Der skal billeder på matematikken

Størrelse: px
Starte visningen fra side:

Download "Der skal billeder på matematikken"

Transkript

1 PULSnr Der skal billeder på matematikken Et udviklingsarbejde Michael Wahl Andersen Lone Kathrine Petersen

2 Indholdsfortegnelse Forord... 3 Indledning... 4 Baggrund for udviklingsarbejdet... 4 Udviklingsarbejdets placering... 5 Teoretisk forståelsesramme... 6 Sprog... 6 Arbejdshukommelsen... 6 Dual kodning... 7 Projektets metodiske tilgang... 9 Etableringsfasen... 9 Undervisningsforløb Elementerne i forløbet ALP-test Vi anmelder vores matematikbog Relationer mellem repræsentationer Relationer og relationskort Division og repræsentationskort At læse i matematikbogen Fabrikation af en side til en matematikbog Evaluering af forløbet Konklusion Perspektivering Litteratur Denne rapport er udarbejdet af lektor, cand. pæd. psyk. Michael Wahl Andersen Der skal billeder på matematikken, PULSnr Side 2

3 Forord Dette udviklingsarbejde er kommet i stand med tilskud fra Undervisningsministeriet, Afdelingen for grundskole og folkeoplysning. Udviklingsarbejdet er foregået dels på Engskolen i Herlev, dels på Strandgårdsskolen i Ishøj. Det er resultaterne af arbejdet på Strandgårdsskolen, der formidles i denne rapport. En tak til lærere og elever fra Engskolen for deres bidrag til dette udviklingsarbejde. En særlig tak til lærer Niels Olesen og eleverne fra Strandgårdsskolen for deres bidrag til dette udviklingsarbejde. Boganmeldelse fra to elever i 8. klasse Der skal billeder på matematikken, PULSnr Side 3

4 Indledning Baggrund for udviklingsarbejdet Tosprogede elever klarer sig i gennemsnit ringere i folkeskolen end etnisk danske elever. Ifølge OECD s PISA-undersøgelse fra 2003 og den særlige københavner-pisa, der undersøger københavnske skoler særskilt, er der en betydelig sammenhæng mellem elevernes testresultater og deres etniske baggrund. En mere dybdegående analyse af testresultaterne peger på, at socioøkonomiske forskelle kun kan forklare omkring 50 % af forskellen på tosprogedes og etnisk danske elevers præstationer. Den resterende forskel indikerer, at tosprogede elever generelt har sværere betingelser i undervisningen, fx sproglige og kulturelle, end etnisk danske elever. Rönnberg og Rönnberg (2001) problematiserer opdelingen af matematiklæring og sproglæring. De argumenterer for, at undervisningen i matematik stiller store krav til elevernes sprogbeherskelse. Da sproget har en væsentlig indflydelse på udvikling af elevernes tænkning også i matematik er det en indlysende fordel, at eleverne får mulighed for at anvende det sprog, de behersker i matematik. Savignon (1997) argumenterer for, at begrebsdannelsen udvikles ved, at man kobler ny viden til allerede eksisterende viden. De kognitive strukturer, der opbygges, relaterer sig med andre ord til de lingvistiske input eleven modtager og med elevens allerede eksisterende viden på første og andet sproget. For at kunne tilrettelægge et undervisningstilbud, der inddrager ovenstående problemstillinger, kan lærerne fx tilrettelægge undervisningen i matematik således, at den sproglige dimension styrkes, tilgodeser alle elever, og i særlig grad være opmærksom på at tosprogede elever får mulighed for at deltage aktivt i undervisningen, eller give læreren redskaber til at afgøre, hvilke forhold der påvirker kvaliteten af elevernes tilegnelse af viden og kunnen i matematik. Faldgruppen i denne sammenhæng er, at læreren forsøger at undgå den sproglige dimension for at tilgodese de tosprogede elever; ved kun at stille opgaver uden tekst. Udgangspunktet for dette udviklingsarbejde er at prøve at koble verbalt og nonverbalt sprog til faglig læsning matematik. Nanci Bell and Kimberly Tuley (2003) argumenterer for, at evnen til at skabe mentale billeder (nonverbalt sprog) for matematiske begreber er direkte koblet til succes i matematisk tænkning og informationsbearbejdning. Men fordi nogle børn, ikke har de forudsætninger, der skal for at skabe mentale billeder, bliver de ofte misforstået i retning af ikke at forsøge, være glemsomme og ukoncentrerede eller ligefrem at have dyskalkuli. Der skal billeder på matematikken, PULSnr Side 4

5 I udviklingsarbejdet har der derfor været fokus på det verbale og det nonverbale sprogs muligheder i forbindelse med læring i matematik. Det teoretiske grundlag bygger på teorien om dual kodning. Matematik er her forstået som en kognitiv aktivitet, der fordrer det Paivio (2006) kalder for dual kodning (dual coding). Ifølge denne forståelse består tænkning af et verbalt og et nonverbalt afkodningssystem. Damasio (2001) argumenterer for, at vi altid tænker i billeder. De fleste af de ord, vi anvender i vores indre tale, eksisterer som billeder i vores bevidsthed. Hvis de ikke blev til om end aldrig så flygtige billeder, ville det ikke være noget, man kunne vide. Paivio skriver, at den mentale billeddannelse er fundamental for tænkning omkring tal. Fx bliver ordet (det verbale system) "kvart" meningsløst, hvis det ikke knyttes til det referentielle billede (det nonverbale system)"¼". Udviklingsarbejdets placering Udviklingsarbejdet er foregået på strandgårdsskolen i Ishøj. Skolen er en heldagsskole, der har elever i almen-klasser fra bh. -9. klassetrin i 2 spor. Derudover er der gruppeordninger fra 1. til 10. klassetrin. Skolens obligatoriske undervisning er fra 8.10 til for 0. til 6. årgang årgang har normalt skema og tilbydes lektiecafé på skolens læringscenter fra kl til mandag til torsdag. Før og efter undervisningen er der en skolefritidsordning for indmeldte elever fra 6.00 til 8 og fra til 17. Den praktiske udførsel af udviklingsarbejdet er foregået på 8. årgang i juni/juli måned Der skal billeder på matematikken, PULSnr Side 5

6 Teoretisk forståelsesramme Udviklingsarbejdets teoretiske baggrund bygger på såvel klassisk teori om sprog (Vygotsky, 1971) såvel som nyere teori om arbejdshukommelsens opbygning og funktion, der blev beskrevet først gang af Baddely i 1972 (Baddely, 1974), samt teori om dual kodning, der handler om, hvordan mennesker koder information, hvilket er beskrevet af Paivio (2006). Sprog I leg og i andre aktiviteter benytter børn sig af bevægelser og gestik som udtryksformer. Vygotsky ser dette sprog på linje med det verbale sprog, når det gælder begrebsdannelse. Han hævder, at børns billedskabende aktiviteter er en videreførelse af gestikulationer, - stivnede gestikulationer (citeret efter Høines, 1998s. 114). Høines argumenterer videre for, at mange af de udviklingsmønstre, der findes i børns verbale sprog, er at finde i deres billeder. Børn udvikler sig gennem illustrationer forstået som sproglig aktivitet. Børns billedskabende aktiviteter udvikler sig og bliver mere og mere kommunikative. Billederne afslører et budskab, og det er vigtigt, at både modtager og afsender opfatter/tolker dette budskab. Konkrete billeder bliver på den måde et middel til at fastholde tænkning og et middel til at kommunikere et meningshold, der kan forstås som mentale billeder (Høines ibid.). Arbejdshukommelsen Arbejdshukommelsen er den aktive proces, der opstår, når vi tænker os om, når vi overvejer, repeterer, fordyber os, stiller spørgsmål og i det hele taget tager vort kognitive arsenal i brug. En vigtig pointe i denne definition er, at arbejdshukommelsen er dynamisk og opstår i situationen. Arbejdshukommelsen er relateret til den situation abstrakt som konkret der arbejdes med i et givent øjeblik. Arbejdshukommelse eller den arbejdende hukommelse" betegner evnen til aktivt at fastholde de oplysninger, der er nødvendige for at udføre komplekse opgaver som fx ræsonnement, forståelse og læring. Arbejdshukommelsen fungerer som et mentalt arbejdsrum, som man kan anvende i forbindelse med komplekse kognitive operationer. Ifølge Gathercole og Alloway (2009) er hovedregning fx et godt eksempel på en aktivitet, der kræver arbejdshukommelse. Der skal billeder på matematikken, PULSnr Side 6

7 Situation: Læreren siger: De to tal skal findes frem fra langtidshukommelsen og lagres i arbejdshukommelsen 2. For at kunne udføre additionen er man nødt til at hente additionsreglerne i langtidshukommelsen 3. Man skal nu anvende reglerne for addition af tocifrede tal med tierovergang. 4. Delresultaterne skal holde i arbejdshukommelsen, mens man regner videre 5. Til slut lægges delresultaterne sammen for at få det endelige resultat. 6. Resultatet siges eller skrives Denne proces stiller store krav til arbejdshukommelsen. Arbejdshukommelsen er en forudsætning for at foretage denne form for kompleks mental aktivitet uden at have hjælpemidler. Arbejdshukommelsen gør eleverne i stand til at planlægge og kontrollere deres aktiviteter. Eleverne kan altså fastholde og bruge en information - ud over den konkrete situation - hvor den er givet eller oplevet, samt relatere informationen til tidligere opnået viden og erfaringer. Arbejdshukommelsen er med andre ord en forudsætning for abstrakt tænkning og derfor essentiel for læring i matematik. Dual kodning Hjernen koder information via den fonologiske sløjfe og det visuospatiale tegnebræt. Matematik er med andre ord en kognitiv aktivitet, der fordrer det Paivio (2006) kalder for dual kodning (dual coding). Ifølge denne forståelse består tænkning af et verbalt og et nonverbalt afkodningssystem. Damasio (2001) argumenterer for, at vi altid tænker i billeder. De fleste af de ord, vi anvender i vores indre tale, eksisterer som billeder i vores bevidsthed. Hvis de ikke blev til om end aldrig så flygtige billeder, ville det ikke være noget, man kunne vide. Paivio skriver, at den mentale billeddannelse er fundamental for tænkning om tal. Relationen mellem indre og ydre repræsentationer ved dual kodning Der skal billeder på matematikken, PULSnr Side 7

8 Model af teorien om dual kodning, Andersen (2009) efter Paivio(2006) Som det ses af ovenstående figur, består dual kodning altså af to systemer; et verbalt sprogsystem og et nonverbalt billedsystem. Dette er grundlaget for abstrakt tænkning. Tænkningen kan komme til udtryk gennem verbalt sprog og gennem nonverbal illustration. De dobbelte pile antyder muligheden af, at man ud fra elevernes responser kan danne en forståelse af deres tænkning. Der skal billeder på matematikken, PULSnr Side 8

9 Projektets metodiske tilgang I denne interventionsbaserede undersøgelse inddrages aktiviteter i 8. klasse både som udtryk for undervisningens indhold og for elevernes læring i relation til begrebsudvikling og strategiudvikling. Etableringsfasen Der er tale om et interventionsbaseret udviklingsarbejde med på forhånd fastlagte interventioner. Interventioner ALP test Vi anmelder vores matematikbog Relationer mellem repræsentationer Relationer og relationskort Division og repræsentationskort At læse i matematikbogen Fabrikation af en side til en matematikbog Lærernes målformulering: Formålet med udviklingsarbejdet i 8. klasse er delt op i to faser: Del 1 Vi vurderer, at tosprogede elever i højere grad end etnisk danske elever, har svært ved at skabe relationer mellem de repræsentationsformer, der forekommer i matematikken, ligesom de har vanskeligt ved at danne mentale billeder. Da det ligeledes vurderes, at disse elementer er af afgørende betydning for tilegnelsen af matematiske kompetencer, er formålet med projektets første del at afprøve og udvikle strategier, der i højere grad end nu giver de tosprogede elever mulighed for at tilegne sig matematiske kompetencer. Del 2 Den anden fase af projektet handler om at give eleverne mulighed for at tilegne sig strategier til læsning af tekster i matematik, hvor første del af projektet er tænkt som en understøttelse af dette arbejde. Der skal billeder på matematikken, PULSnr Side 9

10 Undervisningsforløb Startdato 3. juni Slutdato 23.juni Tidsforbrug: 20 lektioner, svarende til 5 ugers matematikundervisning. Elementerne i forløbet ALP-test Denne test, der er udviklet af Gudrun Malmer, fungerede som præ-test og post-test for udviklingsarbejdet. Tove Tobisen beskriver ALP-testen som en screeningstest, der afdækker færdigheder i afkodning, læseforståelse, matematiske grundbegreber og matematisk-logisk tænkning. Den er udviklet af Gudrun Malmer, der har været lektor på Lärarhögskolan i Malmö. Hun har mange års erfaringer med undervisning af elever med matematikvanskeligheder, og hun har skrevet en række bøger og artikler om emnet (se litteraturlisten). Testen består af 8 opgavesæt med hver 10 opgaver af stigende sværhedsgrad. ALP 1-5 kan bruges fra de første klassetrin til 7. klasse. ALP 6-8 kan anvendes fra klasse og til voksne. Testen er ikke standardiseret, og lærerne opfordres til at vurdere opgaverne ud fra elevernes aktuelle færdigheder. Til opgaverne stilles spørgsmål på tre niveauer. A. Afkodning af ord B. Fortolkning af ord og udtryk og udførelse af simple regneoperationer. C. Logiske slutninger og sammensatte regneoperationer. Opdelingen i simple og sammensatte regneoperationer kan defineres ved, at den simple regneoperation, B- opgaverne, involverer forholdet mellem to talstørrelser, mens komplekse regneoperationer, C-opgaverne, vil kræve udregninger i flere trin. De logiske slutninger afgør, hvor elegant eller kreativt man klarer en kompleks udregning. Gudrun Malmer anbefaler, at eleven har mulighed for at tegne eller skitsere problemstillingen og eventuelt lave udregninger, som en hjælp til at løse opgaverne. Der skal billeder på matematikken, PULSnr Side 10

11 Vi anmelder vores matematikbog En boganmeldelse forstås i denne sammenhæng som en analyse af matematikbogen, hvor eleverne har skullet forholde sig til bogens form og indhold, så de blev klogere på og mere bevidste om, hvordan deres bog er bygget op. Den overordnede hensigt er, at eleverne bliver opmærksomme på, hvad der er nemt, og hvad der er svært ved deres matematikbog. Boganmeldelse fra en elev i 8. klasse Lærerrefleksioner: Vi startede med en mundtlig introduktion. De har arbejdet med bogen før, men de gav op. Det var derfor relativt nemt at klargøre målet for eleverne at de skulle blive bedre til at læse i deres matematikbog Eleverne startede med at lave en boganmeldelse af deres matematikbog. Hensigten med dette var, at eleverne skulle forholde sig bevidst til indholdet og bogens genre. Uddrag af anmeldelserne følger herunder. Matematikbogen er meget stor, hvor der på forsiden er nogle forskellige billeder og navnet på bogen. På bagsiden står der hvor bogen er trykt og diverse ting. Selve bogen består af en masse tekst og illustrationer, der indeholder forskellige opgaver. Bogen indeholder mange forskellige emner og hver emne står øverst på siderne. Bogen kan være svær at forstå, da der er en masse svære tekster til opgaverne. Der skal billeder på matematikken, PULSnr Side 11

12 Denne her matematikbog har et indhold. Der er store tegninger på hver opgave det er en grundbog. Jeg synes bogen er svær fordi ordene er svære. Teksten er meget svær og der er meget mere tekst end illustrationer --- der er næsten ikke nogen regnestykker. Det er en stor bog når man tænker på hvor meget vi har arbejdet med før. I selve bogen er der meget tekst, der er mange opgaver i den, bogen er svær at læse, ordene er sat op på en anden måde Der er meget tekst, der står meget. De giver mange eksempler på alle opgaverne. Bogen virker meget stor og tung. Sproget er lidt uforståeligt i forhold til vores sprog dansk. Der er mange svære ord synes jeg, som jeg ikke kan forstå, Der er mange opgaver. Der er nogle gode billeder. Sproget kunne være lidt mere forståeligt. Der er meget tekst i bogen og derfor kan den være svær for nogle. Der er mange sider i bogen, men den har mange billeder. Den passer ellers fint til en ottende klasses elev. Bogen virker stor, og derfor ser det ud til at det er en svær bog. Sproget er svært men forståeligt. Billederne gør opgaverne nemmere at forstå. Jeg synes den er god at bruge. Der er orden i bogen, men nogen gange kan det godt være forvirrende. Jeg synes den er svær for mig og den er også stor, så man ikke forstår meget. Den har mange ord som jeg ikke kender. Den er stor, og den er lidt svært. Der er også tekster, det er godt. Men jeg synes bogen er rigtig god fordi der er mange regninger. Relationer mellem repræsentationer For at kunne tilegne sig kompetence i matematik, skal eleverne have mulighed for at opbygge relationer mellem forskellige repræsentationsformer (Eriksen, 2000). Eriksen argumenterer for, at det ikke er repræsentationsformerne i sig selv, der er i fokus, men snarere relationerne mellem forskellige repræsentationsformer, der gør det muligt for eleverne at danne robuste begreber i matematik. Det er med andre ord fx ikke nok kun at arbejde med konkrete materialer. Det konkret udgangspunkt kan være fint, men det er vigtigt at være opmærksom på, at konkrete materialer har sin tid. Arbejdet med de forskellige matematiske repræsentationsformer skal resultere i en styrkelse af de mentale billeder, hvis det skal blive muligt at tænke matematik. Emanuelsons model (1995) kan læses sådan, at det er variationen i repræsentationsformerne, der internaliseres og muliggør dannelsen af mentale billeder, der lagres som begreber. Der skal billeder på matematikken, PULSnr Side 12

13 Transformationer mellem forskellige repræsentationsformer. Bearbejdning efter Emanuelsson (1995) Matematiklæring er en proces, hvor målet er indsigt i symbolske strukturer og relationer. Denne indsigt skabes dog ikke ved blot og bar træning af matematiske symboler. Man skal kunne sætte ord på matematik, knytte matematikken til hverdagssituation, knytte matematikken til konkrete repræsentationer samt generalisere matematikken gennem skriftlige symboler. Disse forskellige forestillinger om matematik, gør det muligt at skabe konkrete og mentale billeder på matematikken, der i sidste ende muliggør matematisk tænkning. Hvordan de forskellige repræsentationer kommer i spil, beror på elevernes forudsætninger, begrebernes beskaffenhed og konteksten. Nyere forskning (Sterner og Lundberg, 2002) understreger vigtigheden af, at eleverne får mulighed for at tilegne sig forskellige repræsentationer som led i deres matematiklæring. Repræsentationerne fungerer som medierende led fra det konkrete arbejde med matematik til dannelsen af abstrakte matematiske begreber. Det er gennem tilknytningen af forskellige repræsentationer til de matematiske begreber, at det for eksempel bliver muligt at håndtere problemer i matematik. Der skal billeder på matematikken, PULSnr Side 13

14 Sproget det indre som det ydre er væsentlige elementer i trianguleringen af erfaringer, repræsentationer og begreber ved tilegnelsen af funktionelle matematiske kompetencer. Relationer og relationskort Eleverne blev i første omgang introduceret til hverdagsbegrebet relation, forstået som at relation er en bestemmelse af noget i forhold til noget andet. Lærerne havde udarbejdet en række kort med billeder og symboler, som eleverne skulle parre. Der var tale om relationer fra hverdagen samt fra fysik og matematik, som eleverne kendte til i forvejen. Relationskortene så således ud. Eleverne parrede kortene og begrundede deres indbyrdes relationer. Lærerrefleksioner: Ordet relation blev præsenteret. Herefter arbejdede eleverne i makkerpar om sætninger der indeholdt relationer. Det kunne for eksempel være at et bord og en stol står i relation til hinanden. Drenge og piger kan stå i relation til hinanden hvilket forårsagede en del fnisen rundt om i hjørnerne men ellers en god snak. Der skal billeder på matematikken, PULSnr Side 14

15 Herefter blev relationsbrikkerne præsenteret. Eleverne fik at vide, at tekst tegning, billeder, formler parvist stod i relation til hinanden. Dette gav anledning til gode overvejelse. Fx var eleverne hurtige med relationen mellem fodbold og Sydafrika. En overvejelse om at en fodbold og rumgeometri også er en relation blev diskuteret og ja en nye fodbold er jo faktisk en kugle. Mange elever fik gode oplevelser ved selv, eller i samarbejde med en makker, at opdage, at et vinkeljern er et eksempel på en geometrisk figur, at en refleks også er det.. Division og repræsentationskort Division som begreb Eleverne i skolen møder begrebet division med udgangspunkt i at dele lige i konkrete situationer. Der findes to tilgange til begrebet division i forbindelse med løsningen af praktiske problemstillinger, der indeholder division. Man kalder disse kategorier for henholdsvis målings- og delingsdivision. Ved delingsdivision ved man, hvor mange delmængder der er man kender divisor. Vi har 36 boller, som Kristian og Laila skal dele mellem sig. Hvor mange boller får hver? Ved målingsdivision angiver divisor, hvor meget der skal være i hver delmængde. Det, man søger svar på, er, hvor mange delmængder bliver der. Hvor langt rækker det til? Vi har 36 boller. Der skal to boller i hver pose. Hvor mange poser skal der til? Relationen mellem multiplikation og division kan illustreres på følgende måde: 36 : 2 som delingsdivision kan opgaven løses som 2. x = 36 (2 gange har jeg 18 boller.) 36 : 2 som målingsdivision kan opgaven opfattes som x. 2 = 36 (18 gange har jeg 2 boller) Der skal billeder på matematikken, PULSnr Side 15

16 Målings- og delingsdivision Som det fremgår af figuren ovenover, bliver forskellen mellem målings- og delingsdivision først for alvor tydelig, når den underbygges af illustrationen. At forstå regnearterne er en proces. I undervisningen er det centralt, at eleverne udvikler deres evner til at genkende forskellige situationer og repræsentationsformer. Der skal billeder på matematikken, PULSnr Side 16

17 Lærerrefleksioner: Dette var svært, men eleverne gik til opgaven. Eleverne laver tegninger af de to opgavetyper. Det gik godt med at lave de to typer af divisionshistorier. Men det er meget svært, og jeg oplevede, at jeg selv kom i vildrede i nogle situationer. Herunder følger to eleveksempler. Elevernes egne repræsentationskort for division Hensigten med undervisningssekvensen var, at eleverne tilegnede sig kompetencer i division som henholdsvis delings- og målingsdivision. relationerne mellem de forskellige repræsentationsformer. relationen mellem sprog, billeder og symboler. anvendelsen af delings og målingsdivision til at løse problemer i konkrete situationer. relationen mellem delings- og målingsdivision - at divisors rolle er forskellig. Der skal billeder på matematikken, PULSnr Side 17

18 at behandle begge typer division som omvendt multiplikation det er den samme talmæssige operation. at læse tekstopgaver og danne mentale billeder på det læste. Et sæt kort består af ti individuelle kort: En fortælling med tal Et skriftligt svar Et resultat En billede repræsentation Et abstrakt billede Tallinjehop Fortløben subtraktion Multiplikation (omvendt division) Et brøktal En divisionsopstilling I undervisningssekvensen arbejdede eleverne med repræsentationskort for målings- og delingsdivision. De vedhæftede kort til repræsentationskortene blev lagt i hver deres bunke. Eleverne fik hver en plads på væggen, der var delt i to søjler. En søjle for delingsdivision og en søjle til målingsdivision. Eleverne skulle så tage et kort fra hver bunke og diskutere om kortet skulle placeres som henholdsvis målings- og delingsdivision. Relationerne mellem de forskellige repræsentationer blev diskuteret, samtidig med at leverne overvejede og grupperede de forskellige korts indhold. Repræsentationer var: Det konkrete billede, det abstrakte billede, tallinjehoppet, brøktallet, fortløben subtraktion, multiplikationsstykket, divisionsstykket. Ikke-repræsentationer var: Fortællinger med tal, resultatet, det skriftlige svar. Der skal billeder på matematikken, PULSnr Side 18

19 De10 repræsentationskort for henholdsvis målingsdivision og delingsdivision Der skal billeder på matematikken, PULSnr Side 19

20 Lærerrefleksioner Vi valgte de to fortællinger, der ses ovenfor. Vi valgte at samle hele årgangen. Forberedelserne var tidskrævende. Opgaverne skulle kopieres og klippes ud. Der skulle være et sæt til hvert makkerpar. Kortene skulle lægges i bunker og eleverne skulle så passe de 20 repræsentationer i en delebunke og en målebunke Vi var klar over, at det skulle forberedes grundigt. Der skulle være nok tyggegummi og rigeligt med vægplads. Der skulle også være borde nok til at lægge de forskellige stabler kort på. Eleverne arbejdede i makkerpar, og til sidst havde vi en fælles fremlæggelse. Sammenfattende gik det rigtig godt. Der blev talt og diskuteret meget under forløbet. Niels og 8. klasse i samtale om repræsentationskortene. Eleverne repræsentationskort sat op på tavlen. At læse i matematikbogen Styrkenotat Styrkenotat er en strategi, som kan gøre det lettere for eleverne at skelne mellem hoved idéer og detaljer, når de skal afkode og forstå informationerne i deres matematikbog. Styrkenotat kan anvendes i forlængelse af samtale og tankekort, men den kan også anvendes som en selvstændig strategi. Der skal billeder på matematikken, PULSnr Side 20

21 Et styrkenotat struktureres efter de forskellige tekstelementers betydning eller styrke. Styrke 1 vurderes som tekstens meningsbærende element. De efterfølgende styrkemarkeringer er udtryk for de andre tekstelementers vigtighed, hvor styrke 3 er underordnet styrke 2 og så fremdeles. Det er vigtigt med lærerstyret vejledning, når man arbejder med styrkenotat som læringsstrategi. Når det arbejdes med faglig læsning i matematik og eleverne skal lave styrkenotat, kan det være en fordel at indlede med en samtale, der kan resultere i et styrkenotat. Man kan eventuelt fremstille et tankekort som udgangspunkt for styrkenotatet. Både tankekort og styrkenotat er en måde at visualisere overordnede og underordnede niveauer. Herunder følger et eksempel på et styrkenotat: Et eksempel på et styrkenotat fra arbejdet i 8. klasse Styrkenotat kan anvendes ved: introduktion til nyt tema eller afsnit som fortsættelse af en samtale eller et tankekort opsummering av et tema repetition Styrkenotatet har fokus på: begrebslæring underordnede og overordnede niveauer at støtte eleverne til selv at strukturere en tekst Der skal billeder på matematikken, PULSnr Side 21

22 Eksempel på et styrkenotat Kolonnenotat Kolonnenotatet kan bruges i rigtig mange læsesituationer. Det er en metode, som eleverne meget hurtigt tager til sig, den giver god overskuelighed, den er enkelt og den er ligetil at lave. I eksemplet herunder er der taget udgangspunkt en side fra en matematikbog. Kolonnenotatet er altså et redskab, der skal hjælpe eleverne med at få styr på de faglige elementer i teksten. Kolonnenotatet kan varieres efter behov, som for eksempel med flere kolonner eller lignende. Kolonnenotat, Job 83, side Teksttyper i jobbet: Overskrift, underoverskrift, brødtekst, opgavetekst, faktaboks, Illustration, diagram, skema Overskrift Job 83 Underoverskrift Opgaver Brødtekst Diagram Faktaboks Illustration Skema Beskrivelse af funktioner Tre opgaver 1, 2, 3 Brødtekst Diagram Silvan Ligefrem proportionalitet Tre opgaver 4, 5, 6 Brødtekst Faktaboks definition Skema Eksempel på anvendelse af et kolonnenotat i matematik Der skal billeder på matematikken, PULSnr Side 22

23 Lærerrefleksioner Vi valgte at skrive ordet Funktion op på tavlen og talte om, hvad funktion kunne betyde i det virkelige liv. Ellers var opgaven: Makkerpar- bladre afsnittet igennem. Skriv nogle stikord eller sætninger ned, som har med funktioner at gøre. Det handlede fx om Sammenhæng, koordinatsystem, ligninger. Det er når 4 æbler koster dobbelt så meget som to æbler. Herefter præsenterede vi styrkenotatet, hvor vi i fællesskab modellerede et afsnit. Eleverne skulle så selv lave et styrkenotat over et andet afsnit (det vi arbejdede med). Vi opdagede, at der er to modeller for styrkenotatet, så vi (lærerne) valgte det ene. Inden vi gik i gang med at lave styrkenotatet, gav vi eleverne en startopgave: Skriv alle de forskellige teksttyper ned, I kan finde i afsnittet. Arbejdet med at lave styrkenotatet tog et modul. Måden vi arbejdede på var: Læs opgaven, udfyld styrkenotatet. Hvilke tekstelementer har du til rådighed? Hvilke skal du bruge her? (tekstboksen gav ingen mening og diagrammet handlede om noget helt andet). Eleverne gik derefter i gang med opgaven. Styrke 1, 2 og 3 var givet - eleverne valgte selv, hvilken styrke de ville give brødtekst, faktaboks og diagrammet. Eleverne brugte også Kolonnenotatet. Fabrikation af en side til en matematikbog Til sidst i forløbet kan man lade eleverne arbejde med selv at formulere et afsnit, der ligner afsnittene fra deres matematikbog. Når eleverne selv formulerer sig, bliver det tydeligt, hvilke kompetencer de mestrer. Hæng de forskellige afsnit op i klassen, lad eleverne løse hinandens opgaver og evt. kommentere dem. Der skal billeder på matematikken, PULSnr Side 23

24 Opgaven til 8. klasse var formuleret på følgende måde: Målet: I skal lave en side til jeres matematikbog Den skal være opbygget på samme måde, som den matematikbog I har arbejdet med. Kravene er: Siden skal indeholde mindst 3 opgaver Den skal indeholde en overskrift og en underoverskrift Herudover skal den indeholde mindst to andre elementer Elementerne skal stå i relation til hinanden Sådan kommer I i gang: 1. Find et emne 2. Lav et storyboard Lærerrefleksioner: Eleverne byggede selv en side til en matematikbog ud fra den systematik, som er i deres matematikbog. Opgaverne blev skrevet ind i Power Point. Opgaverne blev sat op i klassen. De enkelte afsnit blev præsenteret og diskuteret. Herunder følger eksempler på sider. Der skal billeder på matematikken, PULSnr Side 24

25 Dette er tre eksempler på elevernes egne matematikopgaver Der skal billeder på matematikken, PULSnr Side 25

26 Lærerkonklusioner 1. Arbejdet med relationer og repræsentationsformer skal ind som en central dimension i arbejdet med matematik for at styrke elevernes evne til mental billeddannelse og dermed begrebsdannelse. 2. Det sproglige arbejde skal styrkes, bl.a. som en forudsætning for at kunne læse de faglige tekster. Jeg vurderer, at dette udviklingsforløb gav svaret på, hvornår eleverne for alvor rykker. Det gør de, når deres sprog kommer i spil. Der skal billeder på matematikken, PULSnr Side 26

Der skal billeder på matematikken

Der skal billeder på matematikken PULSnr. 124718 Der skal billeder på matematikken Et udviklingsarbejde Michael Wahl Andersen Lone Kathrine Petersen Indholdsfortegnelse Forord... 3 Indledning... 4 Baggrund for udviklingsarbejdet... 4 Udviklingsarbejdets

Læs mere

Der skal billeder på matematikken

Der skal billeder på matematikken Der skal billeder på matematikken If I can t picture it, I can t understand it Albert Einstein Norsma, 2009, Reykjavik Michael Wahl Andersen Projekter 2009-2010 1) Undervisningsministeriet Specialundervisning

Læs mere

Om at læse i matematik. Matematik i Marts, 2010 Michael Wahl Andersen

Om at læse i matematik. Matematik i Marts, 2010 Michael Wahl Andersen Om at læse i matematik Matematik i Marts, 2010 Michael Wahl Andersen 6 Begrundelser Faglig læsning hvorfor? Fælles mål Mentale repræsentationer Tænkning Matematikbogen som genre Bogens opbygning Viden

Læs mere

Faglig læsning i matematik. - Michael Wahl Andersen, 2011

Faglig læsning i matematik. - Michael Wahl Andersen, 2011 Faglig læsning i matematik - Michael Wahl Andersen, 2011 Inden vi går i gang Tal med din nabo om: Hvorfor er jeg kommet i dag? Hvad håber jeg på at få med hjem? Hvad skal jeg i hvert tilfælde have med

Læs mere

Faglig læsning i matematik

Faglig læsning i matematik Faglig læsning i matematik af Heidi Kristiansen 1.1 Faglig læsning en matematisk arbejdsmåde Der har i de senere år været sat megen fokus på, at danske elever skal blive bedre til at læse. Tidligere har

Læs mere

Om at læse i matematik

Om at læse i matematik Om at læse i matematik Faglig læsning i matematik Ålborg, 2010 Michael Wahl Andersen 6 Begrundelser Faglig læsning hvorfor? Fælles mål Mentale repræsentationer Tænkning Matematikbogen som genre Bogens

Læs mere

Matematiske billeder, sprog og læsning. Michael Wahl Andersen

Matematiske billeder, sprog og læsning. Michael Wahl Andersen Matematiske billeder, sprog og læsning Michael Wahl Andersen Michael Wahl Andersen Matematiske billeder, sprog og læsning 1. udgave, 2. oplag, 2010 2008 Dafolo Forlag og forfatteren DTP og omslag: Lars

Læs mere

Hvorfor gør man det man gør?

Hvorfor gør man det man gør? Hvorfor gør man det man gør? Ulla Kofoed, lektor ved Professionshøjskolen UCC Inddragelse af forældrenes ressourcer - en almendidaktisk udfordring Med projektet Forældre som Ressource har vi ønsket at

Læs mere

Faglig læsning i matematik. - Michael Wahl Andersen, Ålborg, 2012

Faglig læsning i matematik. - Michael Wahl Andersen, Ålborg, 2012 Faglig læsning i matematik - Michael Wahl Andersen, Ålborg, 2012 Begrundelser Faglig læsning hvorfor? Fælles mål Mentale repræsentationer Tænkning Aktiv læsning Matematikbogen som genre Bogens opbygning

Læs mere

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK) Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog

Læs mere

Faglig læsning i matematik En væsentlig del af matematisk kompetence. - hvordan synes vi egentlig selv, det går?? - allerede på mellemtrinnet.

Faglig læsning i matematik En væsentlig del af matematisk kompetence. - hvordan synes vi egentlig selv, det går?? - allerede på mellemtrinnet. Faglig læsning i matematik En væsentlig del af matematisk kompetence. - hvordan synes vi egentlig selv, det går?? - allerede på mellemtrinnet. Sorø den 25. marts 2010 Og så til dokumentationen afgangsprøven

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Undervisningsplan for matematik

Undervisningsplan for matematik Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Forenklede Fælles Mål. Aalborg 30. april 2014

Forenklede Fælles Mål. Aalborg 30. april 2014 Forenklede Fælles Mål Aalborg 30. april 2014 Hvorfor nye Fælles Mål? Formål med nye mål Målene bruges ikke tilstrækkeligt i dag Fælles Mål skal understøtte fokus på elevernes læringsudbytte ikke aktiviteter

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

Undervisningsplan for faget matematik. Ørestad Friskole

Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2

Læs mere

Guide til lektielæsning

Guide til lektielæsning Guide til lektielæsning Gefions lærere har udarbejdet denne guide om lektielæsning. Den henvender sig til alle Gefions elever og er relevant for alle fag. Faglig læsning (=lektielæsning) 5- trinsmodellen

Læs mere

Bilag til Merete Brudholms artikel. Bilag 1. Læsning i alle fag

Bilag til Merete Brudholms artikel. Bilag 1. Læsning i alle fag Bilag til Merete Brudholms artikel Bilag 1 Til drøftelse i klassens lærerteam Hvilke læsemåder behersker eleverne i relation til genrerne fortællende og informerende tekster, og hvilke skal implementeres

Læs mere

LÆSNING I OVERBYGNINGEN. Handleplan for læsning i overbygningen

LÆSNING I OVERBYGNINGEN. Handleplan for læsning i overbygningen LÆSNING I OVERBYGNINGEN Handleplan for læsning i overbygningen LÆSNING I OVERBYGNINGEN Kompetente læsere Elevernes faglige læsning bør være i fokus i hele grundskoleforløbet. Uanset fag arbejder læreren

Læs mere

Årsplan for 2.kl i Matematik

Årsplan for 2.kl i Matematik Årsplan for 2.kl i Matematik Vi følger matematiksystemet "Matematrix". Her skal vi i år arbejde med bøgerne 2A og 2B. Eleverne i 2. klasse skal i 2. klasse gennemgå de fire regningsarter. Specielt skal

Læs mere

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,

Læs mere

Evaluering test screening udredning. Øvelse: Udredningsmateriale til eget brug.

Evaluering test screening udredning. Øvelse: Udredningsmateriale til eget brug. Evaluering test screening udredning Observationer Det kognitive niveau Det neuro-genetiske niveau Udredning Øvelse: Udredningsmateriale til eget brug. Der findes ingen absolut sandhed kun fortolkninger

Læs mere

Matematik og arbejdshukommelse

Matematik og arbejdshukommelse Matematik og arbejdshukommelse Når man glemmer, hvad det er man skal huske. Lektor Michael Wahl Andersen Hvad skal jeg have med hjem (need to know) Hvad kunne være sjovt at få med hjem (nice to know) Skriv

Læs mere

Mundtlighed i matematikundervisningen

Mundtlighed i matematikundervisningen Mundtlighed i matematikundervisningen 1 Mundtlighed Annette Lilholt Side 2 Udsagn! Det er nemt at give karakter i færdighedsregning. Mine elever får generelt højere standpunktskarakter i færdighedsregning

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Indhold. Indledning 7 Læsevejledning 9

Indhold. Indledning 7 Læsevejledning 9 Indhold Indledning 7 Læsevejledning 9 1 Hvad er åbne opgaver? 13 2 Hvorfor arbejde med åbne opgaver? 17 3 Udfordringer i arbejdet med åbne opgaver 19 4 En ny didaktisk kontrakt 21 5 Et par eksempler 23

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

Kortlægning. Hvis en test skal være i orden så. Illustration af reliabilitet og validitet

Kortlægning. Hvis en test skal være i orden så. Illustration af reliabilitet og validitet Kortlægning 1 Hvis en test skal være i orden så Skal den være valid gyldig. Er det man undersøger også det man ønsker at undersøge. Finder man fx elevernes idrætsevner ved at observere, hvordan de smider

Læs mere

Årsplan for matematik i 3. klasse

Årsplan for matematik i 3. klasse www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: kontor@aalborg-friskole.dk Årsplan for matematik i 3. klasse Mål Eleverne bliver i stand til at forstå og anvende matematik

Læs mere

Årsplan for matematik i 1. klasse 2011-12

Årsplan for matematik i 1. klasse 2011-12 Årsplan for matematik i 1. klasse 2011-12 Klasse: 1. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 5 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Undervisning af tosprogede elever I matematik

Undervisning af tosprogede elever I matematik Undervisning af tosprogede elever I matematik 4. Sproget ind i matematikken målrettet skole Kl. 11:30-12:15 ved cand. pæd.psyk. og lektor i matematik og psykologi, Professionshøjskolen UCC. Michael Wahl

Læs mere

Matematik på Humlebæk lille Skole

Matematik på Humlebæk lille Skole Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder

Læs mere

En matematikundervisning der udfordrer alle elever.

En matematikundervisning der udfordrer alle elever. En matematikundervisning der udfordrer alle elever. Lær af nye bøger, men af gamle lærere!! Det vigtigste spørgsmål handler ikke længere om, hvordan børn lærer matematik men om, hvordan de tænker, når

Læs mere

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Nye Fælles Mål og årsplanen Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Interview Find en makker, som du ikke kender i forvejen Stil spørgsmål, så du kan fortælle os andre om vedkommende ift.:

Læs mere

SYNLIG LÆRING OG LÆRINGSMÅL I MATEMATIK. Sommeruni 2015. Louise Falkenberg og Eva Rønn

SYNLIG LÆRING OG LÆRINGSMÅL I MATEMATIK. Sommeruni 2015. Louise Falkenberg og Eva Rønn SYNLIG LÆRING OG LÆRINGSMÅL I MATEMATIK Sommeruni 2015 Louise Falkenberg og Eva Rønn UCC PRÆSENTATION Eva Rønn, UCC, er@ucc.dk Louise Falkenberg, UCC, lofa@ucc.dk PROGRAM Mandag d. 3/8 Formiddag (kaffepause

Læs mere

Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC

Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Komrapporten Kompetencer og matematiklæring. Ideer og inspiration til udvikling af matematikundervisningen

Læs mere

Matematik. Læseplan og formål:

Matematik. Læseplan og formål: Matematik Læseplan og formål: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

UNDERVISNING I PROBLEMLØSNING

UNDERVISNING I PROBLEMLØSNING UNDERVISNING I PROBLEMLØSNING Fra Pernille Pinds hjemmeside: www.pindogbjerre.dk Kapitel 1 af min bog "Gode grublere og sikre strategier" Bogen kan købes i min online-butik, i boghandlere og kan lånes

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Kompetencemål for Matematik, 4.-10. klassetrin

Kompetencemål for Matematik, 4.-10. klassetrin Kompetencemål for Matematik, 4.-10. klassetrin Matematik omhandler samspil mellem matematiske emner, matematiske arbejds- og tænkemåder, matematikdidaktisk teori samt matematiklærerens praksis i folkeskolen

Læs mere

Testplan Nordbyskolen 2014-2015. Testplan. 2015-2016 Matematik

Testplan Nordbyskolen 2014-2015. Testplan. 2015-2016 Matematik Testplan 2015-2016 Matematik 1 Testplan matematik: Handleplan Forord Matematik er lige så vigtigt som læsning 1 - På erhvervsskolerne fortæller elever, at de bliver hæmmet lige så meget af ikke at kunne

Læs mere

Håndbog over strategier til før- under og efterlæsning

Håndbog over strategier til før- under og efterlæsning Håndbog over strategier til før- under og efterlæsning Af Lillian Byrialsen, læsekonsulent i Norddjurs Kommune 1 At læse for at lære Indhold Indledning Hvad gør en kompetent læser i 9. kl? Beskrivelse

Læs mere

At regne med forståelse

At regne med forståelse r FAGLIG LÆSNING OG SKRIVNING l FAGENE At regne med forståelse - Faglig læsning og skrivning i matematik Af Michael Wahl Andersen og Trine Kjær Krogh Der bliver i øjeblikket afsat mange ressourcer til

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Årsplan matematik 1. klasse 2015/2016

Årsplan matematik 1. klasse 2015/2016 Årsplan matematik 1. klasse 2015/2016 Undervisningen vil tage udgangspunkt i systemet Matematrix. I 1. klasse får eleverne udleveret 2 arbejdsbøger (Trix 1a + Trix 1b). Den pædagogiske tankegang i dette

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

ÅRSPLAN M A T E M A T I K

ÅRSPLAN M A T E M A T I K ÅRSPLAN M A T E M A T I K 2013/2014 Klasse: 3.u Lærer: Bjørn Bech 3.u får 5 matematiktimer om ugen: MANDAG TIRSDAG ONSDAG TORSDAG FREDAG Lektion 1 Lektion 2 Lektion 3 Matematik Matematik Lektion 4 Matematik

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Positionssystemet, 2 3 uger (7 lektioner), 2. klasse.

Positionssystemet, 2 3 uger (7 lektioner), 2. klasse. Positionssystemet, 2 3 uger (7 lektioner), 2. klasse. FRA FORENKLEDE FÆLLES MÅL Kommunikation vedrører det at udtrykke sig med og om matematik og at sætte sig ind i og fortolke andres udtryk med og om

Læs mere

Hvad er matematik? Indskolingskursus

Hvad er matematik? Indskolingskursus Hvad er matematik? Indskolingskursus Vordingborg 25. 29. april 2016 Matematikbog i 50 erne En bonde sælger en sæk kartofler for 40 kr. Fremstillingsomkostningerne er 4/5 af salgsindtægterne. Hvor stor

Læs mere

Mundtlig matematik. - et udviklingsarbejde Startet på Skovshoved Skole fortsætter her. Ikke bare en proces, men i proces..

Mundtlig matematik. - et udviklingsarbejde Startet på Skovshoved Skole fortsætter her. Ikke bare en proces, men i proces.. Mundtlig matematik - et udviklingsarbejde Startet på Skovshoved Skole fortsætter her. Ikke bare en proces, men i proces.. Hjørring 7. sep. 2012 Line Engsig matematikvejleder på Skovshoved Skole og Mikael

Læs mere

Årsplan for matematik 4. klasse 14/15

Årsplan for matematik 4. klasse 14/15 Årsplan for matematik 4. klasse 14/15 Status: 4.b er en klasse der består af ca. 20 elever. Der er en god fordeling mellem piger og drenge i klasser. Klassen har 5 matematiktimer om ugen. Vi fortsætter

Læs mere

Synliggørelse af sproget i matematikundervisningen. Workshop Den 7. februar 2013

Synliggørelse af sproget i matematikundervisningen. Workshop Den 7. februar 2013 Synliggørelse af sproget i matematikundervisningen Workshop Den 7. februar 2013 Hvem er vi? Lone Stilling Karlsen lærer i matematik og fysik (og dansk). Ama El-Nazzal lærer i matematik og kemi Vi er begge

Læs mere

Lær med stil. Af Ulla Gammelgaard, lærer

Lær med stil. Af Ulla Gammelgaard, lærer Lær med stil Af Ulla Gammelgaard, lærer Jeg sidder aldrig ved skrivebordet mere. Hvis jeg gør andre ting samtidig, føler jeg mig mere tilpas og har mere lyst til at lave lektier. Jeg har det også bedst

Læs mere

Kompetencemål for Matematik, klassetrin

Kompetencemål for Matematik, klassetrin Kompetencemål for Matematik, 1.-6. klassetrin Matematik omhandler samspil mellem matematiske emner, matematiske arbejds- og tænkemåder, matematikdidaktik samt matematiklærerens praksis i folkeskolen og

Læs mere

Det er svært at komme på ældste trin. Der er mange helt nye ord, fx provokation og oplevelsesfase.

Det er svært at komme på ældste trin. Der er mange helt nye ord, fx provokation og oplevelsesfase. Overgang fra mellemtrin til ældste trin samtale med 6. kl. Det er svært at komme på ældste trin. Der er mange helt nye ord, fx provokation og oplevelsesfase. Det er en meget anderledes arbejdsform, men

Læs mere

Undervisningsforløb med billedromanen Emmely M i 5. klasse

Undervisningsforløb med billedromanen Emmely M i 5. klasse Undervisningsforløb med billedromanen Emmely M i 5. klasse Af Mette Kjersgaard Andersen Dette undervisningsforløbs overordnede formål er at etablere en forståelse for genren fantastiske fortællinger. Hensigten

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

Her følger en række opmærksomhedsfelter i relation til undervisningens form og elevens læring:

Her følger en række opmærksomhedsfelter i relation til undervisningens form og elevens læring: BRØK 1 Vejledning Udvidelsen af talområdet til også at omfatte brøker er en kvalitativt anderledes udvidelse end at lære om stadigt større tal. Det handler ikke længere bare om nye tal af samme type, som

Læs mere

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses

Læs mere

3. KLASSE UNDERVISNINGSPLAN MATEMATIK

3. KLASSE UNDERVISNINGSPLAN MATEMATIK 2015-16 Lærer: Morten Bojesen Forord til faget i klassen Vi vil i matematik arbejde undervisningsdifferentieret samt elevdifferentieret. Vi arbejder med bogsystemet Matematrix 3A, 3B samt kopiark. Der

Læs mere

Årsplan for dansk i 4.klasse

Årsplan for dansk i 4.klasse Årgang 13/14 Side 1 af 7 Årsplan for dansk i 4.klasse Formål for faget dansk: Formålet med undervisningen i dansk er at fremme elevernes oplevelse af sproget som kilde til udvikling af personlig og kulturel

Læs mere

19.17 UNDERVISNING I LÆSNING OG/ELLER MATEMATIK FOR VOKSNE

19.17 UNDERVISNING I LÆSNING OG/ELLER MATEMATIK FOR VOKSNE 19.17 UNDERVISNING I LÆSNING OG/ELLER MATEMATIK FOR VOKSNE Mål for læringsudbytte skal opnå faglige og pædagogisk/didaktiske forudsætninger for at kunne forestå planlægning, gennemførelse og evaluering

Læs mere

Kompetencemål: Eleven kan træffe karrierevalg på baggrund af egne ønsker og forudsætninger

Kompetencemål: Eleven kan træffe karrierevalg på baggrund af egne ønsker og forudsætninger Parat til uddannelse Uddannelse og job; eksemplarisk forløb 8. klasse Faktaboks Kompetenceområde: Personlige valg Kompetencemål: Eleven kan træffe karrierevalg på baggrund af egne ønsker og forudsætninger

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget

Læs mere

Matematik, basis. Undervisningen på basisniveau skal udvikle kursisternes matematikkompetencer til at følge undervisningen

Matematik, basis. Undervisningen på basisniveau skal udvikle kursisternes matematikkompetencer til at følge undervisningen avu-bekendtgørelsen, august 2009 Matematik Basis, G-FED Matematik, basis 1. Identitet og formål 1.1 Identitet I matematik basis er arbejdet med forståelsen af de faglige begreber i centrum. Den opnåede

Læs mere

Kompetencemål for Matematik, 1.-6. klassetrin

Kompetencemål for Matematik, 1.-6. klassetrin Kompetencemål for Matematik, 1.-6. klassetrin Matematik omhandler samspil mellem matematiske emner, matematiske kompetencer, matematikdidaktik samt matematiklærerens praksis i folkeskolen og bidrager herved

Læs mere

Årsplan for matematik i 4. klasse 2014-15

Årsplan for matematik i 4. klasse 2014-15 Årsplan for matematik i 4. klasse 2014-15 Klasse: 4. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 4(mandag, tirsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen er, at

Læs mere

BILLEDROMANER OG KLASSENS TOSPROGEDE ELEVER

BILLEDROMANER OG KLASSENS TOSPROGEDE ELEVER BILLEDROMANER OG KLASSENS TOSPROGEDE ELEVER PÅ JAGT Igennem de seneste år er det blevet mere og mere åbenlyst, hvor vigtigt det er at arbejde med læseforståelse, når vi snakker om indholdet i vores læseundervisning.

Læs mere

BILLEDROMANER OG KLASSENS TOSPROGEDE ELEVER

BILLEDROMANER OG KLASSENS TOSPROGEDE ELEVER BILLEDROMANER OG KLASSENS TOSPROGEDE ELEVER KEVINS HUS Igennem de seneste år er det blevet mere og mere åbenlyst, hvor vigtigt det er at arbejde med læseforståelse, når vi snakker om indholdet i vores

Læs mere

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.

Læs mere

Fagplan for faget matematik

Fagplan for faget matematik Fagplan for faget matematik Der undervises i matematik på alle klassetrin (0. - 7. klasse). De centrale kundskabs- og færdighedsområder er: I matematik skal de grundlæggende kundskaber og færdigheder i

Læs mere

Årsplan for 2. kl. matematik

Årsplan for 2. kl. matematik Undervisningen i 2. kl. tager primært udgangspunkt i matematikbøgerne Kolorit 2A og 2B. Årets emner med delmål Gange (kopiark) ræsonnerer sig frem til multiplikationsalgoritmen i teams, ved hjælp af additionsalgoritmer.

Læs mere

Årets overordnede mål inddelt i kategorier

Årets overordnede mål inddelt i kategorier Matematik 1. klasse Årsplan af Bo Kristensen, Katrinedals Skole Årets overordnede mål inddelt i kategorier Tallenes opbygning og indbyrdes hierarki Tælle til 100. Kende tælleremser som 10 20 30, 5 10 15,

Læs mere

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder 3 Algebra Faglige mål Kapitlet Algebra tager udgangspunkt i følgende faglige mål: Variable og brøker: kende enkle algebraiske udtryk med brøker og kunne behandle disse ved at finde fællesnævner. Den distributive

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Årsplan for matematik i 1.-2. kl.

Årsplan for matematik i 1.-2. kl. Årsplan for matematik i 1.-2. kl. Lærer Martin Jensen Mål for undervisningen Målet for undervisningen er, at eleverne tilegner sig matematiske kompetencer og arbejdsmetoder jævnfør Fælles Mål. Eleverne

Læs mere

Vi har behov for en diagnose

Vi har behov for en diagnose Vi har behov for en diagnose Henrik Skovhus, konsulent ved Nordjysk Læse og Matematik Center hen@vuc.nordjylland.dk I artiklen beskrives et udviklingsprojekt i region Nordjylland, og der argumenteres for

Læs mere

Jeg ville udfordre eleverne med en opgave, som ikke umiddelbar var målbar; Hvor høj er skolens flagstang?.

Jeg ville udfordre eleverne med en opgave, som ikke umiddelbar var målbar; Hvor høj er skolens flagstang?. Hvor høj er skolens flagstang? Undersøgelsesbaseret matematik 8.a på Ankermedets Skole i Skagen Marts 2012 Klassen deltog for anden gang i Fibonacci Projektet, og der var afsat ca. 8 lektioner, fordelt

Læs mere

Forenklede Fælles Mål. Matematik i marts 27. marts 2014

Forenklede Fælles Mål. Matematik i marts 27. marts 2014 Forenklede Fælles Mål Matematik i marts 27. marts 2014 Læringskonsulenter klar med bistand Side 2 Forenklede Fælles Mål hvad ligger der i de nye mål? Hvorfor nye Fælles Mål? Hvorfor? Målene bruges generelt

Læs mere

Årsplan Matematik 3.klasse 2016/2017

Årsplan Matematik 3.klasse 2016/2017 Årsplan Matematik 3.klasse 2016/2017 Undervisningen i matematik tager udgangspunkt i Trix 3A og 3B, som består af 2 grundbøger og en. Der vil derudover suppleres med opgaver i Pirana 3 samt opgaver på

Læs mere

Kompetenceområdet fremstilling. Mandag den 3. august 2015

Kompetenceområdet fremstilling. Mandag den 3. august 2015 Kompetenceområdet fremstilling Mandag den 3. august 2015 Færdigheds- og vidensmål I kan planlægge et læringsmålsstyret forløb inden for kompetenceområdet Fremstilling I har viden om kompetenceområdet Fremstilling

Læs mere

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Årsplan 2013/2014 6. ÅRGANG: MATEMATIK FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at

Læs mere

Engelsk, basis. a) forstå hovedindhold og specifik information af talt engelsk om centrale emner fra dagligdagen

Engelsk, basis. a) forstå hovedindhold og specifik information af talt engelsk om centrale emner fra dagligdagen avu-bekendtgørelsen, august 2009 Engelsk Basis, G-FED Engelsk, basis 1. Identitet og formål 1.1 Identitet Engelsk er et færdighedsfag, et vidensfag og et kulturfag. Faget beskæftiger sig med engelsk sprog,

Læs mere

Uge Emne Materiale Fokus/faglige mål Kompetencer Andre aktiviteter

Uge Emne Materiale Fokus/faglige mål Kompetencer Andre aktiviteter Årsplan Matematik 4.klasse 2016/2017 Undervisningen i matematik tager udgangspunkt i Matematrix 4, som består af en grundbog og en arbejdsbog. Der vil derudover suppleres med opgaver i Pirana 4 samt opgaver

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

Årsplan for matematik i 2. klasse 2013-14

Årsplan for matematik i 2. klasse 2013-14 Årsplan for matematik i 2. klasse 2013-14 Klasse: 2. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 5(mandag, tirsdag, onsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen

Læs mere

8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb

8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb 8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb Kaffepause 10:00-10:15 Frokost 12:15-13:00 Kaffepause 13:45-14:00 SPROGLIG UDVIKLING

Læs mere

Årsplan Matematik 1. klasse 2016/17

Årsplan Matematik 1. klasse 2016/17 Årsplan Matematik 1. klasse 2016/17 Undervisningen vil tage udgangspunkt i systemet Matematrix. I 1. klasse får eleverne udleveret 2 arbejdsbøger (Trix 1a + Trix 1b). Den pædagogiske tankegang i dette

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere