Vejledning til bedømmelse af eksamensopgaver i matematik

Størrelse: px
Starte visningen fra side:

Download "Vejledning til bedømmelse af eksamensopgaver i matematik"

Transkript

1 Vejledning til bedømmelse af eksamensopgaver i matematik I Læreplanen for Matematik stx A og Matematik stx B er der i afsnit 4.3 angivet en række bedømmelseskriterier, som alle lægges til grund for vurderingen af i hvilken grad eksaminandens besvarelse af opgaverne lever op til de faglige mål nævnt i afsnit 2.1. I forordet til hæfterne med vejledende og stillede eksamensopgaver har fagkonsulent Bjørn Grøn udvalgt en del af disse kriterier, som bør tages i betragtning i forbindelse med bedømmelse af skriftlige eksamensbesvarelser, nemlig: DER LÆGGES VÆGT PÅ, OM EKSAMINANDEN: 1. har grundlæggende matematiske færdigheder, herunder kan håndtere matematisk symbolsprog og matematiske begreber har kendskab til matematiske metoder og kan anvende dem korrekt er i stand til at bruge it værktøjer hensigtsmæssigt 2. kan anvende matematik på foreliggende problemer, herunder kan vælge hensigtsmæssige metoder til løsning af forelagte problemer kan præsentere et matematisk emne eller en fremgangsmåde ved løsning af et matematisk problem på en klar og overskuelig måde kan redegøre for foreliggende matematiske modeller og diskutere deres rækkevidde 3. har overblik over og kan perspektivere matematik, herunder: kan bevæge sig mellem fagets teoretiske og praktiske sider i forbindelse med modellering og problembehandling Endvidere er der i Undervisningsvejledningen til Matematik stx A og Matematik stx B afsnit 4.g samt i omslaget på de trykte eksamensopgaver, der udleveres til skriftlig eksamen, en liste over, hvad der vil blive lagt vægt på i bedømmelsen af besvarelsen af både de enkelte delspørgsmål og besvarelsen som helhed. Listen har vi i denne sammenhæng revideret og omformuleret til nedenstående 5 kategorier af kvalitative krav. 1

2 I bedømmelsen af besvarelsen af de enkelte spørgsmål og i helhedsindtrykket vil der blive lagt vægt på, om eksaminandens tankegang fremgår klart af besvarelsen. Dette vurderes blandt andet ud fra kravene beskrevet i de følgende fem kategorier: 1. TEKST Besvarelsen skal indeholde en forbindende tekst fra start til slut, der giver en klar præsentation af, hvad den enkelte opgave og de enkelte delspørgsmål går ud på. 2. NOTATION og LAY OUT Der kræves en hensigtsmæssig opstilling af besvarelsen i overensstemmelse med god matematisk skik, herunder en redegørelse for den matematiske notation, der indføres og anvendes, og som ikke kan henføres til standardviden. 3. REDEGØRELSE og DOKUMENTATION Besvarelsen skal indeholde en redegørelse for den anvendte fremgangsmåde og dokumentation i form af et passende antal mellemregninger og/eller en matematisk forklaring på brugen af de forskellige faciliteter, som et værktøjsprogram tilbyder. 4. FIGURER I besvarelsen skal der indgå en hensigtsmæssig brug af figurer og illustrationer, og der skal være en tydelig sammenhæng mellem tekst og figurer. 5. KONKLUSION Besvarelsen skal indeholde en afrunding af de forskellige spørgsmål med præcise konklusioner, præsenteret i et klart sprog og/eller med brug af almindelig matematisk notation. Nedenfor giver vi vores bud på en fortolkning af indholdet i hver af de fem kategorier, hvor man bør holde sig for øje, at der kan være flere veje til en fuldt tilfredsstillende besvarelse, dvs. der vil ikke være krav om anvendelse af en bestemt metode, medmindre det eksplicit er beskrevet i opgaveformuleringen. I hvert sæt er et antal point reserveret til en bedømmelse af helhedsindtrykket af opgavebesvarelsen. Som udgangspunkt opnår en elev fuldt pointtal i helhedsindtrykket, når besvarelsen er sammenhængende og velargumenteret. Men elevens særlig gode besvarelse af en enkelt opgave kan også spille en stor rolle i tildelingen af point for helhedsindtrykket. For eksempel kan elever, der demonstrerer særlig matematisk modenhed gennem metodevalg eller præcision i argumentation, og elever, der har en særlig indsigt ud over kernestoffet og forstår at udnytte den, belønnes i helhedsindtrykket. Nedenstående skal ikke opfattes som en udtømmende liste over, hvad en besvarelse skal indeholde, men i stedet en liste over, hvilke kvaliteter i en besvarelse man bør lægge vægt på både i den daglige undervisning og ved bedømmelse af eksamensopgaver. Matematiklærerforeningen, Skriftlighedsgruppen,

3 TEKST: Besvarelsen skal indeholde en forbindende tekst fra start til slut, der giver en klar præsentation af, hvad den enkelte opgave og de enkelte delspørgsmål går ud på. Der ønskes ikke en ordret gengivelse af en lang opgavetekst, men eleven bør indlede besvarelsen med at præsentere relevante informationer fra opgaveteksten. Resultater bør fremhæves fx med en forklarende tekst, der fortæller, hvad eleven har fundet frem til, ligesom eleven undervejs i en længere besvarelse bør fremhæve delresultater, således at elevens tankegang fremgår af besvarelsen. NOTATION og LAY OUT: Der kræves en hensigtsmæssig opstilling af besvarelsen i overensstemmelse med god matematisk skik, herunder en redegørelse for den matematiske notation, der indføres og anvendes, og som ikke kan henføres til standardviden. Vektorer, der er givet ved et koordinatsæt, kan angives både på lodret og vandret form, blot det af sammenhængen fremgår, at der er tale om en vektor og ikke et punkt. Koordinatsæt til punkter angives ikke på lodret form, men P(2,3), (2,3) og P = (2,3) anses alle for korrekte skrivemåder. I opgaveformuleringerne anvendes som standard decimalkomma, men decimalpunktum kan også forekomme, hvis decimalkommaet kan give anledning til misforståelser. Ved brug af værktøjsprogrammer anvendes ofte decimalpunktum i beregninger mv., hvilket også er tilstrækkeligt i elevens besvarelse, dog bør eleven tilføje manglende nul foran kommaet i fx.885, ligesom talangivelser, hvor E indgår, fx 3.1E 10, skal skrives som 3, eller som 0,0031. Ved besvarelser af opgaver med hjælpemidler, hvor der indgår løsning af en ligning, skal ligningen altid opskrives først, hvorefter løsningsmetoden angives fx ved et udtryk, der viser værktøjsberegningen, eller 2 ved en forklaring, der fortæller, hvilken programfacilitet man har brugt, dvs. fx x + 2x 3= 0, + = (*), x= 3 x= 1 eller x= 3, x= 1. Maskinsproget svarende til (*) hører 2 solve( x 2x 3 0, x) ikke til almindelig matematisk notation og kan derfor ikke stå alene. Denne del af besvarelsen kan fx også erstattes af en kort forklaring på, hvilken facilitet i værktøjsprogrammet (fx jeg anvender solve ), der anvendes. Ligeledes vil en elev, der i denne delprøve løser simple ligninger ved håndregning, opnå fuldt point med et par mellemregninger. I besvarelser med hjælpemidler er det selve matematikken der skal være i fokus, ikke de tekniske kommandoer, dvs. de matematiske begreber skal benævnes korrekt og ikke med diverse slang i form af maskinsprog, fx skal eleven skrive Jeg løser ligningen og ikke Jeg solver ligningen. Tilsvarende bør eleven udnytte de matematiske symbolers til at skrive kort og præcist. Eleven skal udtrykke sig præcist, dvs. anvende matematiske fagudtryk som Fremskrivningsfaktoren er og vækstraten er derfor, og benytte matematiske begreber korrekt i besvarelsens sammenhæng fx Grafen for funktionen har en tangent i og ikke Funktionen har en tangent i. 3

4 I opgaver, hvor eleven selv skal indføre variable, skal der være en redegørelse for, hvad de valgte betegnelser står for. Desuden bør eleven inden for den enkelte opgave undgå at anvende samme bogstavbetegnelse for flere forskellige størrelser. Eleven må gerne udskifte opgavetekstens variabelbetegnelser med betegnelser efter eget valg, når blot dette forklares. Det kan endda i nogle tilfælde være nødvendigt at indføre andre betegnelser end de opgivne. Fx er der en del matematikprogrammer, der ikke skelner mellem store og små bogstaver, hvorfor det fx i forbindelse med trekantsberegninger kan være nødvendigt at indfører nye betegnelser for at kunne skelne mellem en side a og en vinkel A i samme trekant. Tilsvarende vil det være nødvendigt i forbindelse med bestemmelse af en stamfunktion F til en funktion f, at eleven indfører en anden betegnelse for stamfunktionen. Flere programmer kan ikke håndtere symbolet f ( x), hvorfor eleven også i den type opgaver skal gøre opmærksom på, at der af værktøjsmæssige grunde indføres en ny betegnelse for f ( x). REDEGØRELSE og DOKUMENTATION: Besvarelsen skal indeholde en redegørelse for den anvendte fremgangsmåde og dokumentation i form af et passende antal mellemregninger og/eller en matematisk forklaring på brugen af de forskellige faciliteter, som et værktøjsprogram tilbyder. Overordnet set skal elevens besvarelse altid indeholde forklaringer og argumenter, der gør det let at forstå, hvad eleven har tænkt undervejs i løsningen af en opgave, dvs. et resultat skal underbygges af mellemregninger og/eller argumentation. Ved beregninger af enhver art arbejdes der inden for mængden af reelle tal, og eleven skal derfor afvise eventuelle komplekse løsninger, der dukker op i værktøjsprogrammets løsning. I opgaveformuleringer som fx Løs ligningen, Bestem nulpunkter eller Beregn skæringspunkter mellem to grafer er der ikke krav om anvendelse af en bestemt metode, men inddragelse af grafisk eller anden form for kontrol, hvor dette falder naturligt, kan tages i betragtning i forbindelse med tildeling af point for helhedsindtrykket. På samme måde kan et relevant og begrundet valg at løsningsstrategi demonstrere overblik og tælle positivt i helhedsindtrykket. Trigonometriopgaver kan som altid løses ved traditionelle beregningsmetoder. Eleven kan også opnå fuldt point for opgaven, hvis eleven benytter et geometriprogram til at løse opgaven. Her skal eleven konstruere de relevante geometriske figurer efter korrekte konstruktionsprincipper, som beskrives nøje, og eleven kan derefter udnytte programmets faciliteter til at beregne ukendte størrelser, idet resultaterne angives med en passende nøjagtighed i hht. opgavens sammenhæng (fx 3 betydende cifre). Ved ligningsløsning i hånden medtages mellemregninger i passende omfang, mens ligningsløsning med værktøjsprogram kræver en angivelse af, hvilken metode der er brugt til løsningen ikke tastesekvenser. Ved symbolsk ligningsløsning med hjælpemidler kan værktøjsprogrammet anvendes, og der kræves ikke argumentation for antallet af løsninger, medmindre det eksplicit fremgår af opgaveformuleringen. Hvis en ligning løses grafisk, skal det grafiske billede ledsages af en forklaring på den matematiske fremgangsmåde fx Jeg tegner graferne i samme koordinatsystem (se figuren) og løser ligningen f ( x) g( x) = grafisk ved at 4

5 aflæse førstekoordinaten til skæringspunkterne mellem graferne i grafvinduet ( Intersection )., og eleven skal her argumentere for antallet af løsninger pga. grafvinduets begrænsninger. Eleven kan argumentere ud fra sit kendskab til simple funktioners grafiske forløb eller ud fra funktionernes monotoniegenskaber. Ved bestemmelse af en bestemt variabelsammenhæng ved hjælp af regression skal eleven angive, hvilken regressionstype der anvendes. Alle opgivne datapunkter skal anvendes i regressionen, og det skal fremgå af besvarelsen, hvad der anvendes som uafhængig og afhængig variabel i relation til opgavetekstens sammenhæng. Ved sammenligning af en modelberegnet værdi og en opgiven værdi skal kommentaren ledsages af beregninger fx i form af den relative eller den absolutte afvigelse. Ved bestemmelse af monotoniforhold og ekstrema kan eleven i nogle tilfælde argumentere ud fra sit kendskab til simple funktioners grafiske forløb evt. kombineret med beregninger, hvor der anvendes numeriske eller grafiske faciliteter. Besvarelser af denne type skal indeholde en skitse af grafen. Der kan imidlertid altid argumenteres ud fra den afledede, dvs. ved løsning af ligningen f ( x) = 0og en argumentation for monotoniintervallerne enten ud fra fortegnsvariationen for f ( x) eller ved henvisning til grafen for f. Monotoniintervallerne skal angives; det er ikke nok med en fortegnslinje. Ved bestemmelse af maksimum eller minimum for en funktion defineret i et begrænset interval er det dog tilstrækkeligt at bestemme dette ved brug af værktøjsprogrammet. Bestemmelse af væksthastighed i et givet punkt kræver en bestemmelse af differentialkvotienten (grafisk eller symbolsk beregning) efterfulgt af et svar skrevet i almindeligt sprog, hvor eventuelle enheder er angivet. Ved beregning af bestemte integraler skal integralet altid opskrives symbolsk med de korrekte grænser uanset beregningsmetode (grafisk eller symbolsk). Ved arealbestemmelse med integraler, hvor grænserne ikke er angivet i opgaven, skal disse beregnes separat. I modelopgaver, hvor eleven bliver bedt om at løse en differentialligning, vil der kun optræde differentialligninger, som kan omskrives til en af de typer, der er nævnt i kernestoffet. Eleven kan således frit vælge mellem at løse differentialligningen direkte med værktøjsprogrammet eller med en kendt løsningsformel. Som ved andre typer af ligninger skal differentialligningen (evt. med begyndelsesbetingelse afhængigt af opgavens indhold) altid angives i besvarelsen, før ligningen løses, og værktøjsprogrammets kommando angives eller forklares. I vektorregning bør eleven forklare, hvilke matematiske begreber der er i spil, når der anvendes en indbygget facilitet i værktøjsprogrammet fx Normalvektoren for planen udregnes ved hjælp af krydsproduktet for vektor a og b :, hvorefter løsningsmetoden angives ved et udtryk, der viser værktøjsprogrammets kommando. I opgaver, der handler om deskriptiv statistik, skal eleven argumentere ud fra statistiske deskriptorer og statistiske begreber. 5

6 FIGURER: I besvarelsen skal der indgå en hensigtsmæssig brug af figurer og illustrationer, og der skal være en tydelig sammenhæng mellem tekst og figurer. Når der i opgaveformuleringen bruges ord som skitser og tegn, så er det ikke udtryk for, at der ønskes en bestemt fremgangsmåde; kravene er de samme. En skitse af et grafisk forløb eller en modeltegning af en geometrisk situation skal vise de karakteristiske egenskaber eller fænomener, som er væsentlige for opgavens besvarelse. Eksempelvis tegnes spidse vinkler som spidse, og modeller af trekanter tegnes ikke som retvinklede, hvis dette ikke fremgår af oplysningerne. For et grafisk forløb kan skæringspunkter med akserne, beliggenhed af lokale ekstrema, monotoniforhold eller asymptotisk forløb hver for sig være væsentlige at tage med i en skitse, alt afhængig af opgaven. I statistiske illustrationer skal de væsentlige statistiske deskriptorer vises korrekt. Eleven kan vælge at tegne grafer for funktioner, plotte datapunkter med regressionsmodel etc. og fx henvise til disse i konklusioner og kontrol af resultater, men det er ikke et krav, medmindre det eksplicit fremgår af opgaveformuleringen. I geometriopgaver forholder det sig på samme måde, men det kan være nødvendigt, at eleven tegner relevante skitser, for at man kan følge elevens tankegang. Når eleven anvender figurer, så skal der være overensstemmelse mellem betegnelserne på tegningerne og i beregningerne. Når eleven i opgaveformuleringen eksplicit bliver bedt om at tegne grafen, så skal grafen tegnes i et interval, der gør, at alle væsentlige træk ved funktionen vises. Eleven bør markere akseinddelingen, og tilsvarende bør grafiske aflæsninger markeres på figuren fx med stiplede linjer eller punkter, hvor koordinatsættet er angivet. Ved grafisk bestemmelse af arealer af punktmængder skal grafen vises, således at det klart fremgår, hvilke grænser der er benyttet (evt. en skravering af punktmængden). KONKLUSION Besvarelsen skal indeholde en afrunding af de forskellige spørgsmål med præcise konklusioner, præsenteret i et klart sprog og/eller med brug af almindelig matematisk notation. Resultater skal angives med korrekt notation og symbolbrug og kan fx fremhæves ved en markering i form af fx fed skrift eller to streger under. Eleven bør overveje, om resultatet skal angives eksakt eller som en tilnærmet værdi. I opgaver, der omhandler en virkelighedsnær situation beskrevet ved en model, skal eleven besvare spørgsmålene ved beregninger efterfulgt af en konklusion formuleret i hht. opgavens kontekst i hele sætninger i almindeligt sprog. Resultaterne bør angives med korrekte enheder og med antal betydende cifre afpasset efter modellen. 6

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx10-mat/a-108010 Torsdag den 1. august 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx111-MAT/B-18052011 Onsdag den 18. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe102-mat/b-31082010 Tirsdag den 31. august 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Grafregnerkravet på hf matematik tilvalg

Grafregnerkravet på hf matematik tilvalg Grafregnerkravet på hf matematik tilvalg Dette dokument er en sammenskrivning af uddrag af følgende skrifter: Undervisningsvejledning nr. 21 for matematik i HF (september 1995); findes på adressen: http://us.uvm.dk/gymnasie/almen/vejledninger/undervishf/hfvej21.htm;

Læs mere

Matematik B. Studentereksamen. Skriftlig prøve (4 timer)

Matematik B. Studentereksamen. Skriftlig prøve (4 timer) Matematik B Studentereksamen Skriftlig prøve (4 timer) STX093-MAB Fredag den 11. december 2009 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe101-mat/b-01062010 Tirsdag den 1. juni 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG Matematik A Studentereksamen Skriftlig prøve (5 timer) STX MAA 581710_STX093-MAA.indd 1 LQGG Fredag den. december kl... 03/11/09 10:53:00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 1stx111-MAT/A-18052011 Onsdag den 18. maj 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Studentereksamen. Tirsdag den 27. maj 2014 kl stx141-MAT/B

Matematik B. Studentereksamen. Tirsdag den 27. maj 2014 kl stx141-MAT/B Matematik B Studentereksamen 2stx141-MAT/B-27052014 Tirsdag den 27. maj 2014 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU Tirsdag den 18. december 2007 Kl. 09.00 13.00 STX073-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2stx111-MAT/B-24052011 Tirsdag den 24. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Progression frem mod skriftlig eksamen

Progression frem mod skriftlig eksamen Progression frem mod skriftlig eksamen Ikke alle skal have 12 Eksamensopgavernes funktion i det daglige og til eksamen Progression i sættet progression i den enkelte opgave Hvornår inddrages eksamensopgaver

Læs mere

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a gl. Matematik A Studentereksamen gl-stx142-mat/a-14082014 Torsdag den 14. august 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx141-MATn/A-27052014 Tirsdag den 27. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

gl. Matematik B Studentereksamen

gl. Matematik B Studentereksamen gl. Matematik B Studentereksamen gl-stx123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 1stx101-MAT/A-26052010 Onsdag den 26. maj 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx103-mat/a-101010 Fredag den 10. december 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

gl-matematik B Studentereksamen

gl-matematik B Studentereksamen gl-matematik B Studentereksamen gl-1stx121-mat/b-25052012 Fredag den 25. maj 2012 kl. 9.00-13.00 Side 1 af 5 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i

Læs mere

Bedømmelseskriterier for skriftlig matematik stx A-niveau

Bedømmelseskriterier for skriftlig matematik stx A-niveau Bedømmelseskriterier for skriftlig matematik stx A-niveau Sådan bedømmes opgaverne ved skriftlig studentereksamen i matematik En vejledning for elever Skriftlighedsgruppe 01.04.09 Dette dokument henvender

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx103-mat/b-10122010 Fredag den 10. december 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs101-matn/a-605010 Onsdag den 6 maj 010 kl 0900-1400 Opgavesættet er delt i to dele Delprøve 1: timer med autoriseret

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Matematik A. Studentereksamen. Tirsdag den 24. maj 2016 kl stx161-MAT/A

Matematik A. Studentereksamen. Tirsdag den 24. maj 2016 kl stx161-MAT/A Matematik A Studentereksamen 1stx161-MAT/A-24052016 Tirsdag den 24. maj 2016 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

HØJERE FORBEREDELSESEKSAMEN MAJ 2008 MATEMATIK B-NIVEAU. Onsdag den 14. maj 2008. Kl. 09.00 13.00 HFE081-MAB

HØJERE FORBEREDELSESEKSAMEN MAJ 2008 MATEMATIK B-NIVEAU. Onsdag den 14. maj 2008. Kl. 09.00 13.00 HFE081-MAB HØJERE FORBEREDELSESEKSAMEN MAJ 2008 MATEMATIK B-NIVEAU Onsdag den 14. maj 2008 Kl. 09.00 13.00 HFE081-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.

Læs mere

Eksamensopgaver i matematik

Eksamensopgaver i matematik Eksamensopgaver i matematik med TI-Nspire CAS ver. 2.0 Udarbejdet af: Brian M.V. Olesen Marts 2010 Indholdsfortegnelse Indledning...1 Bedømmelse af besvarelse...2 Eksempel 1 Lineære sammenhænge...3 Eksempel

Læs mere

MATEMATIK A-NIVEAU-Net

MATEMATIK A-NIVEAU-Net STUDENTEREKSAMEN MAJ AUGUST 2007 2011 MATEMATIK A-NIVEAU-Net torsdag 11. august 2011 Kl. 09.00 14.00 frs112-matn/a-11082011 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret formelsamling

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Matematik B. Højere forberedelseseksamen. Skriftlig prøve (4 timer) Fredag den 11. december 2009 kl. 9.00-13.00 HFE093-MAB

Matematik B. Højere forberedelseseksamen. Skriftlig prøve (4 timer) Fredag den 11. december 2009 kl. 9.00-13.00 HFE093-MAB Matematik B Højere forberedelseseksamen Skriftlig prøve (4 timer) HFE093-MAB Fredag den 11. december 2009 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe32-mat/b-2908203 Torsdag den 29. august 203 kl. 9.00-3.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave -6 med i alt 6 spørgsmål.

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2st101-MAT/B-01062010 Tirsdag den 1. juni 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011 Matematik A Studentereksamen stx113-mat/a-09122011 Fredag den 9. december 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

gl. Matematik B Studentereksamen

gl. Matematik B Studentereksamen gl. Matematik B Studentereksamen gl-1stx131-mat/b-24052013 Fredag den 24. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx112-mat/b-11082011 Torsdag den 11. august 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

gl. Matematik A Studentereksamen

gl. Matematik A Studentereksamen gl. Matematik A Studentereksamen gl-stx132-mat/a-14082013 Onsdag den 14. august 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

gl. Matematik A Studentereksamen

gl. Matematik A Studentereksamen gl. Matematik A Studentereksamen gl-2stx131-mat/a-29052013 Onsdag den 29. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 STUDENTEREKSAMEN MAJ 2005 2005-11-2 SPROGLIG OG MATEMATISK LINJE HØJERE FORBEREDELSESEKSAMEN MAJ 2005 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 FRANSK BEGYNDERSPROG

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik Studentereksamen 1stx121-MAT/-25052012 Fredag den 25. maj 2012 kl. 9.00-13.00 Side 1 af 5 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen. Fredag den 6. december 2013 kl stx133-mat/a

Matematik A. Studentereksamen. Fredag den 6. december 2013 kl stx133-mat/a Matematik A Studentereksamen stx133-mat/a-06122013 Fredag den 6. december 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2st111-MAT/A-24052011 Tirsdag den 24. maj 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU. Onsdag den 13. august 2008. Kl. 09.00 13.00 STX082-MAB

STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU. Onsdag den 13. august 2008. Kl. 09.00 13.00 STX082-MAB STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU Onsdag den 13 august 2008 Kl 0900 1300 STX082-MAB Opgavesættet er delt i to dele Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål Delprøven

Læs mere

Matematik B. Studentereksamen. Torsdag den 13. august 2015 kl stx152-mat/b

Matematik B. Studentereksamen. Torsdag den 13. august 2015 kl stx152-mat/b Matematik B Studentereksamen stx152-mat/b-13082015 Torsdag den 13. august 2015 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

http://us.uvm.dk/gymnasie/almen/eksamen/opgaver/sommer04/vurderingsgrundlag-b-niveau2004-8- 2og2004-8-2-sf.pdf?menuid=150560

http://us.uvm.dk/gymnasie/almen/eksamen/opgaver/sommer04/vurderingsgrundlag-b-niveau2004-8- 2og2004-8-2-sf.pdf?menuid=150560 http://us.uvm.dk/gymnasie/almen/eksamen/opgaver/sommer04/vurderingsgrundlag-b-niveau2004-8- 2og2004-8-2-sf.pdf?menuid=150560 Vurderingsgrundlag ved Skriftlig studentereksamen i matematik 2004. Det betyder

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx122-mat/b-15082012 Onsdag den 15. august 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx131-MAT/B-24052013 Fredag den 24. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2stx131-MAT/B-29052013 Onsdag den 29. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU Fredag den 12. december 2008 Kl. 09.00 13.00 HFE083-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med

Læs mere

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 HFE073-MAB

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 HFE073-MAB HØJERE FORBEREDELSESEKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU Tirsdag den 18. december 2007 Kl. 09.00 13.00 HFE073-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med

Læs mere

Matematik A. Studentereksamen. Tirsdag den 23. maj 2017 kl Digital eksamensopgave med adgang til internettet. 2stx171-MATn/A

Matematik A. Studentereksamen. Tirsdag den 23. maj 2017 kl Digital eksamensopgave med adgang til internettet. 2stx171-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet stx171-matn/a-305017 Tirsdag den 3. maj 017 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx132-mat/a-14082013 Onsdag den 14. august 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

gl. Matematik B Studentereksamen

gl. Matematik B Studentereksamen gl. Matematik B Studentereksamen gl-2stx131-mat/b-29052013 Onsdag den 29. maj 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december 2008. Kl. 09.00 13.00 STX083-MAB

STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december 2008. Kl. 09.00 13.00 STX083-MAB STUDENTEREKSAMEN DECEMBER 008 MATEMATIK B-NIVEAU Fredag den 1. december 008 Kl. 09.00 13.00 STX083-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.

Læs mere

Matematik B. Studentereksamen. Torsdag den 22. maj 2014 kl stx141-MAT/B

Matematik B. Studentereksamen. Torsdag den 22. maj 2014 kl stx141-MAT/B Matematik B Studentereksamen 1stx141-MAT/B-22052014 Torsdag den 22. maj 2014 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a

gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a gl. Matematik A Studentereksamen gl-1st141-mat/a-05014 Torsdag den. maj 014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

MATEMATIK A-NIVEAU 3g

MATEMATIK A-NIVEAU 3g NETADGANGSFORSØGET I MATEMATIK NOVEMBER 009 MATEMATIK A-NIVEAU 3g Prøve November 009 1. delprøve: timer med formelsamling samt. delprøve: 3 timer med alle hjælpemidler 1. delprøve består af 1 spørgsmål.

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet frs111-matn/a-405011 Tirsdag den 4. maj 011 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret

Læs mere

Matematik B. Studentereksamen. Torsdag den 14. august 2014 kl stx142-mat/b

Matematik B. Studentereksamen. Torsdag den 14. august 2014 kl stx142-mat/b Matematik B Studentereksamen stx142-mat/b-14082014 Torsdag den 14. august 2014 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Studentereksamen. Torsdag den 31. maj 2012 kl. 9.00-13.00. 2stx121-MAT/B-31052012

Matematik B. Studentereksamen. Torsdag den 31. maj 2012 kl. 9.00-13.00. 2stx121-MAT/B-31052012 Matematik B Studentereksamen stx11-mat/b-310501 Torsdag den 31. maj 01 kl. 9.00-13.00 Side 1 af 6 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 1stx131-MAT/A-24052013 Fredag den 24. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Studentereksamen. Fredag den 22. maj 2015 kl stx151-MAT/B

Matematik B. Studentereksamen. Fredag den 22. maj 2015 kl stx151-MAT/B Matematik B Studentereksamen 1stx151-MAT/B-22052015 Fredag den 22. maj 2015 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Eksaminanderne på hf tilvalg forventes ikke at kunne udnytte grafregnerens muligheder for regression.

Eksaminanderne på hf tilvalg forventes ikke at kunne udnytte grafregnerens muligheder for regression. Bilag 3: Uddrag af Matematik 1999. Skriftlig eksamen og større skriftlig opgave ved studentereksamen og hf. Kommentarer på baggrund af censorernes tilbagemeldinger HF-tilvalgsfag (opgavesæt HF 99-8-1)

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik B. Højere forberedelseseksamen. Fredag den 6. december 2013 kl. 9.00-13.00. hfe133-mat/b-06122013

Matematik B. Højere forberedelseseksamen. Fredag den 6. december 2013 kl. 9.00-13.00. hfe133-mat/b-06122013 Matematik B Højere forberedelseseksamen hfe33-mat/b-062203 Fredag den 6. december 203 kl. 9.00-3.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave -6 med i alt 6 spørgsmål.

Læs mere

Ordbog Biologi Samfundsfag Kemi: Se bilag 1 Matematik: Se bilag 2

Ordbog Biologi Samfundsfag Kemi: Se bilag 1 Matematik: Se bilag 2 Fremstillingsformer Fremstillingsformer Vurdere Konkludere Fortolke/tolke Diskutere Ordbog Biologi Samfundsfag Kemi: Se bilag 1 Matematik: Se bilag 2 Udtrykke eller Vurder: bestemme På baggrund af biologisk

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx121-MATn/A-31052012 Torsdag den 31. maj 2012 kl. 09.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve

Læs mere

gl. Matematik A Studentereksamen

gl. Matematik A Studentereksamen gl. Matematik A Studentereksamen gl-1stx131-mat/a-24052013 Fredag den 24. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

STUDENTEREKSAMEN MAJ 2007 MATEMATIK B-NIVEAU. Onsdag den 30. maj Kl STX071-MAB

STUDENTEREKSAMEN MAJ 2007 MATEMATIK B-NIVEAU. Onsdag den 30. maj Kl STX071-MAB STUDENTEREKSAMEN MAJ 007 MATEMATIK B-NIVEAU Onsdag den 0 maj 007 Kl 0900 100 STX071-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål og i helhedsindtrykket

Læs mere

HØJERE FORBEREDELSESEKSAMEN MAJ 2009 MATEMATIK B-NIVEAU. Mandag den 11. maj Kl HFE091-MAB

HØJERE FORBEREDELSESEKSAMEN MAJ 2009 MATEMATIK B-NIVEAU. Mandag den 11. maj Kl HFE091-MAB HØJERE FORBEREDELSESEKSAMEN MAJ 2009 MATEMATIK B-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 13.00 HFE091-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.

Læs mere

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.

Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07. Matematik A Terminsprøve Digital prøve med adgang til internettet Torsdag den 21. marts 2013 kl. 09.00-14.00 112362.indd 1 20/03/12 07.54 Side 1 af 7 sider Opgavesættet er delt i to dele: Delprøve 1: 2

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik B. Studentereksamen. Fredag den 6. december 2013 kl. 9.00-13.00. stx133-mat/b-06122013

Matematik B. Studentereksamen. Fredag den 6. december 2013 kl. 9.00-13.00. stx133-mat/b-06122013 Matematik B Studentereksamen stx133-mat/b-06122013 Fredag den 6. december 2013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

GUX. Matematik Niveau B. Prøveform b

GUX. Matematik Niveau B. Prøveform b GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Studentereksamen. stx113-mat/

Studentereksamen. stx113-mat/ Matematik B Studentereksamen Fredag den 9. december 011 B kl. 9.00-13.00 stx113-mat/ -091011 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik C. Højere forberedelseseksamen

Matematik C. Højere forberedelseseksamen Matematik C Højere forberedelseseksamen 2hf121-MAT/C-04062012 Mandag den 4. juni 2012 kl. 9.00-12.00 Opgavesættet består af 7 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved bedømmelsen.

Læs mere

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 STUDENTEREKSAMEN MAJ 2005 2005-11-2 SPROGLIG OG MATEMATISK LINJE HØJERE FORBEREDELSESEKSAMEN MAJ 2005 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 FRANSK BEGYNDERSPROG

Læs mere

Matematik A - Læreplan for forsøg med netadgang ved skriftlig eksamen

Matematik A - Læreplan for forsøg med netadgang ved skriftlig eksamen Matematik A - Læreplan for forsøg med netadgang ved skriftlig eksamen 1. Identitet og formål 1.1 Identitet Matematik A Stx, september 2009 Matematik bygger på abstraktion og logisk tænkning og omfatter

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh121-mat/a-04062012 Mandag den 4. juni 2012 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Opgavesættet består af 7 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved bedømmelsen. Til opgavesættet hører et bilag.

Opgavesættet består af 7 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved bedømmelsen. Til opgavesættet hører et bilag. Opgavesættet består af 7 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved bedømmelsen. Til opgavesættet hører et bilag. I bedømmelsen af besvarelsen af de enkelte spørgsmål og i

Læs mere

Matematik C. Højere forberedelseseksamen

Matematik C. Højere forberedelseseksamen Matematik C Højere forberedelseseksamen 2hf132-MAT/C-29082013 Torsdag den 29. august 2013 kl. 9.00-12.00 Opgavesættet består af 7 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh11-mat/b-70501 Mandag den 7. maj 01 kl. 9.00-1.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx13-mat/b-1408013 Onsdag den 14. august 013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Matematik B stx, maj 2010

Matematik B stx, maj 2010 Bilag 36 Matematik B stx, maj 2010 1. Identitet og formål 1.1. Identitet Matematik bygger på abstraktion og logisk tænkning og omfatter en lang række metoder til modellering og problembehandling. Matematik

Læs mere

Matematik A stx, maj 2010

Matematik A stx, maj 2010 Bilag 35 Matematik A stx, maj 2010 1. Identitet og formål 1.1. Identitet Matematik bygger på abstraktion og logisk tænkning og omfatter en lang række metoder til modellering og problembehandling. Matematik

Læs mere

GUX. Matematik. B-Niveau. Torsdag den 26. maj Kl Prøveform b GUX161 - MAB

GUX. Matematik. B-Niveau. Torsdag den 26. maj Kl Prøveform b GUX161 - MAB GUX Matematik B-Niveau Torsdag den 26. maj 2016 Kl. 09.00-13.00 Prøveform b GUX161 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx141-mat/a-305014 Fredag den 3. maj 014 kl. 9.00-14.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen

Læs mere

Matematik C. Højere forberedelseseksamen

Matematik C. Højere forberedelseseksamen Matematik C Højere forberedelseseksamen gl-2hf111-mat/c-2605201 11 Torsdag den 26. maj 2011 kl. 9.00-12.00 Opgavesættet består af 7 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt

Læs mere

FRANSK BEGYNDERSPROG FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN MAJ 2009 HØJERE FORBEREDELSESEKSAMEN MAJ 2009 MATEMATIK C-NIVEAU

FRANSK BEGYNDERSPROG FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN MAJ 2009 HØJERE FORBEREDELSESEKSAMEN MAJ 2009 MATEMATIK C-NIVEAU STUDENTEREKSAMEN MAJ 2005 2005-11-2 SPROGLIG OG MATEMATISK LINJE HØJERE FORBEREDELSESEKSAMEN MAJ 2005 HØJERE FORBEREDELSESEKSAMEN MAJ 2009 HØJERE FORBEREDELSESEKSAMEN MAJ 2009 FRANSK BEGYNDERSPROG HØJT

Læs mere

GUX Matematik Niveau B prøveform b Vejledende sæt 1

GUX Matematik Niveau B prøveform b Vejledende sæt 1 GUX-013 Matematik Niveau B prøveform b Vejledende sæt 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX

MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX MATEMATIK B til A Vejledende løsning på eksamensopgaven fra 27 maj 2016 STX Anders Jørgensen & Mark Kddafi 2016 matematikhfsvar.page.tl 8. august 2016 15. august 2016 Anders Jørgensen & Mark Kddafi MATEMATIK

Læs mere

Evaluering Matematik A på htx

Evaluering Matematik A på htx Evaluering af Matematik A på htx Sommeren 2013 1 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabel... 6 Årets prøve i tal... 6 Vurdering af opgavesættet... 9 Forberedelsesmaterialet...

Læs mere

STUDENTEREKSAMEN MAJ AUGUST 2007 2009 MATEMATIK B-NIVEAU. onsdag 12. august 2009. Kl. 09.00 13.00. STX092-MABx

STUDENTEREKSAMEN MAJ AUGUST 2007 2009 MATEMATIK B-NIVEAU. onsdag 12. august 2009. Kl. 09.00 13.00. STX092-MABx STUDENTEREKSAMEN MAJ AUGUST 007 009 MATEMATIK B-NIVEAU onsdag 1. august 009 Kl. 09.00 13.00 STX09-MABx Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Matematik C. Højere forberedelseseksamen

Matematik C. Højere forberedelseseksamen Matematik C Højere forberedelseseksamen 2hf131-MAT/C-31052013 Fredag den 31. maj 2013 kl. 9.00-12.00 Opgavesættet består af 7 opgaver med i alt 15 spørgsmål. De 15 spørgsmål indgår med lige vægt ved bedømmelsen.

Læs mere

Skriftlighed Matematik C. Olav Lyndrup og Ib Michelsen

Skriftlighed Matematik C. Olav Lyndrup og Ib Michelsen Skriftlighed Matematik C Olav Lyndrup og Ib Michelsen 2009 3 Indholdsfortegnelse Forord...5 Bedømmelsen af det skriftlige eksamenssæt...6 Gode råd...7 Elevsvar...9 Indledning...11 Vækstopgaver - 3...12

Læs mere

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 14.00 STX091-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere