Introduktion til GLIMMIX

Størrelse: px
Starte visningen fra side:

Download "Introduktion til GLIMMIX"

Transkript

1 Introduktion til GLIMMIX Af Jens Dick-Nielsen

2 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige. Det er ikke et krav at responsen er normalfordelt. Generelt kan GLIMMIX anvendes til modeller indenfor klassen af generalized linear mixed models (GLMM). Det er dog et krav at en eventuel random effect skal være normal fordelt. 2

3 Relation til andre procedures GLIMMIX NLMIXED MIXED GENMOD GLM LOGISTIC ANOVA REG 3

4 Relation til andre procedures GLIMMIX er en udvidelse af MIXED, således at den marginale fordeling af responsen ikke behøves at være normalfordelt. GLIMMIX kan håndtere fordelinger fra den eksponentielle familie (inklusiv lidt mere fx beta-fordelingen). GLIMMIX er således også en udvidelse af GENMOD, så modellerne nu også kan indeholde random effects. 4

5 Relation til andre procedures GLIMMIX og NLMIXED er overlappende i nogle funktionaliteter. Men GLIMMIX og NLMIXED bruger hver sin estimationsteknik. Med GLIMMIX skal man ikke give et startgæt (nemmere at bruge). GLIMMIX kan håndtere flere random effects i samme model. NLMIXED kan til gengæld modellere andre fordelingstyper. GLIMMIX har mange nye ekstra funktionaliteter. 5

6 GLMM Den almindelige linear mixed model har formen: I SAS taler vi om en G-side effect hhv. en R-side effect. I en GLMM har vi i stedet at: 6

7 GLMM For en GLM er der typisk en sammenhæng mellem forventningen og variansen på den enkelte observation. Fx har vi for en poissonfordeling: I vores GLMM har vi tilsvarende at: hvor A er en diagonalmatrix med a(my) i diagonalen. 7

8 GLMM Samlet set så fitter GLIMMIX følgende modeller: Bemærk at man angiver den betingede fordeling af Y givet gamma. 8

9 GLMM Med Z=0 eller G=0 har vi en GLM (SAS bruger GENMOD). Med Y normalfordelt har vi en almindelige linear mixed model (SAS bruger MIXED). 9

10 Fordelinger i GLIMMIX Eksempler på betingede fordelinger i GLIMMIX: Normalfordelingen Binomialfordelingen Poissonfordelingen Negativ binonimalfordeling Gammafordelingen Betafordelingen Invers Gaussisk Exponentialfordelingen Multinomialfordeling Ordinal logistisk Med flere 10

11 Mulige anvendelser Generelt kan GLIMMIX anvendes til forsøg, hvor forskellige observationer ikke er uafhængige af hinanden. Ved gentagne målinger på samme individ (fx over tid). Randomiserede forsøg, hvor man tilfældigt udvælger grupper ud af en større population, og man vil kontrollere for afhængigheden indenfor grupperne. 11

12 Konkrete eksempler Følger behandlingen af patienter ved forskellige sygehuse. Antal epilepsitilfælde, antal hypoglykæmitilfælde etc. Responsen er diskret. Responsen er målt flere gange på den samme patient over et behandlingsforløb. Målinger på samme patient er ikke uafhængige. Sygehusene er tilfældigt udvalgte. Der kan være en (tilfældig) effekt af de forhold under hvilken behandlingen udføres. 12

13 Konkrete eksempler Hvem består eksamen? Hvad bestemmer sandsynligheden for at bestå en eksamen? Responsen er binomialfordelt. Følger elever på tilfældigt udvalgte skoler og klasser. En random effect, en G-side effect. Ser på flere eksamerne for den samme elev. Gentagne målinger, en R-side effect. 13

14 Konkrete eksempler Hierarkiske forsøgsdesign. Flere responser fra det samme individ med forskellige fordelinger. Man måler 2 ting på den samme person. Den ene kunne være diskret og den anden kontinuert. Nogle forklarende variable er fælles og andre hører kun til den ene respons. 14

15 Logistisk regression med random intercept Man ser på behandlingen af en sygdom med 2 forskellige medicinske teknikker. Med henblik på sammenligning af behandlingerne udvælges tilfældigt 15 sygehuse. På hvert sygehus udvælges et tilfældigt antal patienter n A og n b som modtager behandling A hhv. B. Vi ser så på antallet blandt de udvalgte patienter, der fik mindst 1 sideeffekt ved behandlingen. 15

16 Logistisk regression med random intercept Udsnit af data 16

17 Logistisk regression med random intercept En oplagt model ville være en logistisk regression med en fixed effect for behandlingstypen og en random effect for sygehuset. hvor så 17

18 Logistisk regression med random intercept SAS koden: proc glimmix data=multicenter; class center group; model sideeffect/n = group /dist=bin link=logit solution; random intercept / subject=center; run; class og model har samme funktion som i fx GENMOD. random har samme funktion som i MIXED. 18

19 Logistisk regression med random intercept Model information: 19

20 Logistisk regression med random intercept Modellens dimensioner: 20

21 Logistisk regression med random intercept Modellens fit: 21

22 Logistisk regression med random intercept De estimerede parametre: 22

23 Logistisk regression med random intercept Den estimerede model bliver derfor: Det er muligt at få meget andet output blandt andet et estimat for den tilfældige effekt fra hvert center. Odds ratios. 23

24 Logistisk regression med random intercept Hvis vi vil se på predikterede værdier skriver vi: proc glimmix data=multicenter; class center group; model sideeffect/n = group /dist=bin link=logit solution; random intercept / subject=center; output out=glimmixout pred( blup ilink)=predprob pred(noblup ilink)=predprob_pa; run; 24

25 Logistisk regression med random intercept De predikterede værdier: 25

26 Logistisk regression med random intercept Vi kan se at vi får en sandsynlighed, der varierer fra center til center. Den er udregnet på baggrund af et estimat af centerets random effect (best linear unbiased prediction BLUP): Den anden sandsynlighed er udregnet ved at sætte gamma = 0. 26

27 Logistisk regression med random intercept Den sidste sandsynlighed hedder en population average i SAS. Navnet kommer fordi gamma i gennemsnit er 0. Men bemærk, at man ser bort fra en effekt af Jensens ulighed, hvis man finder forventning på denne måde. Man skal være opmærksom på, hvad det er man egentlig gerne vil have ud! Eksempel: 27

28 Estimation i GLIMMIX Det er ikke trivielt at fitte en GLMM. Den marginale likelihood funktion kan skrives som: Hvis vi havde en almindelig linear mixed model fik vi: Betinget fordeling Marginal fordeling 28

29 Estimation i GLIMMIX Men med en GLMM kan vi normalt ikke finde den marginale fordeling så let. NLMIXED laver i stedet numerisk integration. GLIMMIX laver en linearisering af modellen og estimerer så iterativt som var det en almindelig linear mixed model. GLIMMIX fandtes tidligere i en macro udgave i SAS og denne lavede netop samme type linearisering, hvorefter den kaldte MIXED. 29

30 Estimation i GLIMMIX Pseudo-likelihood (lineariserings) metoden Linearisering af modellen ved en 1. ordens Taylor udvikling. Opdater din linearisering med de nye estimater. Opstil en linear mixed model med den lineariserede pseudo-respons. Fit den nye linear mixed model. 30

31 Estimation i GLIMMIX Husk at vi har forventningen givet som: En 1. ordens Taylor udvikling omkring beta og gamma giver: hvor (en diagonal matrix) 31

32 Estimation i GLIMMIX Denne linearisering giver den nye respons P: hvor variansen er givet ved: Denne nye model behandles som om den have normalfordelte fejlled. 32

33 Estimation i GLIMMIX Efter hver estimation af beta og gamma, så indsættes de nye estimater i lineariesringen af modellen, således at vi får et nyt P. Denne iterative estimation fortsætte indtil parametrene konvergere. GLIMMIX bruger forskellige metoder til at reducere bias i estimationen på. Valget af den præcise estimations metode afhænger af, hvilken model det er man estimerer. 33

34 Multivariate responser Det er muligt i MIXED at modellere multivariate normalfordelte responser. Her kunne responserne have dels fælles forklarende variable og dels hver sine. Denne mulighed er udbygget i GLIMMIX til at man kan modellere multivariat data, hvor responserne ikke behøves at have samme type af fordeling. Fx normalfordelt & binomialfordelt Fx binomialfordelt & poissonfordelt Fx bivariate poissonfordelt 34

35 Binomial og Poisson Vi undersøger igen patienter på et hospital. Denne gang er vi interesseret i længden af hospitalsopholdet efter en bestemt slags operation. Responserne er længden af opholdet i dage og operationens succes på niveauerne rutinemæssigt forløb efter operationen eller ekstra operationer nødvendigt. Antal dage kunne være poissonfordelt, mens succes er binomialfordelt. 35

36 Binomial og Poisson Forklarende variable er alder, køn og status (en vurdering af deres tilstand lige efter operationen). Vi forventer at bruge samme forklarende variable til at forklare de 2 responser. Man kunne lave 2 uafhængige analyser. Men så ville man ikke tage højde for at operationens succes og længden af opholdet meget vel kunne være afhængige. 36

37 Binomial og Poisson Data 37

38 Binomial og Poisson Data til GLIMMIX 38

39 Binomial og Poisson SAS kode til hver sin analyse proc glimmix data=hernio_uv(where=(dist="binary")); model response(event= 1 ) = age OKStatus / solution dist=binary; run; proc glimmix data=hernio_uv(where=(dist="poisson")); model response = age OKStatus / solution dist=poisson; run; 39

40 Binomial og Poisson Estimerede parametre (logistisk hhv. poisson). 40

41 Binomial og Poisson Vi kan lave en samlet analyse af de to variable: proc glimmix data=hernio_uv; class dist; model response(event= 1 ) = dist dist*age dist*okstatus / noint s dist=byobs(dist); run; Her har vi ikke specificeret nogen form for afhængigheder. GLIMMIX udregner en samlet additiv log-likelihood. 41

42 Binomial og Poisson Resultater Estimaterne er de samme, men varianser er anderledes fordi vi har flere observationer. 42

43 Binomial og Poisson Vi kan lave afhængighed mellem udfaldene vha. en R-side eller en G-side effect. Vi vælger her en G-side random effect. proc glimmix data=hernio_uv; class patient dist; model response(event= 1 ) = dist dist*age dist*okstatus /noint s dist=byobs(dist); random int / subject=patient; run; 43

44 Binomial og Poisson Resultater 44

45 Binomial og Poisson Type III test. Det ser ud til at der faktisk er en patient effekt, men ikke en status effekt. 45

46 Binomial og Poisson Dette er måske ikke den mest attraktive model for data. Vores G-side effect indgår i den lineære form i modellen. Det er måske bedre med en R-side effect, der modellere ved at tage hensyn til skalaen for den enkelte variabel. Stadig er det måske ikke den optimale løsning, da kovarians og korrelation ikke er et naturligt afhængighedsmål for binomialfordelte variable. Her kan man se på mere avancerede muligheder i GLIMMIX. 46

47 Binomial og Poisson Kode til en R-side effect: proc glimmix data=hernio_uv; class patient dist; model response(event="1") = dist dist*age dist*okstatus / noint s dist=byobs(dist); random _residual_ / subject=patient type=chol; run; Her laver vi en R-side effect, hvor der er afhængighed mellem observationer for samme patient. Kovariansmatricen består af blokke af 2x2 matricer med 3 frie parametre. Type=Chol sikre os en positiv definit kovariansmatrix. 47

48 Andre eksempler Gruppeafhængig overdispersion Kan udregne og gemme variable på baggrund af de estimerede værdier af beta (_xbeta_) og gamma (_zgamma_). Konstruer dine egne variansfunktioner mv. Spatial modelling. Ordinal og multinomial logistisk regression. Mange typer af korrelationsstrukturer AR(1), ARMA(1,1) Compound symmetry VC Aftager i afstanden mellem observationer eller afstanden i en variabel. 48

Demo af PROC GLIMMIX: Analyse af gentagne observationer

Demo af PROC GLIMMIX: Analyse af gentagne observationer Demo af PROC GLIMMIX: Analyse af gentagne observationer Kristina Birch, seniorkonsulent, PS Banking Agenda Uafhængige vs. afhængige observationer Analyse af uafhængige vs. afhængige observationer Lille

Læs mere

µ = κ (θ); Kanonisk link, θ = g(µ) Poul Thyregod, 9. maj Specialkursus vid.stat. foraar 2005

µ = κ (θ); Kanonisk link, θ = g(µ) Poul Thyregod, 9. maj Specialkursus vid.stat. foraar 2005 Hierarkiske generaliserede lineære modeller Lee og Nelder, Biometrika (21) 88, pp 987-16 Dagens program: Mandag den 2. maj Hierarkiske generaliserede lineære modeller - Afslutning Hierarkisk generaliseret

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Flerniveau modeller. Individuelt studieforløb. Efterårssemesteret 2002. Folkesundhedsvidenskab ved Københavns Universitet

Flerniveau modeller. Individuelt studieforløb. Efterårssemesteret 2002. Folkesundhedsvidenskab ved Københavns Universitet Individuelt studieforløb Efterårssemesteret 2002 Flerniveau modeller Folkesundhedsvidenskab ved Københavns Universitet Vejleder: Jørgen Holm Petersen Eksamensnummer 20 Indholdsfortegnelse 1. Indledning...3

Læs mere

Poul Thyregod, 14. marts Specialkursus vid.stat. foraar 2005. side 182

Poul Thyregod, 14. marts Specialkursus vid.stat. foraar 2005. side 182 Dagens program: Mandag den 14 marts Eksempler på generaliserede lineære modeller Regressions- og faktormodeller, forskellige responsfordelinger Resume Poisson regression (brug af offset). Data nematod

Læs mere

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,

Læs mere

Notat vedr. interkalibrering af ålegræs

Notat vedr. interkalibrering af ålegræs Notat vedr. interkalibrering af ålegræs Notat fra DCE - Nationalt Center for Miljø og Energi Dato: 4. januar 2012 Michael Bo Rasmussen Thorsten Balsby Institut for Bioscience Rekvirent: Naturstyrelsen

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Løsning til øvelsesopgaver dag 4 spg 5-9

Løsning til øvelsesopgaver dag 4 spg 5-9 Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for

Læs mere

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif).

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif). Vi vil formulere en model for et kvalitativ variabel y i med to udfald, at bestå og ikke at bestå første årsprøve. Derefter modeller vi respons-sandsynligheden: Specifikation af sandsynligheden for at

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder Spar Nord Banks ansøgningsscoremodel - et ekspertbaseret ratingsystem for nye udlånskunder Mål for ansøgningsscoremodel Rating af nye udlånskunder som beskrives vha. en række variable: alder, boligform,

Læs mere

Analyse af tid-til-event data i store kohorte studier analyseret med SAS/STAT

Analyse af tid-til-event data i store kohorte studier analyseret med SAS/STAT Analyse af tid-til-event data i store kohorte studier analyseret med SAS/STAT Jacob Simonsen, Afdeling for Epidemiologisk Forskning Statens Serum Institut Register baseret forskning Kendetegn: Baseret

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte fordelinger, Afsnit 5.1-5.2: - Fordelingsfunktion - Tæthedsfunktion - Eksempel:

Læs mere

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0 Middelværdi og varians Middelværdien af en diskret skalarfunktion f(x), for x = 0, N er: µ = N f(x) N x=0 For vektorfuktioner er middelværdivektoren tilsvarende: µ = N f(x) N x=0 Middelværdien er en af

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Additiv model teori og praktiske erfaringer

Additiv model teori og praktiske erfaringer make connections share ideas be inspired Additiv model teori og praktiske erfaringer Kaare Brandt Petersen Forretningschef, ph.d., SAS Institute Agenda Hvad er en additiv model? Forudsætninger Fortolkning

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

Simpel og multipel logistisk regression

Simpel og multipel logistisk regression Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 9. september 003 Denne note er skrevet til kurset Økonometri på. årsprøve af polit-studiet.

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Stastistik og Databehandling på en TI-83

Stastistik og Databehandling på en TI-83 Stastistik og Databehandling på en TI-83 Af Jonas L. Jensen (jonas@imf.au.dk). 1 Fordelingsfunktioner Husk på, at en fordelingsfunktion for en stokastisk variabel X er funktionen F X (t) = P (X t) og at

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4 Indholdsfortegnelse INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF OULATIONEN... 4 DELOGAVE 1...5 BEGREBSVALIDITET... 6 Differentiel item funktionsanalyser...7 Differentiel item effekt...10 Lokal

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A)

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A) Økonometri 1 Forår 2003 Ugeseddel 13 Program for øvelserne: Gruppearbejde Opsamling af gruppearbejdet og introduktion af SAS SAS-øvelser i computerkælderen Øvelsesopgave 6: Hvem består første årsprøve

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper Program Forsøgsplanlægning og tosidet variansanalyse Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Forsøgstyper og forsøgsplanlægning Analyse af data fra fuldstændigt randomiseret blokforsøg: tosidet

Læs mere

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion Dagens program Økonometri 1 Dummy variable 4. marts 003 Emnet for denne forelæsning er kvalitative variable i den multiple regressionsmodel (Wooldridge kap. 7.5-7.6+8.1)! Husk at udfylde spørgeskema 3!

Læs mere

Kombinationer af lande- og individdata. Multilevel analyse.

Kombinationer af lande- og individdata. Multilevel analyse. Kombinationer af lande- og individdata Multilevel analyse No 1 of 27 Kombinationer af lande- og individdata Multilevel analyse Henrik Lolle Indlæg ved arrangement i Selskab for Surveyforskning: Kunsten

Læs mere

Præsentation og praktisk anvendelse af PROC GLMSELECT

Præsentation og praktisk anvendelse af PROC GLMSELECT Præsentation og praktisk anvendelse af PROC GLMSELECT Kristina Birch, projektchef Copyright 2011 SAS Institute Inc. All rights reserved. Præsentation og praktisk anvendelse af PROC GLMSELECT Abstract I

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter Ekstraopgaver uge 2-02402 Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag Jens Ledet Jensen på data, og statistik er derfor et nødvendigt værktøj i disse sammenhænge. Gennem konkrete datasæt og problemstillinger giver Statistik viden fra data en grundig indføring i de basale

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Introduktion til Statistiske Modeller for Finansielle Tidsserier. Forelæsningsnoter til Finansiel Økonometri

Introduktion til Statistiske Modeller for Finansielle Tidsserier. Forelæsningsnoter til Finansiel Økonometri Introduktion til Statistiske Modeller for Finansielle Tidsserier Forelæsningsnoter til Finansiel Økonometri Jesper Lund mail@jesperlund.com http://www.jesperlund.com 14. marts 2006 1 Indledning Formålet

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller. Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i

Læs mere

Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable

Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable Faculty of Health Sciences Logistisk regression: Interaktion Kvantitative responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation

Læs mere

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin aug-juni 10/11 Institution Campus Vejle Handelsgymnasie Uddannelse Fag og niveau Lærer(e) Hold HHX Statistik

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

1 Start og afslutning. Help.

1 Start og afslutning. Help. Afdeling for Teoretisk Statistik STATISTIK 2 Institut for Matematiske Fag Jørgen Granfeldt Aarhus Universitet 24. september 2003 Hermed en udvidet udgave af Jens Ledet Jensens introduktion til R. 1 Start

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Plot af B j + ǫ ij (Y ij µ α i )): σ 2 : within blocks variance. σb 2 : between blocks variance

Plot af B j + ǫ ij (Y ij µ α i )): σ 2 : within blocks variance. σb 2 : between blocks variance Plot af B j + ǫ ij (Y ij µ α i )): Program: res 4 2 0 2 B1 B2 B3 B4 B5 1. vi starter med at gennemgå opgave 3 side 513. 2. nyt: to-sidet variansanalyse 1 2 3 4 5 block σ 2 : within blocks variance σb 2

Læs mere

Reeksamen i Statistik for biokemikere. Blok 3 2007.

Reeksamen i Statistik for biokemikere. Blok 3 2007. Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

, i ' 1,...,N ; t ' 1,...,T, - i.i.d.(0,f 2, ), ) ' 0, E(, it. x kjs. œ i,t,s,j,k.

, i ' 1,...,N ; t ' 1,...,T, - i.i.d.(0,f 2, ), ) ' 0, E(, it. x kjs. œ i,t,s,j,k. 3 Den model, som vi gennemgående skal arbejde med i øvelsen, er»one-way Error Component«Modellen (1EC) Modellen specificeres på følgende måde: y it ' x it $ % µ i %, it, i ' 1,,N ; t ' 1,,T, hvor y it

Læs mere

BILAG 2 METODE OG FORSKNINGSDESIGN

BILAG 2 METODE OG FORSKNINGSDESIGN Til Undervisningsministeriet Dokumenttype Bilag Dato August 2014 BILAG 2 METODE OG FORSKNINGSDESIGN BILAG 2 FORSKNINGSDESIGN INDHOLD 1. Design- og metodebilag 1 1.1 Forskningsdesign 1 1.2 Analysemetoder

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

8.2 Statistiske analyse af hver enkelt indikator

8.2 Statistiske analyse af hver enkelt indikator 8.2 Statistiske analyse af hver enkelt indikator Basale ideer De avancerede statistiske metoder, som anvendes i denne rapport, fokuserer primært på vurdering af eventuel geografisk heterogenitet på regions-,

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Projekt Osiris Fattigdom i Danmark: En socioøkonomisk fattigdomsgrænse Iulian Vlad Serban

Projekt Osiris Fattigdom i Danmark: En socioøkonomisk fattigdomsgrænse Iulian Vlad Serban Appendikset Om appendikset Appendikset indeholder overordnet fire afsnit: - Teoretisk udledning og definition af modeller, - Supplerende statistiske resultater - Deskriptiv statistik - Udeladte undermodeller

Læs mere

Behandling af kvantitative data 19.11.2012

Behandling af kvantitative data 19.11.2012 Behandling af kvantitative data 19.11.2012 I dag skal vi snakke om Kvantitativ metode i kort form Hvordan man kan kode og indtaste data Data på forskellig måleniveau Hvilke muligheder, der er for at analysere

Læs mere

To spørgsmål: Hvilken betydning har de manglende svar på items for målingen af spiritualitet?

To spørgsmål: Hvilken betydning har de manglende svar på items for målingen af spiritualitet? Om manglende responser i surveys: Spiritualitetsskalaen Svend Kreiner To spørgsmål: Hvilken betydning har de manglende svar på items for målingen af spiritualitet? Hvilken betydning har de manglende svar

Læs mere

Logistisk regression og prædiktion

Logistisk regression og prædiktion Faculty of Health Sciences Introduktion Logistisk regression og prædiktion 16. Maj 2012 Julie Forman Biostatistisk Afdeling, Københavns Universitet Hvad er en god diagnostisk model? En model med god overensstemmelse

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere