vejledere: Jørn & Karl 05/10-2009 Indholdsfortegnelse 0. Summary:... 4 1. Opgaveanalyse:... 5 1.1 Overordnet:... 5 1.2 Konkrete krav til opgaven:...

Læs mere

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er Ugens emner FA minimering [.-.] MyHill-Nerode-sætningen en algoritme til minimering af FA er En karakteristik af de regulære sprog Et sprog L er regulært hvis og kun hvis L beskrives af et regulært udtryk

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Design til digitale kommunikationsplatforme-f2013

Design til digitale kommunikationsplatforme-f2013 E-travellbook Design til digitale kommunikationsplatforme-f2013 ITU 22.05.2013 Dreamers Lana Grunwald - svetlana.grunwald@gmail.com Iya Murash-Millo - iyam@itu.dk Hiwa Mansurbeg - hiwm@itu.dk Jørgen K.

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 1. april 200, kl..00-11.00

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen

Læs mere

Hvad er IT i matematikundervisningen egentlig? Professor, Ph.d. Morten Misfeldt, Aalborg Universitet, København

Hvad er IT i matematikundervisningen egentlig? Professor, Ph.d. Morten Misfeldt, Aalborg Universitet, København Hvad er IT i matematikundervisningen egentlig? Professor, Ph.d. Morten Misfeldt, Aalborg Universitet, København Spørgsmål der afsøges Hvilke udfordringer og muligheder stiller digitale teknologier matematikuddannelsen

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538)

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Institut for Matematik & Datalogi Syddansk Universitet Fredag den 9 Januar 2015, kl. 10 14 Alle sædvanlige hjælpemidler(lærebøger, notater etc.) samt

Læs mere

Mm5: Counting, probabilities and randomized algorithms - Oktober 24, 2008

Mm5: Counting, probabilities and randomized algorithms - Oktober 24, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm5: Counting, probabilities and randomized algorithms - Oktober 24, 2008 1 Algorithms and Architectures II 1. Introduction

Læs mere

BRP Tal. Om computer-repræsentation og -manipulation. Logaritmer

BRP Tal. Om computer-repræsentation og -manipulation. Logaritmer BRP 13.9.2006 Tal. Om computer-repræsentation og -manipulation. Logaritmer 1. Opgaverne til i dag dækker det meste af stoffet 2. Resten af stoffet logaritmer binære træer 3. Øvelse ny programmeringsopgave

Læs mere

Bits DM534. Rolf Fagerberg, 2012

Bits DM534. Rolf Fagerberg, 2012 Bits DM534 Rolf Fagerberg, 2012 Resume af sidst Overblik over kursus Introduktion. Tre pointer: Datalogi er menneskeskabt og dynamisk. Tidslinie over fremskridt mht. ideer og hardware. Algoritme er et

Læs mere

Matematisk modellering og numeriske metoder. Lektion 16

Matematisk modellering og numeriske metoder. Lektion 16 Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på

Læs mere

Trolling Master Bornholm 2016 Nyhedsbrev nr. 3

Trolling Master Bornholm 2016 Nyhedsbrev nr. 3 Trolling Master Bornholm 2016 Nyhedsbrev nr. 3 English version further down Den første dag i Bornholmerlaks konkurrencen Formanden for Bornholms Trollingklub, Anders Schou Jensen (og meddomer i TMB) fik

Læs mere

Netværk og Algoritmer A215. 28. juni 2010

Netværk og Algoritmer A215. 28. juni 2010 Netværk og Algoritmer Aalborg Universitet 28. juni 2010 Ernö Rubik Født i Ungarn i 1944 Ingeniør med speciale i arkitektur Patent i 1977 Varemærke Rubik s Terningen 26 cubies 6 faces 9 facelets pr. face

Læs mere

Analyse af ombytningspuslespil

Analyse af ombytningspuslespil Analyse af ombytningspuslespil 1 / 7 Konkret eksempel på algoritmeanalyse Prøv ombytningspuslespillet på kurset webside. 2 / 7 Konkret eksempel på algoritmeanalyse Prøv ombytningspuslespillet på kurset

Læs mere