Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Størrelse: px
Starte visningen fra side:

Download "Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0"

Transkript

1 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt værdi 0 H 0 : 0 Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

2 Teststørrelse (eng.: test statistic): en stokastisk variabel Z, som måler hvor dårligt H 0 passer med data (evt. regnet med fortegn). Normalt benytter vi Z 0 SE Kritisk område K: Værdier af Z som understøtter H a. Acceptområde A K: Værdier af Z som understøtter H 0. Signifikansniveau, defineret ved P H0 Z K. Ofte vælges K så 0. 01, eller Tabelopslag: Ofte slås op i N(0,1) eller t n 1, svarende til fordelingen for Z under H 0.

3 Testens konklusion: Hvis den observerede værdi af Z ligger i A vil vi acceptere H 0. Vi siger at testen ikke viser signifikans. Hvis den observerede værdi af Z ligger i K vil vi forkaste H 0. Vi siger at testen viser signifikans. Sprogbrug:Er signifikant forskellig fra 0 på niveau? Filosofi: H 0 er under anklage, men tvivl kommer H 0 til gode. H 0 dømmes kun hvis beviserne er stærke (signifikans).

4 Test for når 2 er kendt Eksempel Benzinforbrug for bil Benzinforbruget (i km/l) ved 20 uafhængige kørsler med bilen: x 1 x 2 x 3 x 19 x Gennemsnit: x Det vides at Bilforhandlerens påstand: bilen kører 19 km/liter. Vi opstiller hypotesen: H 0 : 19, hvor er bilens gennemsnitlige benzinforbrug i km/liter. Tror vi på bilforhandleren? Kan vi acceptere H 0? Lav en test.

5 Statistisk model: Antag at X 1, X 2,,X n er uafhængige og X i N, 2 for alle i 1,, n. Det antages kendt, at Parameter med estimat x. Nulhypotese: H 0 : 19. Bilforhandlerens påstand om tingens tilstand. Alternativ hypotese H a : 19 Det som gælder, hvis bilforhandleren tager fejl. Teststørrelse:medSE / n fås Z X 19 /SE med observeret værdi z / Kritisk område K: De værdier af z hvor z z crit.bådestore

6 positive og store negtive værdier er kritiske (tosidet test). Acceptområde A: De værdier af z hvor z z crit. Signifikansniveau, defineret ved P H0 Z z crit. Vi vælger og finder den tilsvarende værdi af z crit. Tabelopslag: Da fordelingen for Z under H 0 er N 0,1 slår vi op i normalfordelingstabellen. Med fås z crit Konklusion:Da z z crit må vi forkaste H 0. Vi konkluderer derfor at bilforhandleren ikke har ret.

7 Test for når 2 er ukendt Statistisk model: Antag at X 1, X 2,,X n er uafhængige og X i N, 2 for alle i 1,, n. Parameter med estimat x. Empirisk varians s 2. Nulhypotese: H 0 : 0 Alternative hypotese: H a : 0 Teststørrelse:medSE s/ n bruges og dermed t x 0 SE T X 0 S/ n. Kritisk område K: de værdier af t hvor t t crit. Acceptområde A: de værdier af t hvor t t crit.

8 Signifikansniveau, defineret ved P H0 T t crit. Tabelopslag: Da fordelingen for T under H 0 er t n 1 slår vi op i t-tabellen. t crit t /2 n 1 Testens konklusion: Hvis den observerede værdi af T ligger i A vil vi acceptere H 0. Hvis den observerede værdi af T ligger i K vil vi forkaste H 0

9 Eksempel (fortsat) Benzinforbrug for bil Benzinforbruget (i km/l) ved n 20 uafhængige kørsler. Model: X i N, 2 uafhængige. Nulhypotese og alternativ hypotese: H 0 : 19 mod H a : 19. Teststørrelse: T X 19 t S/ 20

10 Gennemsnit og varians: x og s Observeret teststørrelse: t /20 Kritisk område K: de værdier af t hvor t t crit. Acceptområde A: de værdier af t hvor t t crit. Signifikansniveau, P H0 T t crit. Vi vælger Tabelopslag: Da fordelingen for T under H 0 er t n 1 slår vi op i t-tabellen t crit t

11 Konklusion:Da t er mindre end t crit vil vi acceptere H 0. Vi kan altså ikke afvise forhandlerens påstand. Hvorfor når vi til den modsatte konklusion som før: 1. Vores kendte værdi viste sig at være for optimistisk. 2. Når 2 er ukendt har vi mindre information om end hvis 2 er kendt, hvilket gør signifikansen mindre.

12 Eksempel Karakterer for 11 studerende Model: X i N, 2 uafhængige. Vi ønsker at teste H 0 : 50 mod H a : 50. Vi har n 11 og Teststørrelse: x , s t x 0 s 2 /n /

13 Tabelopslag t Da t er mindre end t accepterer vi H 0. Vi kan ikke afvise, at den gennemsnitlige karakter er 50.

14 Test for variansen 2 Model: X 1,, X n uafhængige N, 2, hvor både og 2 er ukendte. Data: x 1,, x n, svarende til X 1,, X n. Parameter 2 med estimat 2 s 2 (empirisk varians). Nulhypotese: H 0 : Alternative hypotese: H a : Teststørrelse: U n S 2 H 0 2 n 1, som er en 2 -fordeling med n 1 frihedsgrader. Kritisk område K: de værdier af u hvor u /2 eller u 1 /2 Acceptområde A: de værdier af u hvor 1 /2 u /2 Signifikansniveau,

15 P H0 U 1 /2 P H0 U /2. Vi vælger Tabelopslag: Vi finder /2 og 1 /2 i tabel D.6 under n 1 frihedsgrader. Testens konklusion: Hvis den observerede værdi af U ligger i A vil vi acceptere H 0 Hvis den observerede værdi af U ligger i K vil vi forkaste H 0

16 Test for sandsynligheden p Antagelse: Antag at X er binomialfordelt: X b n,p. Estimat for p: Estimator for p: p x n. X X n. Den centrale grænseværdisætning giver X N np, np 1 p. Kræver np 1 p 5

17 For estimatoren gælder X n N p, p 1 p n Standard error for p er derfor Test for H 0 : p p 0 baseres på SE p 1 p /n. (approximativt). Z p p 0 SE H 0 N 0,1

18 Eksempel Internet shopping Gallupundersøgelse af 1025 tilfældige personer: 297 købte på internettet i sidste måned. Estimat for p: p Internetudbyder postulerer at 30% køber på internettet hver måned. Kan påstanden afvises? Test for H 0 : p Alternativ hypotese H a : p 0. 30, at internetudbyderen ikke har ret.

19 Standard error SE / Teststørrelse z Tabelopslag: Da fordelingen for Z under H 0 er approximativt N 0, 1 slår vi op i normalfordelingstabellen. Med 0.05 fås z crit Konklusion:Da z z crit må vi acceptere H 0. Vi konkluderer derfor at internetudbyderen har ret.

20 Test for raten Model: X antal hændelser i tidsrum t, medx Poisson t. Data: Antal observerede hændelser x svarende til X. Estimat for : x t Estimator for : X X t. Den centrale grænseværdisætning giver X N t, t. Kræver t 10

21 For estimatoren gælder X X t N, n Standard error for er derfor SE /t. Test for H 0 : 0 baseres på Z 0 SE H 0 N 0,1 (approximativt). Tabelopslag:Findz /2 i normalfordelingstabellen. Konklusion: Forkast H 0 (tosidet test) hvis z z /2, ellers accepteres H a : 0

22 Hypotesetest, mere teori Styrke for en test Der er fire muligheder for en test med niveau : H 0 accepteres H 0 forkastes H 0 er sand OK Fejl af type I H 0 er falsk Fejl af type II OK Fejl af type I, at forkaste en sand nulhypotese. Sandsynlighed. Fejl af type II betyder at acceptere en falsk nulhypotese. Sandsynligheden kaldes for. 1 kaldes også for testens styrke, som afhænger af fordelingen for Z under H a.

23 Både og bør være små, men tvinges ned går op, og omvendt. Kompromis: 1. vælges til en fast, lille værdi, f.eks eller For givet vælges den test som er stærkest (har mindst ). z- ogt-test diskuteret ovenfor er optimale, så de har den størst mulige styrke blandt alle mulige test.

24 Signifikansniveau og p-værdi Klassisk test: Er resultatet signifikant på niveau? Vi ønsker et ja/nej svar. skal vælges på forhånd. 1. Fordel: Vi får et klart svar, som kan bruges til f.eks. at tage en beslutning. 2. Ulempe: Svaret afhænger af valget af. Pragmatisk test: Vi ønsker svar på spørgsmålet: hvor stærk er signifikansen? 1. Fordel: Hvis signifikansen er meget stærk, eller meget svag, får vi stadig et klart svar. 2. Ulempe: Der er en grå zone, hvor svaret ikke er klart, hvilket giver mulighed for misbrug.

25 Lad model, test, nulhypotese H 0 og alternativ hypotese H a være givet. Vi definerer p-værdien, eller det observerede signifikansniveau som den værdi af signifikansniveauet hvor resultatet er lige på grænsen til at være signifikant. For 2 kendt findes p ved at løse følgende ligning (z observeret værdi af teststørrelse): z z p/2 Fremgangsmåden er tilsvarende hvis 2 er ukendt, idet z erstattes af t, ogz p/2 af t p/2 n 1 osv. Bemærk: Bogens tabeller giver kun en grov vurdering af p. Nøjagtig udregning kræver computer.

26 Vurdering af p-værdi: p-værdi Signifikans af H svag 0.05 ret stærk stærk 0.01 meget stærk Bemærk: Ønskes et klassisk test kan p også benyttes: Hvis p accepteres H 0 på niveau. Hvis p forkastes H 0 på niveau.

27 Eksempel (fortsat) Benzinforbrug for bil Benzinforbruget (i km/l) ved 20 uafhængige kørsler med samme bil med X i N,0.4. Hypotese: H 0 : 19 mod H a : 19. Teststørrelse z p-værdi findes ved at løse / Løsning z p/2

28 p Konklusion: H 0 er ret signifikant, og H 0 bør forkastes. Bilforhandleren har ikke ret.

29 Eksempel (fortsat) Karakterer for 11 studerende Model: X i N, 2. Hypotese: Teststørrelse: H 0 : 50 mod H a : 50. t x 0 s 2 /n Tabelopslag t Da t er mindre end t er p Faktisk er t mindre end t så p Udregning med computer giver p

30 H 0 er altså ikke signifikant, og bør derfor accepteres. Som før: H 0 kan ikke forkastes på niveau 5%. Vi kan ikke afvise, at den gennemsnitlige karakter er 50.

31 Test og konfidensintervaller Model: X i N, 2 for i 1,,n, indbyrdes uafhængige. Givne data: x 1,, x n. Test for hypotesen: H 0 : 0 mod H a : 0 med signifikansniveau. Konfidensinterval C. I. med konfidensgrad 1. Følgende to ting er ækvivalente 1. H 0 : 0 accepteres ved en test på niveau 2. 0 tilhører C. I. Begge betingelser er nemlig ækvivalente med x 0 z SE /2 (hvis SE / n med kendt), eller med

32 (hvis SE s/ n ). x 0 SE t /2 n 1

33 Overvejelser om den alternative hypotese Den fornuftige bilkøber Analyse: I benzineksemplet ovenfor forkaster vi H 0 hvis enten 1. z z crit, det vil sige når bilen kører kortere per liter end 19 km/liter. 2. z z crit, det vil sige når bilen kører længere per liter end 19 km/liter. Under2.erbilenbedre end påstået, så køberen snyder sig selv. Nulhypotesen bør stadig være: H 0 : 19 Bilforhandlerens påstand om tingens tilstand. Alternativ hypotese skiftes nu ud med et ensidet alternativ: H a : 19

34 Hvis bilen er dårligere end bilforhandleren påstår.

35 Teststørrelse: Vi bruger stadig kendt og Z X SE 19 Den observerede værdi af Z er stadig z /20 Kritisk område K:Nuvælgervideværdierafz hvor z z crit. Acceptområde A: De værdier af z hvor z z crit. Signifikansniveau, defineret ved P H0 Z z crit. Vi holder fast ved

36 Tabelopslag: Da fordelingen for Z under H 0 stadig er N 0,1 slår vi op i tabellen. Med fås z crit Konklusion:Daz er mindre end z crit må vi forkaste H 0. Vi konkluderer derfor at bilforhandleren ikke har ret, og at bilen kører kortere på literen end han påstår.

37 Den kyniske bilfabrik Fra intern rapport på bilfabrikken: Nulhypotesen er stadig: H 0 : 19 Bilfabrikkens påstand om tingens tilstand. Alternativ hypotese skiftes nu ud med det andet ensidede alternativ: H a : 19 Hvis bilen er bedre end fabrikken påstår. Teststørrelse: Vi bruger stadig Z X 19 /SE med observeret værdi z Kritisk område K:Nuvælgervideværdierafz hvor z z crit. Acceptområde A: De værdier af z hvor z z crit. Signifikansniveau, defineret ved

38 P H0 Z z crit. Vi holder fast ved Tabelopslag: Z N 0, 1 under H 0, så fra tabellen med 0.05 fås z crit Konklusion:Daz er mindre end z crit må vi acceptere H 0. Altså holder bilfabrikkens påstand om benzinøkonomien! Begrundelse: Bilfabrikken vil undgå, at bilen er bedre end påstået, så man ikke sælger den for billigt! En moderne bilfabrik tænker naturligvis ikke sådan, men eksemplet illustrerer mulighederne for misbrug.

39 Énsidede test Lad nulhypotesen være H 0 : 0 Eksemplet ovenfor illustrerer, at der er mulighed for tre forskellige alternative hypoteser. Den tosidede test er med for overskuelighedens skyld. 1. Tosidet test svarer til tosidet alternativ: H a : 0 2. Énsidet test med alternativer til højre: H a : 0 3. Énsidet test med alternativer til venstre: H a : 0.

40 Teststørrelse:medSE / n bruges i alle tre tilfælde Z X 0 SE Kritisk område K: 1. For H a : de værdier af z hvor z z crit. 2. For H a : de værdier af z hvor z z crit. 3. For H a : de værdier af z hvor z z crit. Acceptområde A: 1. For H a : de værdier af z hvor z z crit. 2. For H a : de værdier af z hvor z z crit. 3. For H a : de værdier af z hvor z z crit.

41 Signifikansniveau, defineret ved 1. For H a : P H0 Z z crit. 2. For H a : P H0 Z z crit. 3. For H a : P H0 Z z crit. Tabelopslag:DaZ N 0, 1 under H 0, slår vi op i tabel A For H a : 2. For H a : 3. For H a : z crit z /2 z crit z

42 z crit z Konklusion: Hvis den observerede værdi af Z ligger i A vil vi acceptere H 0. Hvis den observerede værdi af Z ligger i K vil vi forkaste H 0

43 Generelle statistiske test Givet: Data x (vektor) svarende til vektor X af stokastiske variable fra en passende model. Nulhypotese H 0 skal betyde at modellen er korrekt. Find passende teststørrelse t x, som måler afvigelser fra H 0 generelt: jo større værdi af t x, jo mindre tror vi på H 0. Bemærk: Den alternative hypotese H a angives ikke specifikt, men indeholder alt hvad der kan være galt med H 0, f.eks. at fordelingen ikke er normal, men stammer fra en anden fordeling.

44 Find fordelingsfunktionen for t X under H 0 : F x P H0 t X x Udregn p-værdi: p 1 F t x. p måler sandsynligheden for at få en endnu mere ekstrem værdi af t X end den observerede værdi t x. Forkast H 0 hvis p er lille (f.eks. p 0. 05) Accepter H 0 hvis p er stor (f.eks. p 0.05).

45 Fortolkning: Hvis H 0 er sand forventer vi at få en sædvanlig værdi af t x. Vi måler hvor usædvanlig t x er ved at udregne p-værdien. En sædvanlig p-værdi er en værdi, som er passende stor. Hvis p er lille, må én af to følgende ting gælde: 1. En hændelse med lille sandsynlighed er hændt, eller 2. H 0 er falsk. Vi hælder derfor til den sidste forklaring (at H 0 er falsk), snarere end at en sjælden hændelse er sket. 2 -test

46 Eksempel: Betragt et histogram med k klasser, og lad X 1,,X k være antallet af data i hver af de k klasser ved en stikprøve på n. Lad H 0 være hypotesen, at data kommer fra en bestemt fordeling, og lad E 1,, E k være de tilsvarende forventede værdier, dvs. E j np j, hvor p j er sandsynligheden for den j te klasse, udregnet under H 0. Som teststørrelse bruges 2 -størrelsen: k t X j 1 X j E j 2 E j. Det vides at fordelingen for t X under H 0 kan approximeres ved den såkaldte 2 -fordeling med k 1 frihedsgrader (tabel). Kravet er at n skal være stor (bygger på CLT). En test med signifikansniveau 5% (approximativt) fås hvis vi

47 forkaster H 0 når t x 0.05 k 1.

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Maple 11 - Chi-i-anden test

Maple 11 - Chi-i-anden test Maple 11 - Chi-i-anden test Erik Vestergaard 2014 Indledning I dette dokument skal vi se hvordan Maple kan bruges til at løse opgaver indenfor χ 2 tests: χ 2 - Goodness of fit test samt χ 2 -uafhængighedstest.

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Opgave 6. Opgave 7. Peter Harremoës Mat A eksamen med hjælpemidler 25. maj 2013. (x + a) 1 /2. dx = 42 løses ved hjælp af GeoGebra CAS: Ligningen 15

Opgave 6. Opgave 7. Peter Harremoës Mat A eksamen med hjælpemidler 25. maj 2013. (x + a) 1 /2. dx = 42 løses ved hjælp af GeoGebra CAS: Ligningen 15 Opgave 6 Ligningen 15 0 (x + 1 /2 dx = 42 løses ved hjælp af GeoGebra CAS: Løsningen er derfor a = 1. Se Bilag 2! Opgave 7 Et søjlediagram over hyppighed af lønsum er vist nedenfor. Gennemsnittet er 64.4

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks:

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Til hvert af de gennemgåede værktøjer findes der 5 afsnit. De enkelte afsnit kan læses uafhængigt af hinanden. Der forudsættes et elementært kendskab

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM FORMÅL - BEKENDTGØRELSEN STX MATEMATIK A Kompetencer anvende simple statistiske eller sandsynlighedsteoretiske modeller

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X.

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X. Opgave I I en undersøgelse af et potentielt antibiotikum har man dyrket en kultur af en bestemt mikroorganisme og tilført prøver af organismen til 20 prøverør med et vækstmedium og samtidig har man tilført

Læs mere

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test.

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test. Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ -test og Goodness of Fit test. Anvendelser af statistik Statistik er et levende og fascinerende emne, men at læse om det er alt

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx131-mat/a-705013 Mandag den 7. maj 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

2 0.9245. Multiple choice opgaver

2 0.9245. Multiple choice opgaver Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

En intro til radiologisk statistik

En intro til radiologisk statistik En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

Matematik B. Højere handelseksamen. Vejledende opgave 1

Matematik B. Højere handelseksamen. Vejledende opgave 1 Matematik B Højere handelseksamen Vejledende opgave 1 Efterår 011 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Stastistik og Databehandling på en TI-83

Stastistik og Databehandling på en TI-83 Stastistik og Databehandling på en TI-83 Af Jonas L. Jensen (jonas@imf.au.dk). 1 Fordelingsfunktioner Husk på, at en fordelingsfunktion for en stokastisk variabel X er funktionen F X (t) = P (X t) og at

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary 1 Kontingenstabeller Betinget fordeling Uafhængighed 2 Chi-kvadrat test for uafhængighed Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Læs mere

Preben Blæsild og Jens Ledet Jensen

Preben Blæsild og Jens Ledet Jensen χ 2 Test Preben Blæsild og Jens Ledet Jensen Institut for Matematisk Fag Aarhus Universitet Egå Gymnasium, December 2010 Program 8.15-10.00 Forelæsning 10.15-12.00 Statlab: I arbejder, vi cirkler rundt

Læs mere

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle.

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. Af E. Susanne Christensen. Lektor i statistik. Institut for Matematiske Fag. Aalborg Universitet. I mange tilfælde og

Læs mere

Opgave 6. Opgave 7. Opgave 8. Peter Harremoës Mat A delprøve med hjælpemidler 15 december 2015

Opgave 6. Opgave 7. Opgave 8. Peter Harremoës Mat A delprøve med hjælpemidler 15 december 2015 Opgave 6 a) Se Bilag 3! b) Funktionen differentieres, sættes lig nul og ligningen løses. g (x) = 0 K ln (x) + K = 0 K ln (x) = K ln (x) = 1 x = e 1. Det stationære punkt har x = e 1. Opgave 7 a) Data indlæses

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

Teoretisk Statistik, 13 april, 2005

Teoretisk Statistik, 13 april, 2005 Poissonprocessen Teoretisk Statistik, 13 april, 2005 Setup og antagelser Fordelingen af X(t) og et eksempel Ventetider i poissonprocessen Fordeling af ventetiden T 1 til første ankomst Fortolkning af λ

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Skolesektionen på www.ballerup.dk

Skolesektionen på www.ballerup.dk Skolesektionen på www.ballerup.dk Louise Callisen Dyhr (ldyh) Marie Louise Gottlieb Frederiksen (mgfr) Janus Askø Madsen (jaam) Nanna Petersen (nshy) Antal tegn: 28319 Afleveringsdato: 21. maj 2014 1 Indledning...

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 29 sider. Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041. (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 29 sider. Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041. (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 29 sider Skriftlig prøve, den: 14. december 1999 Kursus nr : 04041 Kursus navn: Statistik 1 Tilladte hjælpemidler: Alle sædvanlige Dettesæterbesvaretaf: (navn) (underskrift)

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Test nr. 5 af centrale elementer 02402

Test nr. 5 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 5 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium Man kan nemt lave χ 2 -test i GeoGebra både goodness-of-fit-test og uafhængighedstest. Den følgende vejledning bygger på GeoGebra version

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet!

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet! Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 2. juni 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Vejledende løsninger kapitel 9 opgaver

Vejledende løsninger kapitel 9 opgaver KAPITEL 9 OPGAVE 1 a) Hypoteser H 0 : Der er uafhængighed (ingen sammenhæng) i kontingenstabellen H 1 : Der er afhængighed (sammenhæng) i kontingenstabellen Observerede værdier Ny metode Gammel metode

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b stk. Peter Harremoës Matematik A med hjælpemidler 16. december 2013 Opagve 6 Variables a isoleres: M = S 1 + a = a + b b a b a = b 1 ( ) 1 b 1 a = b 1 a = b 1 1 b 1 a = b Hvis b = 1, så gælder ligningen

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2011/2012 Institution Silkeborg Handelsskole/Handelsskolen Silkeborg Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Matematik A. Højere handelseksamen. Mandag den 16. december 2013 kl. 9.00-14.00. hhx133-mat/a-16122013

Matematik A. Højere handelseksamen. Mandag den 16. december 2013 kl. 9.00-14.00. hhx133-mat/a-16122013 Matematik A Højere handelseksamen hhx133-mat/a-161013 Mandag den 16. december 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Statistik opgaver - Efterår 2009 Keller - Statistics for management and economics

Statistik opgaver - Efterår 2009 Keller - Statistics for management and economics Statistik opgaver - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 17. december 2009 1 Indhold 2 1 Opgave 24 En virksomhed har gennem længere tid anvendt

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1

ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1 ! ØVELSER Statistik, Logistikøkonom Lektion 6: Hypotesetest 1 Eksempel 1 TEST AF MIDDELVÆRDI FRA ÉN STIKPRØVE (ukendt varians) En producent af tyggegummi påstår at en pakke tyggegummi i gennemsnit vejer

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 9. september 003 Denne note er skrevet til kurset Økonometri på. årsprøve af polit-studiet.

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh123-mat/b-17122012 Mandag den 17. december 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Tidsværdi for gods i Sverige

Tidsværdi for gods i Sverige Tidsværdi for gods i Sverige Mogens Fosgerau 1 og Mikkel Birkeland, COWI 1 Indledning COWI har sammen med INREGIA i Stockholm gennemført en undersøgelse af tidsværdien for gods for SIKA, Statens Institut

Læs mere

Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel.

Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel. Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel. Kapitel Deskriptiv statistik Indhold 1. Generelle forhold... 1 Kapitel : Deskriptiv Statistik... 1 Kapitel 4: Normalfordelingen...

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger Oversigt: De næste forelæsninger Økonometri Inferens i den lineære regressionsmodel 5. september 006 Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK I Sammenligning af to eller flere kvalitative variable (TI 89 og Statgraphics)

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK I Sammenligning af to eller flere kvalitative variable (TI 89 og Statgraphics) MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK I Sammenligning af to eller flere kvalitative variable (TI 89 og Statgraphics) DANMARKS TEKNISKE UNIVERSITET 6. udgave 005 FORORD Dette notat kan læses på

Læs mere

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK med Excel

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK med Excel MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK med Excel. udgave 004 i FORORD Denne bog er en fortsættelse af lærebogen M. Oddershede Larsen : Statistiske grundbegreber. Det forudsættes, at man har rådighed

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Signifikanstestet. usædvanlig godt godt

Signifikanstestet. usædvanlig godt godt Signifikanstestet Fordeling af rygevaner som 45-årig og senere selvrapporteret helbred som 51-årig blandt tilfældigt udvalgte mænd i Københavns Amt i 1987. helbred som 51 årig rygevaner som 45 årig Total

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)...

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... χ Indhold Formål med noten... Goodness of fit metoden (GOF)... 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... ) χ -fordelingerne (fordelingsfunktionernes egenskaber)... 6 3) χ -

Læs mere

Vejledende løsninger, Mat A, maj 2015 Peter Bregendal

Vejledende løsninger, Mat A, maj 2015 Peter Bregendal Delprøven uden hjælpemidler Opgave 1 a) Se graf: Opgave 2 a) f (x)= 25000x + 475000 År hvor værdien er 150000: 25000x + 475000 = 150000 25000x = 325000 x = 13 I år 2025 vil værdien være faldet til 150000

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

for matematik pä B-niveau i hf

for matematik pä B-niveau i hf for matematik pä B-niveau i hf 014 Karsten Juul TEST 1 StikprÅver... 1 1.1 Hvad er populationen?... 1 1. Hvad er stikpråven?... 1 1.3 Systematiske fejl ved valg af stikpråven.... 1 1.4 TilfÇldige fejl

Læs mere