Billedanalyse, vision og computer grafik. NAVN :..Lærerne... Underskrift :... Bord nr. :...

Størrelse: px
Starte visningen fra side:

Download "Billedanalyse, vision og computer grafik. NAVN :..Lærerne... Underskrift :... Bord nr. :..."

Transkript

1 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik Skriftlig prøve, den 5. december 3. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle sædvanlige. "Vægtning": Alle opgaver vægtes ligeligt. NAVN :..Lærerne Underskrift : Bord nr. : Ogave Svar Opgave Svar Svarmulighederne for hvert spørgsmål er nummereret fra til 6. For hvert spørgsmål skal nummeret på den valgte svarmulighed indføres i skemaet ovenfor. Indføres et forkert nummer i skemaet kan dette rettes ved at "sværte" det forkerte nummer over og anføre det rigtige nummer nedenunder. Er der tvivl om meningen med en rettelse, betragtes spørgsmålet som ubesvaret. KUN FORSIDEN SKAL AFLEVERES. Afleveres blankt eller forlades eksamen i utide, skal forsiden alligevel afleveres. Kladde, mellemregninger og bemærkninger tillægges ingen betydning, kun tallene indført ovenfor registreres. Det gives 5 points for et korrekt svar og - for et ukorrekt svar. Ubesvarede spørgsmål eller et 6 -tal (svarende til "ved ikke" ) giver points. Det antal points, der kræves for, at et sæt anses for tilfredsstillende besvaret, afgøres endeligt ved censureringen af sættene. Husk at forsyne opgaveteksten med navn, underskrift og bord nummer.

2 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.

3 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3. Vi ønsker at lave et histogrammatch, således at et billede får middelværdi / og standardafvigelse σ / 8 (variansen er σ ). Hvad er parametrene ( α, β ) i en beta-fordeling, der opfylder dette? Af lærebogens side 37 fås α µ α β α + β α β α σ / 64 α 7.5 ( α + β ) ( α + β + ) 4α ( α + ) Dvs. ( α, β ) ( 7.5,7.5) Det rigtige svar er 4.

4 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.3 Lad H b betegne den binære entropi. Den betingende entropy er,55h b (/),55 bit dvs.3). Der er kun bidrag når de to causale pixels er. Hvis en af dem er er udfaldet givet.

5 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.4

6 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.5 a3er koefficienten til tredjegradsleddet i det polynomium, der beskriver den radialsymmetriske linsefortegning. Linsefortegningen kan ikke modelleres lineært. Det rigtige svar er 5.

7 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.6 På mængden af sorte pixels i ovenstående billede udføres den morfologiske operation (( X A) ( X B)) Resultatet er Altså er det rigtige svar 4.

8 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.7 Transformationen mellem billedkoordinater og objektkoordinater er givet ved formel 4.8 i lærebogen. Transformationsmatricen beregnes ved at indsætte de givne størrelser:,, / T R P t Da punktet ligger i objektkoordinatsystemets XZ plan gælder:,,, Z X w Z w X w Z X w w w Alternativt kan stråleligningerne (4.9) anvendes: ) ( ) ( ) ( ) ( Z X Z X Det rigtige svar er.

9 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.8 Fastlæggelse af (,) har ingen betydning for den spatielle dispersionsmatrix. Hvis vi fastlægger (,) til øverste venstre pixel kan følgende spatial moments beregnes: m 5 m og dermed r c /5 m og dermed c /5 c µ µ 4 µ Dvs. S 4 Det rigtige svar er.

10 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.9? Vi udfører en chamfer-.-.7 afstandstransformation på de hvide pixels i billedet ovenfor. Hvad bliver værdien i den pixel, der er markeret med et?? Den mindste afstand består af to diagonale skridt skråt ned til venstre. Chamfer-afstanden er *.73.4 Det rigtige svar er 5.

11 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3. Aperture stop, på dansk blænden, er forholdet mellem brændvidden og diameteren af blændeåbningen i et linsekamera. Det rigtige svar er 3.

12 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3. Det rigtige svar er.

13 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3. Hvad er den maksimale værdi af saturation i RGB farverummet givet intensiteten.5? NB: I RGB farverummet ligger R, G og B mellem og. I(R+G+B)/3.5 Max. Saturation kan opnås på kanten af kuben langs den røde, grønne eller blå akse. Tages den blå er R og G nul. Dvs. (R,G,B)(,,3/4) Indsættes dette i ligning. på side 39 i JMC-lærebogen fås v3/4 og v. Saturation er dermed ¾. Det rigtige svar er.

14 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.3 Jf. kapitel 3.6 i lærebogen går epipolarplanet gennem billedernes projektionscentre og er i øvrigt uafhængig af billedernes rotation. Epipolarplanet indeholder således basisvektoren: og vektoren fra f.eks. projektionscentrum af billede til objektpunktet: Planets normalvektor findes ved krydsproduktet af de to vektorer: Planet går gennem (,, ) så ligningen bliver Z Y eller Z Y. Det rigtige svar er 5.

15 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.4 Et kamera har følgende data: CCD-chip Opløsning: 64 pixels horisontalt * 48 pixels vertikalt Pixelstørrelse: µm * µm Pixelplacering: µm (center til center) Linse Brændvidde: 6 mm Beregn den horisontale og den vertikale synsvinkel θ, θ ) i grader. Horisontal sensorstørrelse: 64* µm Vertikal sensorstørrelse: 48* µm Horisontal synsvinkel: *atan(64*/(*6))7. Vertikal synsvinkel: *atan(48*/(*6)).4 Det rigtige svar er 5. ( h v

16 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.5

17 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.6 x y Der udføres en geometrisk opretning af ovenstående billede. Opretningen er beskrevet ved følgende 'output-to-input' transformation: x x +. y. x y y..9 x +.8 y +. x y Hvad bliver værdien af pixel (3,4) i output-billedet, når der anvendes nærmeste nabo 'resampling' i 'input' billedet? Sættes (3,4) ind i ligningerne fås x3.4 og y.7. Nærmeste pixel er (3,3) med værdi. Det rigtige svar er.

18 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.7 Kamerakonstanten regnes fra linsens indre projektionscentrum jf. lærebogen kapitel 4.4. Det rigtige svar er.

19 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.8 Det rigtige svar er 4.

20 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING Pixelværdier uden for billedfeltet i billedet ovenfor sættes til. Hvad er værdien af den markerede pixel efter først det lineære 3x3 filter 4 og derefter et 3x3 modus (eng. mode) filter er kørt over billedet? Efter det lineære filter fås flg. resultat i de 9 pixels omkring den markerede Modus (flertalsafstemning) af disse 9 tal er 3. Det rigtige svar er 3.

21 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3. Det rigtige svar er 3.

22 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3. Billedmålestokken beregnes til (se lærebogen kapitel 4.). /M c/h; MH/c 45/,53 ca. 3 Nøjagtigheden i de plane koordinater (parallelt med billedplanet) er M σ 3, mm 3 cm. billed Det rigtige svar er 4

23 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3. Ved at tegne fordelingerne op ses tydeligt, at alle 5 observationer klassificeres som hørende til population. Det rigtige svar er 5.

24 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.3 Formel 3.8 i lærebogen anvendes. B opstilles ud fra basisvektoren: B bz by bz bx by bx Da vi regner med positivbilleder skifter /c fortegn i P matricen, og herved bliver også C lig med enhedsmatricen. Da billederne er optaget med samme kamera er C C. Rotationsmatricen er også en enhedsmatrice, således at T C B r C B. Altså er det rigtige svar.

25 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.4 Hvad er Inertia for h (,) i nedenstående tekstur? Den unormerede GLCM er Normeringskonstanten er summen af elementerne i en GLCM, altså 5. Herfra udregnes gray level difference histogrammet til 3 GLSH 8/5 8/5 7/5 /5 Inertia er I 8 / / / / 5 54 / 5 Det rigtige svar er 3.

26 År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik MODELLØSNING 3.5 Det rigtige svar er 3.

Billedanalyse, vision og computer grafik. NAVN :... Underskrift :... Bord nr. :...

Billedanalyse, vision og computer grafik. NAVN :... Underskrift :... Bord nr. :... År: 23 Kursusnr: 25 Billedanalyse, vision og computer grafik Skriftlig prøve, den 5. december 23. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle sædvanlige. "Vægtning":

Læs mere

Navn :..Læreren... Underskrift :... Bord nr. :... Ogave Svar

Navn :..Læreren... Underskrift :... Bord nr. :... Ogave Svar Side 1 af 26 sider Skriftlig prøve, den 14. december 2013. Kursus navn: Billedanalyse. Kursus nummer: 02502 Hjælpemidler: Varighed: Vægtning: Alle hjælpemidler er tilladt. 4 timer Alle opgaver vægtes ligeligt.

Læs mere

Alle hjælpemidler er tilladt. Computer med Matlab kræves. Navn :.Læreren... Underskrift :... Bord nr. :... Ogave

Alle hjælpemidler er tilladt. Computer med Matlab kræves. Navn :.Læreren... Underskrift :... Bord nr. :... Ogave Skriftlig prøve, den 14. december 015. Kursus navn: Billedanalyse. Kursus nummer: 050 Hjælpemidler: Varighed: Vægtning: Alle hjælpemidler er tilladt. Computer med Matlab kræves. 4 timer Alle opgaver vægtes

Læs mere

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål Skriftlig prøve, 19. december 1998. Kursus navn : 04250 - Indledende billedbehandling. Tilladte hjælpemidler : Alle sædvanling. "Vægtning" : Alle opgaver vægtes ligeligt. Navn :.................................................

Læs mere

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål Skriftlig prøve, 6. januar 1998. Kursus navn : 04250 - Indledende billedbehandling. Tilladte hjælpemidler : Alle sædvanling. "Vægtning" : Alle opgaver vægtes ligeligt. Navn :.................................................

Læs mere

Navn :... Underskrift :... Bord nr. :... Ogave

Navn :... Underskrift :... Bord nr. :... Ogave Side 1 af 26 sider Skriftlig prøve, den 15. december 2012. Kursus navn: Billedanalyse. Kursus nummer: 02502 Hjælpemidler: Varighed: Vægtning: Alle hjælpemidler er tilladt. 4 timer Alle opgaver vægtes ligeligt.

Læs mere

År: 2000 Kursusnr: 04250 Indledende Billedbehandling NAVN :... Underskrift :... Bord nr. :... Opgave 11 12 13 14 15 16 17 18 19 20

År: 2000 Kursusnr: 04250 Indledende Billedbehandling NAVN :... Underskrift :... Bord nr. :... Opgave 11 12 13 14 15 16 17 18 19 20 Skriftlig prøve, den 19. December 2000. Kursus navn: Indledende billedbehandling. Tilladte hjælpemidler: Alle sædvanling. "Vægtning": Alle opgaver vægtes ligeligt. NAVN :..................................................

Læs mere

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål Skriftlig prøve, 9. januar 1997. Kursus navn : 04250 - Indledende billedbehandling. Tilladte hjælpemidler : Alle sædvanling. "Vægtning" : Alle opgaver vægtes ligeligt. Navn :.................................................

Læs mere

Billedanalyse, vision og computer grafik. NAVN :... Underskrift :... Bord nr. :...

Billedanalyse, vision og computer grafik. NAVN :... Underskrift :... Bord nr. :... År: 24 Kursusnr: 25 Billedanalyse, vision og computer grafik Skriftlig prøve, den 5. december 24. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle sædvanlige. "Vægtning":

Læs mere

Billedanalyse, vision og computer grafik. NAVN :.. Lærerne... Underskrift :... Bord nr. :...

Billedanalyse, vision og computer grafik. NAVN :.. Lærerne... Underskrift :... Bord nr. :... År: 26 Kursusnr: 2 Billedanalyse, vision og computer grafik Skriftlig prøve, den 8. december 26. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle sædvanlige. "Vægtning":

Læs mere

År: 2009 Kursusnr: Billedanalyse, vision og computer grafik Forside + 25 sider. Billedanalyse, vision og computer grafik. NAVN :...

År: 2009 Kursusnr: Billedanalyse, vision og computer grafik Forside + 25 sider. Billedanalyse, vision og computer grafik. NAVN :... Skriftlig prøve, den 15. december 2009. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle hjælpemidler er tilladt. Vægtning: Alle opgaver vægtes ligeligt. NAVN :..................................................

Læs mere

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål

DTU M.SC. SKRIFTLIG EKSAMEN Reviderede Spørgsmål Skriftlig prøve, 16. december 1999. Kursus navn : 050 - Indledende billedbehandling. Tilladte hjælpemidler : Alle sædvanling. "Vægtning" : Alle opgaver vægtes ligeligt. Navn :.................................................

Læs mere

Billedanalyse, vision og computer grafik. NAVN :... Underskrift :... Bord nr. :...

Billedanalyse, vision og computer grafik. NAVN :... Underskrift :... Bord nr. :... År: 25 Kursusnr: 25 Billedanalyse, vision og computer grafik Skriftlig prøve, den 6. december 25. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle sædvanlige. "Vægtning":

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet DTU. Kursus 02511. Forside + 25 sider. 2. juni 2014. 1 Danmarks Tekniske Universitet Skriftlig prøve, den 2. juni 2014 Kursus navn: Indledende Medicinsk Billedanalyse Kursusnr: 02511 Varighed: 4 timer

Læs mere

Billedanalyse, vision og computer grafik. NAVN :... Underskrift :... Bord nr. :... Ogave 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Billedanalyse, vision og computer grafik. NAVN :... Underskrift :... Bord nr. :... Ogave 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 År: 28 Kursusnr: 25 Billedanalyse, vision og computer grafik Skriftlig prøve, den 6. december 28. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle hjælpemidler er tilladt.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet DTU. Kursus 02511. Forside + 25 sider. 30. Maj 2011. 1 Danmarks Tekniske Universitet Skriftlig prøve, den 30. maj 2011 Kursus navn: Indledende Medicinsk Billedanalyse Kursusnr: 02511 Varighed: 4 timer

Læs mere

År: 2011 Kursusnr: Billedanalyse, vision og computer grafik

År: 2011 Kursusnr: Billedanalyse, vision og computer grafik Skriftlig prøve, den 6. december 20. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle hjælpemidler er tilladt. Varighed: Vægtning: 4 timer Alle opgaver vægtes ligeligt.

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: XY. december 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

NAVN :..Lærerne... Underskrift :... Bord nr. :... Ogave Svar

NAVN :..Lærerne... Underskrift :... Bord nr. :... Ogave Svar År: Kursusnr: 5 Billedanalyse, vision og computer grafik Forside + 5 sider Skriftlig prøve, den 5. december. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle sædvanlige.

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 16 sider Skriftlig prøve, den: 16. december 2010 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

År: 2010 Kursusnr: Billedanalyse, vision og computer grafik Forside + 26 sider NAVN :... Underskrift :... Bord nr. :...

År: 2010 Kursusnr: Billedanalyse, vision og computer grafik Forside + 26 sider NAVN :... Underskrift :... Bord nr. :... 1 Skriftlig prøve, den 14. december 2010. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle hjælpemidler er tilladt. Varighed: Vægtning: 4 timer Alle opgaver vægtes ligeligt.

Læs mere

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. maj 05 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side af 6 sider Skriftlig prøve, den: 27. maj 20 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift) (bord

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: PQ. juli 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 20. december 2011 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 20. december 2011 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 16 sider Skriftlig prøve, den: 20. december 2011 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 0. maj 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 24. maj 2012 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 24. maj 2012 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 6 sider Skriftlig prøve, den: 24. maj 2 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 22 sider. Skriftlig prøve: 13. december 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 18. august 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 18. august 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 8. august 06 Kursus nr : 005 Kursus navn: Sandsynlighedsregning Varighed : timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A = OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform

Læs mere

6 Matematisk udledning af prisafsætningsfunktionen

6 Matematisk udledning af prisafsætningsfunktionen 6 Matematisk udledning af prisafsætningsfunktionen 6. Udledning af prisfunktionen ud fra forskellige oplysninger I sidste kapitel gennemgik vi, hvad du forståelsesmæssigt skal vide om omsætningsfunktioner.

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Photoshopkursus - Billedbehandling

Photoshopkursus - Billedbehandling Photoshopkursus - Billedbehandling Software... 2 Skrivebord... 2 Reset skrivebord... 3 Nyt billede med lag... 4 Indlæs billede... 6 Redigeringsværktøjer... 7 Billedstørrelse... 7 Beskæring... 13 Retouchering...

Læs mere

3D-grafik Karsten Juul

3D-grafik Karsten Juul 3D-grafik 2005 Karsten Juul Når der i disse noter står at du skal få tegnet en figur, så er det meningen at du skal få tegnet den ved at taste tildelinger i Mathcad-dokumentet RumFig2 Det er selvfølgelig

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 8 januar, Kl 9- Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

Opgaveteksten omfatter i alt 19 sider. NAVN. Underskrift. Bord nr. Opgave Svar. Opgave

Opgaveteksten omfatter i alt 19 sider. NAVN. Underskrift. Bord nr. Opgave Svar. Opgave DTU CIVILINGENIØREKSAMEN Side 1 af 19 sider Skriftlig prøve den 24. maj 2000, Kursus nr. 50270 Kursus navn: Industrielle Automationssystemer. Tilladte hjælpemidler: Alle sædvanlige. Vægtning : Se nedenfor.

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau A. Delprøven uden hjælpemidler

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau A. Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008 HHX082-MAA Matematik Niveau A Delprøven uden hjælpemidler Dette opgavesæt består af 6 opgaver, der indgår i bedømmelsen af den samlede

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh121-mat/a-04062012 Mandag den 4. juni 2012 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k Dagens program: Likelihoodfunktion, begreber : Mandag den 4. februar Den generelle lineære model score-funktion: første afledede af log-likelihood har middelværdien nul observeret information: anden afledede

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

22. maj Investering og finansiering Ugeseddel nr. 15. Nogle eksamensopgaver:

22. maj Investering og finansiering Ugeseddel nr. 15. Nogle eksamensopgaver: 22. maj 2006 Investering og finansiering Ugeseddel nr. 15 Nogle eksamensopgaver: 1 NATURVIDENSKABELIG KANDIDATEKSAMEN INVESTERING OG FINANSIERING Antal sider i opgavesættet (incl. forsiden): 6 4 timers

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde...

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde... Modul 13: Exercises 13.1 Substrat.......................... 1 13.2 Polynomiel regression.................. 3 13.3 Biomasse.......................... 4 13.4 Kreatinin.......................... 7 13.5 Læsefærdighed......................

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde...

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde... Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 13: Exercises 13.1 Substrat........................................ 1 13.2 Polynomiel regression................................

Læs mere

Opgave Opgave

Opgave Opgave DTU CIVILINGENIØREKSAMEN Side 1 af 19 sider Skriftlig prøve den 4. juni 2002, Kursus nr. 31370 Kursus navn: Mikrodatamater i Robot- og Automationssystemer. Tilladte hjælpemidler: Alle sædvanlige. Vægtning

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tretten) Eksamensdag: Tirsdag den 8. april 2008,

Læs mere

Løsninger til kapitel 6

Løsninger til kapitel 6 Opgave 6.1 a) 180 200 P ( X < 180) = Φ = Φ( = 0, 1587 b) 220 200 P ( X > 220) = Φ = Φ(1) = 0, 8413 c) 200 200 P ( X > 200) = 1 X < 200) = 1 Φ = ) = 1 0,5 = 0, 5 d) P ( X = 230) = 0 e) 180 200 P ( X 180)

Læs mere

Eksamen i Calculus Mandag den 4. juni 2012

Eksamen i Calculus Mandag den 4. juni 2012 Eksamen i Calculus Mandag den 4. juni 212 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med ialt

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Test nr. 5 af centrale elementer 02402

Test nr. 5 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 5 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere