Landmålingens fejlteori - Lektion 3. Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering

Størrelse: px
Starte visningen fra side:

Download "Landmålingens fejlteori - Lektion 3. Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering"

Transkript

1 Landmålingens fejlteori Lektion 3 Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering - Institut for Matematiske Fag Aalborg Universitet 1/31

2 Repetition: Middelværdi og Varians Sætning: Middelværdi og varians for linearkombinationer Lad X 1,X 2,...,X n være stokastiske variable. Da gælder E ( ) a 0 +a 1 X 1 + +a n X n = a0 +a 1 E(X 1 )+ +a n E(X n ) Hvis X 1,X 2,...,X n desuden er uafhængige gælder Var ( ) a 0 +a 1 X 1 + +a n X n = a 2 1 Var(X 1 )+ +a 2 nvar(x n ) Hvis X i erne er normalfordelte, så er summen a 0 +a 1 X 1 + +a n X n også normalfordelt. 2/31

3 Estimation af middelværdi Antag X 1,...,X n er uafhængige stokastiske variable med middelværdi µ og varians σ 2. Vi estimerer µ ved gennemsnittet X = 1 n (X 1 +X 2 + +X n ) Middelværdi og varians af X: E X = µ Var X = σ2 n 3/31

4 Afhængige vs. uafhængige målinger Lad X og Y repræsentere målinger foretaget af Bent og Børge uafhængigt af hinanden og begge med varians σ 2 (og samme middelværdi µ). Antag Bent måler en gang til, hvor hans anden måling Z er påvirket af hans resultat for den første måling, dvs. Z = X +ν hvor ν er uafhængig af X med en (lille) varians ω 2 og middelværdi nul. Dermed er variansen på (X +Y)/2 lig σ 2 /2 mens variansen på (X +Z)/2 er σ 2 +ω 2 /4. Dvs. langt den bedste præcision med uafhængige målinger. Omvendt: Var(X Y) = 2σ 2 mens Var(X Z) = ω 2, hvad der (fejlagtigt) kunne forlede landinspektørerne til at tro, at Børges målinger var mest præcise. 4/31

5 Hvis X i alle normalfordelte gælder Hvis X i ikke er normalfordelte hvor tilnærmelse bedre jo større n. Konfidensinterval X N(µ, σ2 n ) X N(µ, σ2 n ) X ±1.96 σ n indeholder µ med 95% sandsynlighed (99% hvis 1.96 erstattes med 2.58) 5/31

6 Konfidensintervaller for 100 simulerede måleserier hver med 100 målinger (X ij N(3,2), i,j = 1,...,100) Ca. 95% indeholder sande værdi µ = 3. konfidens interval eksperiment nr. 6/31

7 Anvendelse af konfidensinterval Enggaard A/S vil have målt en længde med en præcision på ±5cm. Oversættelse til fejlteori: med meget stor sandsynlighed skal forskellen mellem estimat X og sand længde µ være mindre end 5cm. Fortolker vi stor sandsynlighed som 99.9% skal der altså gælde at 3.29σ/ n < 5. Eks. n = 2 og σ = 5cm. Da gælder 3.29σ/ 2 = Dvs. kravet er ikke opfyldt. Mulig løsning: vælg n så Da skal vi have n σ/ n <= 5 n > (3.29σ/5) 2 7/31

8 Konfidensinterval: generelt set-up Antag at θ er en ukendt størrelse som estimeres af Y N(θ,τ 2 ). Da er et 95% konfidensinterval for θ givet ved [Y 1.96τ;Y +1.96τ] Y kunne eksempelvis være et empirisk gennemsnit af målinger X 1,...,X n med middelværdi θ og varians σ 2. Da har vi τ 2 = σ 2 /n som før. 8/31

9 Estimation af varians I nogle tilfælde er variansen σ 2 ukendt. Da må vi estimere σ 2 ud fra data. Som estimator for σ 2 anvendes S 2 : S 2 = 1 n 1 n (X i X) 2 = 1 n 1 ( n ) Xi 2 n X 2 Dette estimat er også centralt, dvs. E(S 2 ) = σ 2 (sætning 17 - vi skipper bevis) Bemærk: S 2 er empirisk version af E(X µ) 2 9/31

10 Estimater Har vi observeret data kan vi estimere µ og σ 2 med x og s 2. Her udskiftes de stokastiske variable X i i X og S 2 med de observerede x i, x = 1 n n x i = 1 n (x 1 +x 2 + +x n ) s 2 = 1 n 1 n (x i x) 2 = 1 n 1 ( n ) x 2 i n x 2 Både X og S 2 er stokastiske variable (transformationer af X i erne), mens x og s 2 er realisationer af disse, X 1... X n X S 2 x 1... x n x s 2 10/31

11 Eksempel - fortsat Fra Eksempel 1 i noterne kan vi estimere µ med x og σ 2 med s x = 1 ( ) = gon 10 x 2 i = = gon 2 ( s 2 = 1 n ) x 2 i n x 2 n 1 = 1 ( ( ) 2 ) = ( ) 2 gon Størrelsen s 2 er et mål for nøjagtigheden af vores observationer. Jo mindre desto mere nøjagtige er vores målinger. Approksimativt 95% konfidensinterval (erstatter ukendt σ med s): x±1.96 s = [ ; ] n 11/31

12 Matlab: Stikprøvegennemsnit og -varians Data: >> x = [ , , , , , , , , , ]; Beregn stikprøvegennemsnit x: >> mean(x) ans = Beregn stikprøvevariansen s 2 : >> var(x) ans = e-06 Beregn spredningen s: >> std(x) ans = /31

13 Bonus: Beregn gennemsnit af observation 4 til 7: >> mean(x(4:7)) ans = /31

14 Estimatorer - kendt middelværdi µ I situationer hvor vi kender µ (fx. på en øvelsesbane hvor sande længder og vinkler er kendt) bruger vi estimatet ŝ til at estimere målingernes nøjagtighed: ŝ 2 = 1 n (x i µ) 2. n I disse situationer er ŝ 2 et centralt estimat for σ 2. Dvs: ( ) 1 n E(Ŝ2 ) = E (X i µ) 2 = 1 n E ( (X i µ) 2) = 1 n n n nσ2 = σ 2. Bemærk at Var(Ŝ2 ) Var(S 2 ), dvs. ŝ 2 er et mere nøjagtigt estimat end s 2. (gavnligt at bruge al den viden, der er til rådighed) 14/31

15 Dobbeltmålinger Udgangspunktet er 2n målinger hvor målingerne to og to måler samme størrelse, altså n forskellige størrelser i alt. x 11 1 x 52 2 x 12 x 21 x 22 3 x 31 x 51 5 x x x 41 Eks.: siderne i et polygon hvor hver sidelængde måles to gange. 4 15/31

16 Dobbeltmålinger x 11 1 x 52 µ 5 2 x 12 x 21 µ 2 x 22 3 x 31 µ 1 X 11 X 12 X 21 X X n1 X n2... µ 3 x 11 x 12 x 21 x x n1 x n2 x 51 5 x 42 µ 4 x 32 x 41 4 Uafhængige målinger af samme kvalitet, dvs. ens varians σ 2. De n forskellige størrelser har sande værdier µ 1,...,µ n, dvs: E(X 11 ) = E(X 12 ) = µ 1... E(X n1 ) = E(X n2 ) = µ n. 16/31

17 Estimat af µ i Til at estimere µ i anvendes estimatet x i = 1 2 (x i1 +x i2 ). For den tilsvarende estimator X i = 1 2 (X i1 +X i2 ) gælder der: ( ) E( X 1 i ) = E 2 (X i1 +X i2 ) = 1 2 (E(X i1)+e(x i2 )) = 1 2 (µ i +µ i ) = µ i Dvs. x i er et centralt estimat af µ i. Desuden gælder: ( ) Var( X 1 i ) = Var 2 (X i1 +X i2 ) = (Var(X i1)+var(x i2 )) = 1 4 ( σ 2 +σ 2) = σ /31

18 Estimat af σ 2 Idet X i1 og X i2 måler samme størrelse µ siger deres differens Y i = X i1 X i2 noget om målekvaliteten. Vi ved E(Y i ) = E(X i1 ) E(X i2 ) = µ i µ i = 0 Var(Y i ) = Var(X i1 )+Var(X i2 ) = σ 2 +σ 2 = 2σ 2. Dvs. vi kender den sande middelværdi af Y i, E(Y i ) = µ Y = 0. Derfor er ŝ 2 Y = 1 n n (y i µ Y ) 2 = 1 n n yi 2 = 1 n n (x i1 x i2 ) 2 et centralt estimat af 2σ 2, hvorved ŝ 2 Y /2 er et estimat for σ2 (variansen på den enkelte måling). 18/31

19 Geometrisk nivellement h s l t 1 f 1 t 2 f 2 t 3 f 3 t 4 f 4 t n f n l t i : stadieaflæsning ved tilbagesigte f i : stadieaflæsning ved fremsigte h = (t 1 f 1 )+(t 2 f 2 )+ +(t n f n ) = n t i f i Totallængden l er opdelt i 2n stykker af længde s, dvs. l = 2ns l. 19/31

20 Modellen Vi antager af t i og f i er realisationer af uafhængige stokatiske variable T i og F i med samme varians σ 2 a, i = 1,...,n. Denne antagelse kan begrundes med at sigteafstanden er fast og den samme for alle observationer. Ydermere bliver h således en realisation af den stokastiske variabel H = n (T i F i ). Dvs: T 1 F 1... T n F n H t 1 f 1... t n f n h 20/31

21 Variansen af højdemålingen Variansen af H bestemmes ved ( n ) Var(H) = Var (T i F i ) = = n [Var(T i )+Var(F i )] n (σa 2 +σa) 2 = 2nσ 2 a Fra tidligere slide ved vi, at 2n = l/s l. Der gælder derfor σ 2 l = Var(H) = lσ 2 a/s l. Erfaringer viser at σ a / s l kun i ringe grad afhænger af s l når s l < 100 m. Således indføres kilometerspredningen σ k = σ a / s l, dvs. σ a = σ k sl. Heraf følger σ 2 l = Var(H) = lσ 2 a/s l = lσ 2 k 21/31

22 Konfidensinterval for højden Spredningen på et geometrisk nivellement over længden l er således σ l = lσ k. Et 95% konfidens interval for den ukendte højde er H ±1.96 lσ k (jf. tidligere slide om konfidensinterval i generelt set-up) Eksempel: h = 12000mm, σ k = 3mm/ km og l = 4km. (Realiseret) konfidensinterval 12000±1.96 4km3mm/ km = [11988;12012] 22/31

23 Lineær transformation (repetition) Sætning: Lineær transformation af SV Hvis X er en stokastisk variabel, og a,b R, så gælder E(aX +b) = ae(x)+b, Var(aX +b) = a 2 Var(X). Spørgsmål: Hvordan håndterer vi ikke-lineære transformationer? 23/31

24 Vilkårlig transformation af X Lad X være en stokastisk variabel med E(X) = µ og Var(X) = σ 2. samt tæthedsfunktion f(x). Y = g(x): vilkårlig differentiabel transformation af X. Middelværdien af Y = g(x): E(Y) = g(x)f X(x)dx. Problem: Middelværdien E(Y) er ofte vanskelig at beregne. Løsning: Vi lineariserer transformationen g(x). Eksempel på transformationer i landmåling: trigonometriske funktioner, afstandsformel. 24/31

25 Linearisering Lineær approximation af g omkring µ: Y = g(x) g(µ)+g (µ)(x µ) = g (µ)x g (µ)µ+g(µ) = ax +b, hvor a = g (µ) og b = g (µ)µ+g(µ). ax+b g(x) g(µ) µ 25/31

26 Linearisering Vi har en approksimation af g(x): Y ax +b, hvor a = g (µ) og b = g (µ)µ+g(µ). Heraf følger approksimativ middelværdi og varians for Y: E(Y) ae(x)+b = g (µ)µ g (µ)µ+g(µ) = g(µ) Var(Y) a 2 Var(X) = g (µ) 2 σ 2, hvor approximationerne er gode, hvis σ er lille. 26/31

27 Linearisering: Eksempel Antag X N(µ,σ 2 ) og Y = g(x) = exp(x). En linearisering af exp(x) omkring x = µ giver: g (x) = d dx exp(x) = exp(x) g(x) g(µ)+g (µ)(x µ) = exp(µ)+exp(µ)(x µ). Heraf følger: E(Y) g(µ) = exp(µ) Var(Y) g (µ) 2 σ 2 = (exp(µ)) 2 σ 2 = exp(2µ)σ 2 Vi har derfor, at Y er tilnærmet normalfordelt, med middelværdi exp(µ) og varians exp(µ)σ 2 : Y N(exp(µ),exp(2µ)σ 2 ). 27/31

28 Linearisering: Eksempel (forts.) Antag (igen) X N(µ,σ 2 ) og Y = g(x) = exp(x). To eksempler, hvor µ = 1, og σ = 0.5 (venstre) og σ = 0.1 (højre). X N(1;0,5 2 ) Y N(exp(1);exp(2)0,5 2 ) X N(1;0,1 2 ) Y N(exp(1);exp(2)0,1 2 ) Approx. Sande. Approx. Sande Til venstre er den relative varians for X σ 2 /µ 2 = 0,25 og til højre er den relative varians for X 0,01. Jo mindre relativ varians jo bedre er approksimationen. 28/31

29 Linearisering estimation af transformeret størrelse Antag vi vil estimere θ = h(µ) hvor vi kan estimere µ vha. X baseret på en stikprøve X 1,...,X n af uafhængige stokastiske variable med middelværdi µ og varians σ 2. Da er vores estimat ˆθ = h( X) Pr. linearisering og central grænseværdisætning har vi ˆθ N(θ,(h (µ)) 2 σ 2 /n) Dermed er et approksimativ 95% konfidensinterval givet ved ˆθ ±1.96 h ( X) σ/ n I praksis er σ 2 ofte ukendt og erstattes af estimatet s 2 baseret på X 1,...,X n. 29/31

30 Trigonometriske funktioner: Gon og radianer Lad sin r (x) og sin(x) betegne sinus når vinklen x er målt i hhv. radianer og gon. Tilsvarende for cosinus og tangens. Vi har ( ) 2π sin(c) = sin r 400 gon C ( ) 1 = sin r ω C, hvor er en konverterings-faktor. ω = 200 gon, π 30/31

31 Trigonometriske funktioner: Differentitation Vi har regneregler for differentiation af trigonmetriske funktioner, når vinklen er målt i radianer. Fx. dsin r (x) dx = cos r (x). Når vinklen er målt i gon får vi: dsin(x) = dsin ( 1 r ω x) ( ) 1 1 = cos r dx dx ω x ω = cos(x)1 ω. Konverterings-faktoren 1 ω = π/200 gon optræder på samme måde ved differentiation af cosinus og tangens: dcos(x) dx = sin(x) 1 ω og dtan(x) dx = ( 1+tan(x) 2) 1 ω 31/31

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Landmålingens fejlteori - Lektion 5 - Fejlforplantning

Landmålingens fejlteori - Lektion 5 - Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/30 Fejlforplantning Landmåling involverer ofte bestemmelse af størrelser som ikke

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Landmåling involverer ofte bestemmelse af størrelser som ikke kan

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Landmålingens fejlteori - Repetition - Fordeling af slutfejl - Lektion 8

Landmålingens fejlteori - Repetition - Fordeling af slutfejl - Lektion 8 Landmålingens fejlteori Repetition - Fordeling af slutfejl Lektion 8 - tvede@math.aau.dk http://www.math.aau.dk/ tvede/teaching/l4 Institut for Matematiske Fag Aalborg Universitet 15. maj 2008 1/13 Fordeling

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n.

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n. Simple fejlforplantningslov Landmålingens fejlteori Lektion 6 Den generelle fejlforplantningslov Antag X, X,, X n er n uafhængige stokastiske variable, hvor Var(X )σ,, Var(X n )σ n Lad Y g(x, X,, X n ),

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Institut for Matematiske Fag Aalborg Universitet 1/1 Vægtet

Læs mere

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen Vægte motiverende eksempel Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@mathaaudk Institut for Matematiske Fag Aalborg Universitet Højdeforskellen mellem punkterne P

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Motivation. Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser

Motivation. Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser Motivation Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser Rasmus Waagepetersen October 26, 2018 Eksempel: En landmåler får til opgave at måle længden λ fra A til B. Entreprenøren

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18

Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)

Læs mere

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Diverse opdateringer ved Rasmus Waagepetersen. Version 1.

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Diverse opdateringer ved Rasmus Waagepetersen. Version 1. Noter i fejlteori Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen Diverse opdateringer ved Rasmus Waagepetersen. Version 1.3 April 2016 2 Indhold 1 Motivation 3 2 Det matematiske fundament

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Hvorfor er normalfordelingen så normal?

Hvorfor er normalfordelingen så normal? Hvorfor er normalfordelingen så normal? Søren Højsgaard Institut for Matematiske Fag, Aalborg Universitet October 24, 2018 normalfordelingen så normal? October 24, 2018 1 / 13 Højde af kvinder Histogram

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Version 1.2

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Version 1.2 Noter i fejlteori Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen Version 1.2 April 2014 2 Indhold 1 Motivation 3 2 Det matematiske fundament 5 2.1 Lidt sandsynlighedsregning......................

Læs mere

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Version 1.1

Noter i fejlteori. Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen. Version 1.1 Noter i fejlteori Kasper Klitgaard Berthelsen Poul Winding & Jens Møller Pedersen Version 1.1 April 2013 2 Indhold 1 Motivation 3 2 Det matematiske fundament 5 2.1 Lidt sandsynlighedsregning......................

Læs mere

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik ekstrom@sund.ku.dk Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Nanostatistik: Konfidensinterval

Nanostatistik: Konfidensinterval Nanostatistik: Konfidensinterval JLJ Nanostatistik: Konfidensinterval p. 1/37 Fraktilpåmindelse u p : Φ(u p ) = p, Φ( z ) = 1 Φ( z ) t p [f] : F t[f] (t p [f]) = p, F t[f] ( t ) = 1 F t[f] ( t ) F-fordeling:

Læs mere

Geometrisk nivellement. Landmålingens fejlteori - Lektion 7 - Repetition - Fejlforplantning ved geometrisk nivellement. Modellen.

Geometrisk nivellement. Landmålingens fejlteori - Lektion 7 - Repetition - Fejlforplantning ved geometrisk nivellement. Modellen. Landmålingen fejlteori Lektion 7 Repetition Fejlforplantning ved geometrik nivellement h t f t f t f t 4 f 4 t n f n - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervining/lf Intitut for Matematike Fag

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd I dag Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik SaSt) Helle Sørensen Først lidt om de sidste uger af SaSt. Derefter statistisk analyse af en enkelt

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version university of copenhagen University of Copenhagen Notat om statistisk inferens Larsen, Martin Vinæs Publication date: 2014 Document Version Peer-review version Citation for published version (APA): Larsen,

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Højde af kvinder 2 / 18

Højde af kvinder 2 / 18 Hvorfor er normalfordelingen så normal? og er den nu også det? Søren Højsgaard (updated: 2019-03-17) 1 / 18 Højde af kvinder 2 / 18 Inddeler man i mindre grupper kan man forestille sig at histogrammet

Læs mere

Nanostatistik: Opgavebesvarelser

Nanostatistik: Opgavebesvarelser Nanostatistik: Opgavebesvarelser JLJ Nanostatistik: Opgavebesvarelser p. 1/16 Pakkemaskine En producent hævder at poserne indeholder i gennemsnit 16 ounces sukker. Data: 10 pakker sukker: 16.1, 15.8, 15.8,

Læs mere

t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program ( ): 1. repetition: fordeling af observatorer X, S 2 og t.

t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program ( ): 1. repetition: fordeling af observatorer X, S 2 og t. t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program (8.15-10): 1. repetition: fordeling af observatorer X, S 2 og t. 2. konfidens-intervaller, hypotese test, type I og type II fejl, styrke,

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

hvor a og b er konstanter. Ved middelværdidannelse fås videre

hvor a og b er konstanter. Ved middelværdidannelse fås videre Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

MM501/MM503 forelæsningsslides

MM501/MM503 forelæsningsslides MM501/MM503 forelæsningsslides uge 50, 2009 Produceret af Hans J. Munkholm 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen dx Eksempler = et udtryk, der indeholder

Læs mere

4 Oversigt over kapitel 4

4 Oversigt over kapitel 4 IMM, 2002-09-14 Poul Thyregod 4 Oversigt over kapitel 4 Introduktion Hidtil har vi beskæftiget os med data. Når data repræsenterer gentagne observationer (i bred forstand) af et fænomen, kan det være bekvemt

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistisk Model Indhold Binomialfordeling Sandsynlighedsfunktion Middelværdi og spredning 1 Aalen: Innføring i statistik med medisinske eksempler

Læs mere

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 3.5 og 4.1 Poissonfordelingen

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

I dag. Statistisk analyse af en enkelt stikprøve: LR test og t-test, modelkontrol, R Sandsynlighedsregning og Statistik (SaSt)

I dag. Statistisk analyse af en enkelt stikprøve: LR test og t-test, modelkontrol, R Sandsynlighedsregning og Statistik (SaSt) I dag Statistisk analyse af en enkelt stikprøve: LR test og t-test, modelkontrol, R Sandsynlighedsregning og Statistik (SaSt) Helle Sørensen Repetition vha eksempel om dagligvarepriser Analyse med R: ttest

Læs mere

Estimation og usikkerhed

Estimation og usikkerhed Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala 3 5% 5% 5% 0 3 4 5 6 7 8 9 0 Statistik for biologer 005-6, modul 5: Normalfordelingen opstår når mange forskellige faktorer uafhængigt af hinanden bidrager med additiv variation til. F.eks. Højde af rekrutter

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

StatDataN: Plot af data

StatDataN: Plot af data StatDataN: Plot af data JLJ StatDataN: Plot af data p. 1/39 Repetition binomial(n,p): P(X = k) = ( n) k p k (1 p) n k n uafhængige kast med en mønt, X= antal krone X binomial(n, p), Y binomial(m, p), uafhængige

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Repetition Stokastisk variabel

Repetition Stokastisk variabel Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

Nanostatistik: Opgaver

Nanostatistik: Opgaver Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner

Læs mere

Eksamen 2014/2015 Mål- og integralteori

Eksamen 2014/2015 Mål- og integralteori Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt

Læs mere

standard normalfordelingen på R 2.

standard normalfordelingen på R 2. Standard normalfordelingen på R 2 Lad f (x, y) = 1 x 2 +y 2 2π e 2. Vi har så f (x, y) = 1 2π e x2 2 1 2π e y2 2, og ved Tonelli f dm 2 = 1. Ved µ(a) = A f dm 2 defineres et sandsynlighedsmål på R 2 målet

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable E6 efterår 999 Notat 8 Jørgen Larsen 22. november 999 Lineære normale modeller ) udkast Ved hjælp af lineær algebra kan man formulere og analysere de såkaldte lineære normale modeller meget overskueligt

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Differentiation af Trigonometriske Funktioner

Differentiation af Trigonometriske Funktioner Differentiation af Trigonometriske Funktioner Frank Villa 15. oktober 01 Dette dokument er en del af MatBog.dk 008-01. IT Teaching Tools. ISBN-13: 978-87-9775-00-9. Se yderligere betingelser for brug her.

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

StatDataN: Test af hypotese

StatDataN: Test af hypotese StatDataN: Test af hypotese JLJ StatDataN: Test af hypotese p. 1/69 Repetition n uafhængige gentagne målinger: Fordelingsundersøgelse: Pindediagram / Histogram qq-plot Parameter: egenskab ved fordeling

Læs mere

Forelæsning 4: Konfidensinterval for middelværdi (og spredning)

Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Introduktion til Statistik Forelæsning 4: Konfidensinterval for middelværdi (og spredning) Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Lidt om fordelinger, afledt af normalfordelingen

Lidt om fordelinger, afledt af normalfordelingen IMM, 2002-10-10 Poul Thyregod Lidt om fordelinger, afledt af normalfordelingen 1 Introduktion I forbindelse med inferens i normalfordelinger optræder forskellige fordelinger, der er afledt af normalfordelingen,

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag SaSt2 (Uge 6, onsdag) Middelværdi og varians 1 / 18 Program I formiddag: Tætheder og fordelingsfunktioner kort resume

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere