Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl
|
|
- Mette Danielsen
- 2 år siden
- Visninger:
Transkript
1 Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt. Opgavesættet består af 5 opgaver (8 sider incl. forside). For hver opgave er angivet den vægt i procent, hvormed opgaven indgår i bedømmelsen. 1
2 Opgave 1 (20%) Lad os begtrage en lille roulette med tallene fra 1 til 12, svarende til en uniform fordeling på mængden f1; 2; : : : ; 12g, således at hvert af de 12 udfald forekommer med sandsynlighed 1/12. Betragt følgende tre hændelser: A = f1; 2; 3; 4; 5; 6g B = f5; 6; 7; 8g C = f4; 5; 6; 7; 8; 9g 1. Udregn sandsynlighederne P (A), P (B), P (A \ B), P (A [ B) og P (A n B). 2. Er hændelserne A og B uafhængige? Er hændelserne A og C uafhængige? Er hændelserne B og C uafhængige? Begrund dine svar. Opgave 2 (20%) I kampen mellem de 98 kommuner og staten, er det sådan at en kommune bliver stra et, hvis den bruger ere penge end budgetteret. Lad os antage, at sandsynligheden for at en kommune bliver stra et er 0:05; og at de 98 kommuner er uafhængige af hinanden. 1. Udregn sandsynligheden for at højst én kommune bliver stra et. 2. Udregn, ved hjælp af en normalfordelingsapproximation, sandsynligheden for at mindst 7 kommuner bliver stra et. 2
3 Opgave 3 (10%) Følgende tabel viser nøgletal for antallet af nye anmeldte astmatilfælde pr indbyggere i 30 amerikanske byer i 1980 og rate1980 rate1990 x s n Udfør t-testen for at sammenligne disse to observationsrækker under antagelse af at de to observationsrækker er uafhængige, og at de to varianser er ens. Gør rede for dine antagelser. 2. Den næste tabel viser nøgletal for de parvise di erenser for hver by, rate1980 rate1990. rate1980 rate1990 x s n 30 Udfør den parrede t-test for at sammenligne de to observationsrækker. Gør rede for dine antagelser. 3. Gør rede for hvilken af de to metoder, som bør anvendes til disse data, og forklar hvad konklusionen er, med hensyn til om der er nogen forskel i middelværdien for nye anmeldte astmatilfælde pr indbyggere i de 30 amerikanske byer. 3
4 Opgave 4 (20%) Det ber-optiske transatlantiske kabel TAT-14 har 64 kanaler, hver med en maksimal kapacitet på 10 Gbit/s. Lad os antage at den faktiske belastning på en enkelt kanal, målt i Gbit/s, er en stokastisk variabel X; som er normalfordelt N(; 2:5). 1. Lad os se på en enkelt kanal, og lad os vedtage, at vi ønsker en fejlrate på højst 1%, svarende til at vi kræver at P (X > 10) 0:01: Hvor høj kan vi maximalt tillade den gennemsnitlige belastning at være, hvis dette krav skal opfyldes? 2. Antag nu at = 9:5, og antag at de 64 kanaler er uafhængige af hinanden. Lad os se på den samlede belastning af kablet givet ved Y = X X 64, hvor X 1 ; : : : ; X 64 er uafhængige og identisk fordelte stokastiske variable, alle med samme fordeling som X. Hvad er sandynligheden for at den samlede belastning overstiger kablets samlede kapacitet? Dvs. at du skal udregne sandsynligheden P (Y > 640). 4
5 Opgave 5 (30%) I en undersøgelse af forskellige typer mangrove i Inden er der foretaget målinger på 15 træer af arten Rhizophora mucronata. Der er målt to variable for hvert træ. Den ene variabel (betegnet D130) angiver stammens diameter i cm, målt i en højde af 130 cm over jorden. Den anden variabel er plantens biomasse, angivet som tørvægt målt i kg. I det konkrete tilfælde er analysen lavet med den logaritmetransformerede variabel ln(tørvægt). Figur 1 viser et scatterplot for de to variable ln(tørvægt) og D130. Nøglestørrelser for disse data ser således ud: Variabel Gennemsnit Standardafvigelse D ln(tørvægt) Kovarians mellem D130 og ln(tørvægt) = 49: Angiv hvilken analysemetode, der kan anvendes til at undersøge sammenhængen mellem D130 og ln(tørvægt). Begrund dit svar ud fra en vurdering af graferne i gur Eftervis, ved udregning baseret på ovenstående nøglestørrelser, at den estimerede værdi for hældningskoe cienten i nedenstående tabel er korrekt, og nd estimatet for interceptet. Coe cients: Estimate Std. Error t value Pr(>jtj) (Intercept) D Gennemfør en test for om der er en statistisk signi kant sammenhæng mellem D130 og ln(tørvægt). 4. Udregn den prædikterede værdi for ln(tørvægt) for et træ med en værdi for D130 på 12 cm. Udnyt dette til at udregne den tilsvarende prædikterede tørvægt for et træ med en værdi for D130 på 12 cm. 5. Udregn et 95% prædiktionsinterval for ln(tørvægt) for et træ med en værdi for D130 på 12 cm. Udnyt dette til at udregne et 95% prædiktionsinterval for tørvægt for et træ med en værdi for D130 på 12 cm. 5
6 Figure 1: Scatterplot for ln(tørvægt) og D130. 6
7 Figure 2: Residualplot for regressionsanalyse. 7
8 Figure 3: Normal Q-Q plot for residualerne fra regressionsanalyse. 8
Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00
Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.
Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00
Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.
Skriftlig eksamen Science statistik- ST501
SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Skriftlig Eksamen ST501: Science Statistik Torsdag den 4. januar 2007 kl
Skriftlig Eksamen ST501: Science Statistik Torsdag den 4. januar 2007 kl. 9.00 12.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er
Følgende tabel (fra Fisher) giver forøgelsen af sovetiden i timer fra et eksperiment med 10 patienter vedrørende 2 sovemidler A og B.
Modul 7: Exercises 7.1 Sovemidler......................... 1 7.2 Egetræer.......................... 2 7.3 Stofs trækstyrke..................... 3 7.4 Laboranters titreringsusikkerhed............ 5 7.5
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved
Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen
STATISTIK Skriftlig evaluering, 3. semester, mandag den 6. januar 004 kl. 9.00-13.00. Alle hjælpemidler er tilladt. Opgaveløsningen forsynes med navn og CPR-nr. OPGAVE 1 Et firma tuner biler. Antallet
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
Skriftlig Eksamen ST501: Sandsynlighedsteori og Statistik Mandag den 31. oktober 2005 kl
Skriftlig Eksamen ST501: Sandsynlighedsteori og Statistik Mandag den 31. oktober 2005 kl. 14.30-17.30 Forskningsenheden for Statistik Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner
5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14
Module 5: Exercises 5.1 ph i blod.......................... 1 5.2 Medikamenters effektivitet............... 2 5.3 Reaktionstid........................ 3 5.4 Alkohol i blodet...................... 3 5.5
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
To samhørende variable
To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen
Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1
Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge
Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
Reeksamen i Statistik for Biokemikere 6. april 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402
Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)
Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22
Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som
Skriftlig Eksamen Diskret Matematik (DM528)
Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Kvantitative Metoder 1 - Forår 2007. Dagens program
Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative
Reeksamen i Statistik for biokemikere. Blok 3 2007.
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
Vejledende løsninger til opgaver i kapitel 6
Vejledende løsninger til opgaver i kapitel Opgave 1: a) Den stokastiske variabel, X, der angiver, om en elev består, X = 1, eller dumper, X =, sin eksamen i statistik. b) En binomialfordelt variabel fremkommer
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Estimation: Kapitel 9.7-9.10 Estimationsmetoder kap 9.10 Momentestimation Maximum likelihood estimation Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1
Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni timers prøve med hjælpemidler
Rettevejledning til Kvantitative metoder 1, 2. årsprøve 18. juni 2007 4 timers prøve med hjælpemidler Opgaven består af re delopgaver, som alle skal besvares. De re opgaver indgår med samme vægt. Opgaverne
Modul 6: Regression og kalibrering
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................
Kønsproportion og familiemønstre.
Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,
Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................
(studienummer) (underskrift) (bord nr)
Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
2 0.9245. Multiple choice opgaver
Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen
Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr)
DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 0. maj 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret
Nanostatistik: Opgaver
Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner
Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at
Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder
Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger
Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af
Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger
Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:
Eksamen i Statistik for biokemikere. Blok
Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2007. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 8 sider.
Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod.
1-stikprøve t-test (Eksamen 2005 opgave 1) Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. I nedenstående tabel betragtes blodprøver fra 9 patienter. Hver
Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)
Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,
Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.
Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:
Eksamen i Statistik for biokemikere. Blok
Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)
CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr)
CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: XY. december 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)
Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning
1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402
Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Estimation og usikkerhed
Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode
Statistik Lektion 4. Variansanalyse Modelkontrol
Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede
En Introduktion til SAS. Kapitel 5.
En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel
Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable
Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som
MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,
13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde...
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 13: Exercises 13.1 Substrat........................................ 1 13.2 Polynomiel regression................................
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistisk Model Indhold Binomialfordeling Sandsynlighedsfunktion Middelværdi og spredning 1 Aalen: Innføring i statistik med medisinske eksempler
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller
Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =
Bilag 7. SFA-modellen
Bilag 7 SFA-modellen November 2016 Bilag 7 Konkurrence- og Forbrugerstyrelsen Forsyningssekretariatet Carl Jacobsens Vej 35 2500 Valby Tlf.: +45 41 71 50 00 E-mail: kfst@kfst.dk Online ISBN 978-87-7029-650-2
Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration
Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion
Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning
Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,
CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)
CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)
Kvantitative Metoder 1 - Efterår 2006. Dagens program
Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske
Module 4: Ensidig variansanalyse
Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2
Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1
Kvantitative Metoder 1 - Forår Dagens program
Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Matematik A. Højere handelseksamen
Matematik A Højere handelseksamen hhx131-mat/a-705013 Mandag den 7. maj 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.
Modeller for ankomstprocesser
Modeller for ankomstprocesser Eric Bentzen Institut for Produktion og Erhvervsøkonomi Handelshøjskolen i København November 2007 1 . Afsnit Indhold Side 1 Indledning 3 2 Ankomstprocessen 3 3 Servicesystemet
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk
Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.
Statistik Formelsamling. HA Almen, 1. semester
Statistik Formelsamling HA Almen, 1. semester Statistik - Formelsamling Indholdsfortegnelse Hvordan kan formelsamlingen bruges?... 5 Værd at vide... 5 Oversigt Mest brugte symboler... 5 Disclaimer... 5
02402 Løsning til testquiz02402f (Test VI)
02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Fagplan for statistik, efteråret 2015
Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat
Økonometri Lektion 1 Simpel Lineær Regression 1/31
Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen
13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde...
Modul 13: Exercises 13.1 Substrat.......................... 1 13.2 Polynomiel regression.................. 3 13.3 Biomasse.......................... 4 13.4 Kreatinin.......................... 7 13.5 Læsefærdighed......................