Reeksamen i Calculus Onsdag den 17. februar 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Reeksamen i Calculus Onsdag den 17. februar 2016"

Transkript

1 Reeksamen i Calculus Onsdag den 17. februar 216 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med 12 opgaver. Der må gøres brug af bøger, noter mv. Der må ikke benyttes elektroniske hjælpemidler. De anførte procenter angiver med hvilken vægt, de enkelte opgaver tæller ved den samlede bedømmelse. Eksamenssættet består af to uafhængige dele. Del I indeholder "almindelige opgaver. I forbindelse med del I er det vigtigt, at du forklarer tankegangen bag opgavebesvarelsen, og at du medtager mellemregninger i passende omfang. Del II indeholder "multiple choice opgaver. Del II skal afkrydses i nærværende opgavesæt. Husk at skrive dit fulde navn og studienummer på hver side af besvarelsen. Nummerer desuden siderne, og angiv antallet af afleverede ark på side 1 af besvarelsen. God arbejdslyst! NAVN: STUDIENUMMER: Side 1 af 7

2 Del I ("almindelige opgaver ) Opgave 1 (8% ) En plan kurve er givet ved x = e t, y = e t, hvor t gennemløber de reelle tal. (a) Bestem et udtryk for kurvens krumning κ(t). (b) Godtgør at punktet P = (1,1) ligger på kurven, og beregn krumningen af kurven i dette punkt. Opgave 2 (7% ) Bestem Taylorpolynomiet af anden grad for funktionen f (x) = 2x + 1 med udviklingspunkt x =. Opgave 3 (1% ) (a) Find den fuldstændige løsning til differentialligningen y + 3y + 2y =. (b) Find den fuldstændige løsning til den inhomogene differentialligning y + 3y + 2y = 4t + 8. Side 2 af 7

3 Opgave 4 (8%) Betragt funktionen f (x, y) = arctan ( x + y ). 4 (a) Angiv definitionsmængden for f. (b) Skitser niveaukurven givet ved ligningen f (x, y) = 1. Opgave 5 (8%) En funktion er defineret som f (x, y, z) = sin(2x + y) + z 2. (a) Bestem gradientvektoren f (x, y, z). (b) I hvilken retning ud fra punktet P = (1, 2,1), vokser f kraftigst? (Angiv en enhedsvektor). Opgave 6 (12%) En flade F i rummet er givet ved ligningen z = f (x, y), hvor f (x, y) = ln(x 2 + y). (a) Godtgør, at punktet P = (2, 3,) ligger på fladen F. (b) Bestem de partielle afledede f x (x, y) og f y (x, y). (c) Find en ligning for tangentplanen til F i punktet P = (2, 3,). Side 3 af 7

4 Opgave 7 (12%) Lad R være området i planen bestående af de punkter (x, y), som opfylder ulighederne 1 x 2 + y 2 9. (a) Skitser området R. (b) Beregn planintegralet R 1 x 2 + y 2 d A. Opgave 8 (7%) Find de komplekse rødder i polynomiet z 2 (3 + 4i )z 1 + 7i. Side 4 af 7

5 Del II ("multiple choice opgaver) Opgave 9 (1%). Besvar følgende 5 sand/falsk opgaver: a. For ethvert reelt tal b har følgende ligning i den ubekendte x netop én løsning: arcsin(x) = b. b. For funktionen f (t) = e (1+2i )t, hvor t er en reel variabel, gælder der f (t) f (t) = 1 + 2i. c. Lad D være området i planen bestående af de punkter (x, y), som opfylder ulighederne 1 x 1 og y 1. Lad f være funktionen med forskrift f (x, y) = sin(x + y) + x 3 og definitionsmængde D. Da antager f globalt minimum på D. d. For ethvert komplekst tal z gælder der zz. e. Punktet med rektangulære koordinater (x, y) = (1, 2) kan i polære koordinater angives ved (r,θ) = ( 5, π 4 ). Side 5 af 7

6 Bemærkning. I opgaverne 1 og 11 evalueres der efter følgende princip: Hver forkert afkrydsning ophæver én rigtig afkrydsning. Opgave 1 (6%) Lad T være området i rummet bestående af de punkter (x, y, z), som opfylder ulighederne x 1, y 1 x, z 1 x 2 y 2. Et legeme med massetætheden (densiteten) δ(x, y, z) = 3 x 2 y 2 z 2 dækker netop dette område. Legemets rumfang (volumen) betegnes V, og legemets masse betegnes m. Markér samtlige korrekte udtryk nedenfor. Bemærk: Du skal ikke beregne integralerne. m = m = m = V = V = x x 2 (1 x) 2 x x 2 y 2 y x 2 y 2 1+y y x 2 y 2 2 x 2 y 2 (3 x 2 y 2 z 2 )dzd ydx. (3 x 2 y 2 z 2 )dzd ydx. (3 x 2 y 2 z 2 )dzdxd y. dzdxd y. dzd ydx. Opgave 11 (6%) Et komplekst polynomium er givet ved p(z) = z 3 + 5z 2 + z + 5. Markér samtlige korrekte udsagn nedenfor. Det komplekse tal i er en rod i polynomiet p(z). p(z) har ingen reelle rødder. p(z) har præcis 3 rødder regnet med multiplicitet. p(z) har tre forskellige rødder. p(z) har en rod med multipliciteten 3. Side 6 af 7

7 Opgave 12 (6%) En differentiabel funktion f (x, y) er defineret for 3 x 3 og 3 y 3. De to figurer herunder viser udvalgte niveaukurver samt gradientvektorer for funktionen. Der er netop to kritiske punkter med koordinaterne ( 1,) og (1,). Afgør typen af hvert kritisk punkt, og markér svaret nedenfor. a. I punktet ( 1,) har f et b. I punktet (1,) har f et lokalt maksimum lokalt minimum saddelpunkt lokalt maksimum lokalt minimum saddelpunkt Side 7 af 7

Eksamen i Calculus Fredag den 8. januar 2016

Eksamen i Calculus Fredag den 8. januar 2016 Eksamen i Calculus Fredag den 8. januar 2016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med

Læs mere

Reeksamen i Calculus Tirsdag den 20. august 2013

Reeksamen i Calculus Tirsdag den 20. august 2013 Reeksamen i Calculus Tirsdag den 20. august 2013 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Torsdag den 11. august 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

Eksamen i Calculus Mandag den 4. juni 2012

Eksamen i Calculus Mandag den 4. juni 2012 Eksamen i Calculus Mandag den 4. juni 212 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med ialt

Læs mere

(Prøve)Eksamen i Calculus

(Prøve)Eksamen i Calculus (Prøve)Eksamen i Calculus Sæt 1, april 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende (prøve)eksamenssæt består af 7 nummererede sider

Læs mere

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6. Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.

Læs mere

Prøveeksamen i Calculus

Prøveeksamen i Calculus Prøveeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Marts 6 Dette eksamenssæt består af 9 nummererede sider med 4 afkrydsningsopgaver.

Læs mere

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3.

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3. Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. januar 7 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Reeksamen i Calculus Torsdag den 16. august 2012

Reeksamen i Calculus Torsdag den 16. august 2012 Reeksamen i Calculus Torsdag den 16. august 2012 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017 Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 8 januar, Kl 9- Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 4 januar, 2 Kl 9-3 Nærværende eksamenssæt består af 8 nummererede

Læs mere

Prøveeksamen A i Lineær Algebra

Prøveeksamen A i Lineær Algebra Prøveeksamen A i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Der må gøres brug af bøger, noter mv Der må ikke benyttes lommeregner,

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet Torsdag den 9. august, 202. Kl. 9-3. Nærværende eksamenssæt består af 9 nummererede sider med ialt 2 opgaver.

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Fredag

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag

Læs mere

Eksempel på muligt eksamenssæt i Diskret Matematik

Eksempel på muligt eksamenssæt i Diskret Matematik Eksempel på muligt eksamenssæt i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet???dag den?.????, 20??. Kl. 9-13. Nærværende eksamenssæt består af 13 nummererede sider med

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 21. august 2015 Nærværende eksamenssæt består af 10 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2017

Besvarelser til Calculus Ordinær Eksamen Juni 2017 Besvarelser til Calculus Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Maj 016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 10 nummererede sider med ialt

Læs mere

INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010

INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010 INSTITUT FOR MATEMATIK OG DATALOGI TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010 Forord Denne opgavesamling indeholder samtlige eksamensopgaver, der har været stillet

Læs mere

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

Calculus Uge

Calculus Uge Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 10. juni, 2016. Kl. 9-13. Nærværende eksamenssæt består af 11 nummererede sider med ialt 16 opgaver. Alle opgaver

Læs mere

Matematik A. 5 timers skriftlig prøve NY ORDNING. Højere Teknisk Eksamen maj 2008 HTX081-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve NY ORDNING. Højere Teknisk Eksamen maj 2008 HTX081-MAA. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fredag den 30. maj 2008 kl. 9.00-14.00 Side 1 af 9 Matematik A Prøvens varighed er 5

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første studieår ved Det Teknisk-Naturvidenskabelige Fakultet 23. august, 2016, 9.00-13.00 Dette eksamenssæt består af 11 nummerede sider med 16 opgaver. Alle opgaver er multiple

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen htx112-mat/a-30082011 Tirsdag den 30. august 2011 kl. 9.00-14.00 Side 1 af 7 sider Matematik A 2011 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Matematik B. Højere forberedelseseksamen. Skriftlig prøve (4 timer) Fredag den 11. december 2009 kl. 9.00-13.00 HFE093-MAB

Matematik B. Højere forberedelseseksamen. Skriftlig prøve (4 timer) Fredag den 11. december 2009 kl. 9.00-13.00 HFE093-MAB Matematik B Højere forberedelseseksamen Skriftlig prøve (4 timer) HFE093-MAB Fredag den 11. december 2009 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM01 Juni 1993 marts 2006

INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM01 Juni 1993 marts 2006 INSTITUT FOR MATEMATIK OG DATALOGI TIDLIGERE EKSAMENSOPGAVER MM01 Juni 1993 marts 2006 i Forord Denne opgavesamling skal bruges med den forståelse, at pensumbeskrivelsen for kurset har undergået en række

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50.

Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

GUX Matematik Niveau B prøveform b Vejledende sæt 1

GUX Matematik Niveau B prøveform b Vejledende sæt 1 GUX-013 Matematik Niveau B prøveform b Vejledende sæt 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler Lektion 12 2. ordens lineære differentialligninger homogene inhomogene eksempler højere ordens lineære differentiallininger 1 Anden ordens lineære differentialligninger med konstante koefficienter A. Homogene

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx103-mat/a-101010 Fredag den 10. december 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx10-mat/a-108010 Torsdag den 1. august 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan Matematik 1 Semesteruge 5 6 (1. oktober - 12. oktober 2001) side 1 Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh11-mat/b-70501 Mandag den 7. maj 01 kl. 9.00-1.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2st101-MAT/B-01062010 Tirsdag den 1. juni 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj Matematik Niveau A

Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj Matematik Niveau A Højere Handelseksamen Handelsskolernes enkeltfagsprøve maj 2006 06-0-1 Matematik Niveau A Dette opgavesæt består af 7 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige

Læs mere

Funktioner af to variable

Funktioner af to variable enote 15 1 enote 15 Funktioner af to variable I denne og i de efterfølgende enoter vil vi udvide funktionsbegrebet til at omfatte reelle funktioner af flere variable; vi starter udvidelsen med 2 variable,

Læs mere

Matematik A. Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til bedømmelse.

Matematik A. Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til bedømmelse. HTX Matematik A Fredag den 18. maj 2012 Kl. 09.00-14.00 GL121 - MAA - HTX 1 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx122-mat/b-15082012 Onsdag den 15. august 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

MM01 (Mat A) Ugeseddel 1

MM01 (Mat A) Ugeseddel 1 Institut for Matematik og Datalogi 2. august 200 Syddansk Universitet, Odense HJM/LL MM0 (Mat A) Ugeseddel Velkommen til kurset MM0 (Matematik A). Forelæsninger: afholdes i to ugentlige timer, onsdag kl.

Læs mere

STUDENTEREKSAMEN MAJ 2007 MATEMATIK B-NIVEAU. Onsdag den 30. maj Kl STX071-MAB

STUDENTEREKSAMEN MAJ 2007 MATEMATIK B-NIVEAU. Onsdag den 30. maj Kl STX071-MAB STUDENTEREKSAMEN MAJ 007 MATEMATIK B-NIVEAU Onsdag den 0 maj 007 Kl 0900 100 STX071-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål og i helhedsindtrykket

Læs mere

Noter om komplekse tal

Noter om komplekse tal Noter om komplekse tal Preben Alsholm Januar 008 1 Den komplekse eksponentialfunktion Vi erindrer først om den sædvanlige og velkendte reelle eksponentialfunktion. Vi skal undertiden nde det nyttigt, at

Læs mere

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011 Matematik A Studentereksamen stx113-mat/a-09122011 Fredag den 9. december 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Højere handelseksamen. Mandag den 18. august 2014 kl hhx142-mat/a

Matematik A. Højere handelseksamen. Mandag den 18. august 2014 kl hhx142-mat/a Matematik A Højere handelseksamen hhx14-mat/a-1808014 Mandag den 18. august 014 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006. Typeopgave 2. Matematik Niveau A. Delprøven uden hjælpemidler. Prøvens varighed: 1 time.

Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006. Typeopgave 2. Matematik Niveau A. Delprøven uden hjælpemidler. Prøvens varighed: 1 time. Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006 05-A-2-U Typeopgave 2 Matematik Niveau A Delprøven uden hjælpemidler Prøvens varighed: 1 time. Dette opgavesæt består af 6 opgaver, der indgår

Læs mere

Matematik A. Højere handelseksamen. Tirsdag den 15. december 2015 kl hhx153-mat/a

Matematik A. Højere handelseksamen. Tirsdag den 15. december 2015 kl hhx153-mat/a Matematik A Højere handelseksamen hh153-mat/a-15122015 Tirsdag den 15. december 2015 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

Kompleks ligning 1. - en illustration af hvordan løsninger til ligningen z 5 + iz + 1 = 0 ser ud. 1. Oprette den frie variabel z.

Kompleks ligning 1. - en illustration af hvordan løsninger til ligningen z 5 + iz + 1 = 0 ser ud. 1. Oprette den frie variabel z. Kompleks ligning 1 - en illustration af hvordan løsninger til ligningen z 5 + iz + 1 = 0 ser ud Formål At give mulighed for at undersøge/illustrere hvordan et komplekst polynomium opfører sig, og hvordan

Læs mere

Matematik A. Højere handelseksamen. Skriftlig prøve (5 timer) Delprøven uden hjælpemidler

Matematik A. Højere handelseksamen. Skriftlig prøve (5 timer) Delprøven uden hjælpemidler Matematik A Højere handelseksamen Skriftlig prøve (5 timer) Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med lige stor vægtning

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Fredag den 17. august 2012. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Fredag den 17. august 2012. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx1-mat/a-170801 Fredag den 17. august 01 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Skriftlig prøve i Beregningsteknik indenfor elektronikområdet

Skriftlig prøve i Beregningsteknik indenfor elektronikområdet Beregningsteknik i elektronik for EIT3+ITC3/14 Opgavesæt 30 141207HEb Skriftlig prøve i Beregningsteknik indenfor elektronikområdet Prøve d. 6.januar 2015 kl. 09.00-13.00. Ved bedømmelsen vægtes de 7 opgaver

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

GUX. Matematik. A-Niveau. Fredag den 29. maj 2015. Kl. 9.00-14.00. Prøveform b GUX151 - MAA

GUX. Matematik. A-Niveau. Fredag den 29. maj 2015. Kl. 9.00-14.00. Prøveform b GUX151 - MAA GUX Matematik A-Niveau Fredag den 9. maj 015 Kl. 9.00-14.00 Prøveform b GUX151 - MAA 1 Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Matematik B. Højere handelseksamen. Mandag den 16. december 2013 kl hhx133-mat/b

Matematik B. Højere handelseksamen. Mandag den 16. december 2013 kl hhx133-mat/b Matematik B Højere handelseksamen hhx133-mat/b-161013 Mandag den 16. december 013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

I kurset matematik 1A skal vi beskæftige os med matematisk analyse, og der kommer groft sagt til at være tre emner:

I kurset matematik 1A skal vi beskæftige os med matematisk analyse, og der kommer groft sagt til at være tre emner: MATEMATIK 1A MATEMATISK ANALYSE 31. august 2006 Oversigt nr. 1 I kurset matematik 1A skal vi beskæftige os med matematisk analyse, og der kommer groft sagt til at være tre emner: Funktioner af flere variable

Læs mere

HTX. Matematik A. Onsdag den 11. maj Kl GL111 - MAA - HTX

HTX. Matematik A. Onsdag den 11. maj Kl GL111 - MAA - HTX HTX Matematik A Onsdag den 11. maj 2011 Kl. 09.00-14.00 GL111 - MAA - HTX 1 2 Side 1 af 7 sider Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte

Læs mere

Oversigt [S] 9.6, 11.1, 11.2, App. H.1

Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Her skal du lære om 1. Funktioner i flere variable 2. Grafen og niveaukurver 3. Grænseovergange og grænseværdier 4. Kontinuitet i flere variable 5. Polære koordinater

Læs mere

Noter til Computerstøttet Beregning Taylors formel

Noter til Computerstøttet Beregning Taylors formel Noter til Computerstøttet Beregning Taylors formel Arne Jensen c 23 1 Introduktion I disse noter formulerer og beviser vi Taylors formel. Den spiller en vigtig rolle ved teoretiske overvejelser, og også

Læs mere

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a gl. Matematik A Studentereksamen gl-stx142-mat/a-14082014 Torsdag den 14. august 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

Skriftlig omprøve i matematik 4

Skriftlig omprøve i matematik 4 Matematik 4 for E4+D4/08 Opgavesæt 04 080812HEb Skriftlig omprøve i matematik 4 Omprøve d. 18. august 2008 kl. 09.00-13.00. Ved bedømmelsen vægtes de 6 opgaver således: Opgave 1: 20% (Kompleks funktionsteori

Læs mere

STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU. Onsdag den 13. august 2008. Kl. 09.00 13.00 STX082-MAB

STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU. Onsdag den 13. august 2008. Kl. 09.00 13.00 STX082-MAB STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU Onsdag den 13 august 2008 Kl 0900 1300 STX082-MAB Opgavesættet er delt i to dele Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål Delprøven

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2stx111-MAT/B-24052011 Tirsdag den 24. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 37, 2010 Produceret af Hans J. Munkholm 2009 bearbejdet af Jessica Carter 2010 1 Hvad er et komplekst tal? Hvordan regner man med komplekse tal? Man kan betragte udvidelsen

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 1stx111-MAT/A-18052011 Onsdag den 18. maj 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

[EP] C. Edwards og D. Penney: Calculus, 6th edition, Prentice Hall, New Jersey, 2002.

[EP] C. Edwards og D. Penney: Calculus, 6th edition, Prentice Hall, New Jersey, 2002. MATEMATISK ANALYSE 29. august 2003 Oversigt nr. 1 I kurset matematik 1A skal vi beskæftige os med matematisk analyse, og der kommer groft sagt til at være tre emner: Funktioner af flere variable (hvordan

Læs mere

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU Tirsdag den 18. december 2007 Kl. 09.00 13.00 STX073-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål

Læs mere

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx141-MATn/A-27052014 Tirsdag den 27. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Oversigt [S] 2.7, 2.9, 11.4

Oversigt [S] 2.7, 2.9, 11.4 Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable

Læs mere

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU Fredag den 12. december 2008 Kl. 09.00 13.00 HFE083-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med

Læs mere

CALCULUS "SLIDES" TIL CALCULUS 1 + 2

CALCULUS SLIDES TIL CALCULUS 1 + 2 CALCULUS "SLIDES" TIL CALCULUS + INSTITUT FOR MATEMATISKE FAG AARHUS UNIVERSITET 4 Indhold Forord 5 I. Differentiation 7. Kontinuitet 7. Partielle afledede 7 3. Tangentplan 5 4. Kædereglen 34 5. Gradient

Læs mere

GUX. Matematik Niveau B. Prøveform b

GUX. Matematik Niveau B. Prøveform b GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere