Teoretisk Statistik, 2. december Sammenligning af poissonfordelinger

Størrelse: px
Starte visningen fra side:

Download "Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger"

Transkript

1 Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte test for sammenligning af to binomialford. Multinomialfordelingen som betinget poissonfordeling Givet: stikprøve x 1,,x I af I uafhængige observationer Model: X i ~ Ps(λ i ) i = 1,,I. Hypotesen H 0 : λ i = α i λ overfor H 1 : λ i α i λ i = 1,,I, hvor α i er givne konstanter med α i = 1, ønskes afprøvet. Sætning : hvis X 1,,X I er uafhængige stok. var. og X i ~ Ps(λ i ) i = 1,,I vil (X 1,,X I X. = x.) ~ Mult(x., λ 1 / λ.,, λ I / λ.), 1

2 hvor I i λ=. λ, x. = x, X. = X I I i= 1 i i= 1 i i= 1 Den betingede fordeling er altså en multinomialfordeling med kendte sandsynlighedsparametre p i = λ i / λ.= α i i = 1,,I. Vi får derfor videre at H 0 kan afprøves med Q-teststørrelsen. (16.39) Q = I i= 1 (Xi x. αi) x. α i 2 som i medfør af sætning 16.1 approximativt er χ 2 (I 1) -fordelt. Test i diskrete fordelinger Nulhypotesen er H 0 : θ = θ 0, hvor θ er parameter i den diskrete stokastiske variabel X s punktsandsynlighed f(x θ). Antag en observation x foretages, og at x stor medfører θ stor. Da haves 2

3 Alternativ Signifikanssandsynlighed H 1 : θ > θ 0 p= P(X x H 0) = f(z θ0) z x H 1 : θ < θ 0 p= P(X x H 0) = f(z θ0) z x H 1 : θ θ 0 p= 2 min{ f(z θ0), f(z θ0)} z x z x Eksakt test for sammenligning af to poissonfordelinger Sætning 16.3 for I = 2 : Hvis X i ~ Ps(λ i ) i = 1,2 samt X 1 og X 2 stok. uafh. er (X 1 X 1 + X 2 = x. ) ~ bin(n = x., p = λ 1 /(λ 1 + λ 2 ) ). Med brug af denne sætning kan nedenstående hypotese testes. H 0 : λ 1 = k λ 2 mod H 1 : λ 1 k λ 2 med α = 0.05 hvor k er en positiv konstant. Under H 0 haves (X 1 X 1 + X 2 = x. ) ~ bin(n = x., p = λ 1 /(λ 1 + λ 2 ) =k/(1+ k) ). Dvs. p = 2 min{ f (z x.,k /(1 + k)), f (z x.,k /(1 + k))}. z x z x 1 1 I praksis benyttes ofte normalfordelingsapproximationen X1 x.k/(1+ k) U= x.k /(1 + k) 2 a N(0,1), 3

4 ud fra hvilken signifikanssandsynligheden kan beregnes. Dette test kan forudsat k = 1 også udføres som et approximativt test, hvor teststørrelsen fremkommer fra (16.39) for I = 2. Er den alternative hypotese énsidet, kan testet derimod kun udføres som et eksakt test. Eksempel Antallet af kunder i en bestemt butik antages at være Poissonfordelt. I tabellen nedenfor er vist antal kunder torsdag og lørdag i de angivne tidsrum i to uger. Vi ønsker at teste a) om det forventede antal kunder er forskelligt fra den ene torsdag til den anden. b) om det forventede antal kunder torsdag og lørdag afviger fra hinanden. Torsdag Lørdag antal kunder ---- Tidsrum 1. uge til uge til

5 Ad a) Lad X i være antal kunder i butikken i i'te uge i de angivne tidsrum i=1,2. Desuden antag at X i ~ Ps(λ i T i ) i = 1,2 samt at X 1 og X 2 er stok. uafh. T 1 og T 2 er tidsperioder af hhv. 1 time og 1.5 times længde. Under disse forudsætninger skal hypotesen H 0 : λ 1 = λ 2 = λ testes overfor H 1 : λ 1 λ 2 med α = Under H 0 haves (X 1 X 1 + X 2 = 34) ~ bin( n = 34, p = T 1 /(T 1 + T 2 ) = 0.4) dvs. den eksakte signifikanssandsynlighed bliver p = 2 P(X 1 12 n = 34, p = 0.4) = = 0.71 > α = H 0 kan altså ikke forkastes. Der er således ikke signifikant forskel på antal kunder de to torsdage. Der er i øvrigt heller ikke signifikant forskel på antal kunder de to lørdage, idet p bliver p = 2 P(X 1 17 n = 42, p = 0.4) = = 0.82 > α = Ad b) Lad nu Y T betegne det samlede antal kunder i butikken i tidsperioden i hver af de to uger om torsdagen og lad Y L betegne det samme antal blot om lørdagen. Antag endvidere at Y T og Y L er stok. uafh. Vi har da Y T ~ Ps(λ T (T 1 + T 2 )) Y L ~ Ps(λ L (T 1 + T 2 )) og videre at 5

6 (Y T Y T + Y L = 76) ~ bin( n = 76, p = 0.5). Hypotesen H 0 : λ T = λ L = λ overfor H 1 : λ T λ L med α = 0.05, at antallet af kunder torsdage og lørdage er ens, kan ikke forkastes, idet p = 2 P(Y T 34 n = 76, p = 0.5) = = 0.42 > α = Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte test for sammenligning af to binomialford. o Eksempel 6

7 Opsummering af multinomialfordelingen Bruges til beskrivelse af antal observationer i et givet antal forskellige kategorier. Spørgeskemaundersøgelser, meningsmålinger mm Kontrol af diskrete fordelinger Kontrol af kontinuerte fordelinger Sammenligning af poissonfordelinger betinget test Kontingenstabeller (kap. 17). Hypergeometrisk fordeling som betinget binomialford. Fishers eksakte test Givet: x 1, x 2, hvor X i ~ bin(n i, p i ) i = 1,2 samt X 1 og X 2 stokastisk uafhængige. H 0 : p 1 = p 2 mod H 1 : p 1 p 2 med α = Under H 0 haves, jfr. sætning 16.4 (X 1 X 1 +X 2 = x.) ~ hyperg(x., n 1, n), hvor n = n 1 +n 2. Dvs. p 2 min{ f(z x.,n,n), f(z x.,n,n)}. = z x 1 z x

8 Dette er det berømte test, der kaldes Fishers eksakte test for sammenligning af to binomialfordelinger. I praksis benyttes ofte normalfordelingsapproximationen U = X n x./n 1 1 n (x./n)(1 x./n)(n /(n 1)) 1 2 ud fra hvilken signifikanssandsynligheden kan beregnes. Teststørrelsen kan omskrives således at det fremgår, at der er tale om sammenligning af relative hyppigheder : X1 n1x./ n nx1 n1x. U = = n (x./ n)(1 x./ n)(n /(n 1)) (x./n)(1 x./n)(n n n /(n 1)) (n1+ n 2)X1 n 1(X1+ X 2) X 1/n1 X 2/ n2 = = (x./ n)(1 x./ n)(n n n /(n 1)) (x./ n)(1 x./ n)(n / n n (n 1)) = X/n X/n (x./n)(1 x./n)(1/n + 1/n )(n/(n 1)) 1 2 8

9 Eksempel Et forsikringsselskab har gennem en længere periode opkrævet den samme forsikringspræmie for to vognmærker A og B. Imidlertid har selskabet i det sidst forløbne år fået en mistanke om, at vognmærke B udgør en dårligere risiko end vognmærke A og har i den anledning foretaget en undersøgelse af skadeforløbet hos 100 biler af mærket A og 150 biler af mærket B. Undersøgelsen er foretaget på den måde, at de i alt 250 bilers skadeforløb er blevet fulgt i en periode på 6 måneder. Ved udløbet af undersøgelsesperioden viste det sig, at 15 af de 100 biler af mærket A havde haft skader, mens 35 af de 150 biler af mærket B havde haft skader. Giver undersøgelsens resultat selskabet "rimelig sikkerhed" for rigtigheden af dets formodning om, at biler af mærket B udgør en dårligere risikogruppe end biler af mærket A? Datamateriale: Bilmærke Antal biler Antal skadede biler A 100 = n 1 15 = x 1 B 150 = n 2 35 = x 2 I alt 250 = n 50 = x. 9

10 Model: to binomialfordelinger med sandsynlighedsparametre p 1 og p 2. Vi ønsker at teste H 0 : p 1 = p 2 mod H 1 : p 1 p 2 med α = 0.05 Fisher's eksakte test benyttes, dvs. vi beregner signifikanssandsynligheden p som P = P(X 1 15 x. = 50) Φ ( ) =Φ ( ) =Φ( 1.45) = / Den er større end α = 0.05, hvorfor H 0 ikke kan forkastes. Biler af mærke B udgør altså ikke en dårligere risikogruppe end biler af mærke A. Havde signifikansniveauet være 10% ville konklusionen blive den modsatte. 10

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro

Uge 48 II Teoretisk Statistik 27. november 2003. Numerisk modelkontrol af diskrete fordelinger: intro Uge 48 II Teoretisk Statistik 7. november 003 Numerisk modelkontrol af diskrete fordelinger: intro Eksempel: kvalitetskontrol Goodness-of-fit test: generel teori Endeligt udfaldsrum Udfaldsrum uden øvre

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte fordelinger, Afsnit 5.1-5.2: - Fordelingsfunktion - Tæthedsfunktion - Eksempel:

Læs mere

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test.

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test. Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ -test og Goodness of Fit test. Anvendelser af statistik Statistik er et levende og fascinerende emne, men at læse om det er alt

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Teoretisk Statistik, 13 april, 2005

Teoretisk Statistik, 13 april, 2005 Poissonprocessen Teoretisk Statistik, 13 april, 2005 Setup og antagelser Fordelingen af X(t) og et eksempel Ventetider i poissonprocessen Fordeling af ventetiden T 1 til første ankomst Fortolkning af λ

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Mat2SS Vejledende besvarelse uge 11

Mat2SS Vejledende besvarelse uge 11 MatSS Vejledende besvarelse uge Eksamen V99/00 opg. a Kønsfordelingen 996 den samme for de tre skoler Mænd Kvinder I alt København 5 = n x 56 = x 8 = n Odense 9 = n x 06 = x 5 = n Århus 0 = n x 40 = x

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R Helle Sørensen Uge 6, mandag SaSt2 (Uge 6, mandag) Tætheder og kont. fordelinger 1 / 19 Program Velkommen I dag:

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.

Læs mere

Sandsynlighedsregning Stokastisk variabel

Sandsynlighedsregning Stokastisk variabel Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel.

Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel. Eksempler fra bogen Statistiske Grundbegreber løst ved anvendelse af Excel. Kapitel Deskriptiv statistik Indhold 1. Generelle forhold... 1 Kapitel : Deskriptiv Statistik... 1 Kapitel 4: Normalfordelingen...

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Grundlæggende statistik Lektion 2 Indhold Diskrete fordelinger Binomial fordelingen Poisson fordelingen Hypergeometrisk fordeling Data typer el. typer af tilfældige variable Diskrete variable > Kategoriseres

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

Matematik B. Højere handelseksamen. Vejledende opgave 1

Matematik B. Højere handelseksamen. Vejledende opgave 1 Matematik B Højere handelseksamen Vejledende opgave 1 Efterår 011 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen af denne delprøve

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Sandsynlighedsregning & Statistik

Sandsynlighedsregning & Statistik Jørgen Larsen Sandsynlighedsregning & Statistik for matematikstuderende 2006 Indhold Forord 5 Del I Sandsynlighedsregning 7 Indledning 9 Endelige udfaldsrum. Grundlæggende definitioner.....................

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 21 sider Skriftlig prøve: 15. december 2003 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af

Læs mere

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary 1 Kontingenstabeller Betinget fordeling Uafhængighed 2 Chi-kvadrat test for uafhængighed Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin aug-juni 10/11 Institution Campus Vejle Handelsgymnasie Uddannelse Fag og niveau Lærer(e) Hold HHX Statistik

Læs mere

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,

Læs mere

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks:

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Til hvert af de gennemgåede værktøjer findes der 5 afsnit. De enkelte afsnit kan læses uafhængigt af hinanden. Der forudsættes et elementært kendskab

Læs mere

OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM KVANTITATIV KEMISK ANALYSE OG STATISTISKE MODELLER

OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM KVANTITATIV KEMISK ANALYSE OG STATISTISKE MODELLER OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM KVANTITATIV KEMISK ANALYSE OG STATISTISKE MODELLER Indledning Ved en kvantitativ kemisk analyse forstår man en tilbundsgående undersøgelse af et kemisk

Læs mere

Test nr. 5 af centrale elementer 02402

Test nr. 5 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 5 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Demo af PROC GLIMMIX: Analyse af gentagne observationer

Demo af PROC GLIMMIX: Analyse af gentagne observationer Demo af PROC GLIMMIX: Analyse af gentagne observationer Kristina Birch, seniorkonsulent, PS Banking Agenda Uafhængige vs. afhængige observationer Analyse af uafhængige vs. afhængige observationer Lille

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh123-mat/b-17122012 Mandag den 17. december 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X.

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X. Opgave I I en undersøgelse af et potentielt antibiotikum har man dyrket en kultur af en bestemt mikroorganisme og tilført prøver af organismen til 20 prøverør med et vækstmedium og samtidig har man tilført

Læs mere

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter

2 Gennemsnitligt indhold af aktivt stof i en tablet fra et glas med 200 tabletter Ekstraopgaver uge 2-02402 Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

Lær nemt! Statistik - Kompendium

Lær nemt! Statistik - Kompendium David Brink Lær nemt! Statistik - Kompendium Ventus wwwventusdk Lær nemt! Statistik - Kompendium 005 David Brink Nielsen og Ventus Download kompendiet gratis på wwwventusdk ISBN 87-7681-01-7 Ventus Falkoner

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles

Læs mere

Maple 11 - Chi-i-anden test

Maple 11 - Chi-i-anden test Maple 11 - Chi-i-anden test Erik Vestergaard 2014 Indledning I dette dokument skal vi se hvordan Maple kan bruges til at løse opgaver indenfor χ 2 tests: χ 2 - Goodness of fit test samt χ 2 -uafhængighedstest.

Læs mere

Opgave 6. Opgave 7. Peter Harremoës Mat A eksamen med hjælpemidler 25. maj 2013. (x + a) 1 /2. dx = 42 løses ved hjælp af GeoGebra CAS: Ligningen 15

Opgave 6. Opgave 7. Peter Harremoës Mat A eksamen med hjælpemidler 25. maj 2013. (x + a) 1 /2. dx = 42 løses ved hjælp af GeoGebra CAS: Ligningen 15 Opgave 6 Ligningen 15 0 (x + 1 /2 dx = 42 løses ved hjælp af GeoGebra CAS: Løsningen er derfor a = 1. Se Bilag 2! Opgave 7 Et søjlediagram over hyppighed af lønsum er vist nedenfor. Gennemsnittet er 64.4

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx131-mat/a-705013 Mandag den 7. maj 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

2 0.9245. Multiple choice opgaver

2 0.9245. Multiple choice opgaver Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Matematik A. Højere handelseksamen. Mandag den 16. december 2013 kl. 9.00-14.00. hhx133-mat/a-16122013

Matematik A. Højere handelseksamen. Mandag den 16. december 2013 kl. 9.00-14.00. hhx133-mat/a-16122013 Matematik A Højere handelseksamen hhx133-mat/a-161013 Mandag den 16. december 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Matematik og spil. Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag, Kbh. Uni. Mød MATH på KU (måske sidste chance), november 2014

Matematik og spil. Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag, Kbh. Uni. Mød MATH på KU (måske sidste chance), november 2014 Enhedens navn Matematik og spil Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag, Kbh. Uni. Mød MATH på KU (måske sidste chance), november 2014 På disse slides skal spil læses som væddemål. Hvorfor

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

(VIDENSKABSTEORI) STATISTIK (EKSPERIMENTELT ARBEJDE)

(VIDENSKABSTEORI) STATISTIK (EKSPERIMENTELT ARBEJDE) (VIDENSKABSTEORI) STATISTIK (EKSPERIMENTELT ARBEJDE) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse INDLEDNING... 3 DESKRIPTIV STATISTIK... 3 Eksempler inden for deskriptiv statistik... 12 Normalfordelingskurver...

Læs mere

Preben Blæsild og Jens Ledet Jensen

Preben Blæsild og Jens Ledet Jensen χ 2 Test Preben Blæsild og Jens Ledet Jensen Institut for Matematisk Fag Aarhus Universitet Egå Gymnasium, December 2010 Program 8.15-10.00 Forelæsning 10.15-12.00 Statlab: I arbejder, vi cirkler rundt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2011/2012 Institution Silkeborg Handelsskole/Handelsskolen Silkeborg Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle.

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. Af E. Susanne Christensen. Lektor i statistik. Institut for Matematiske Fag. Aalborg Universitet. I mange tilfælde og

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Fordelinger. En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave. Udvidet version. Ulrich Fahrenberg uli@math.auc.

Fordelinger. En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave. Udvidet version. Ulrich Fahrenberg uli@math.auc. Fordelinger En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave Udvidet version Ulrich Fahrenberg uli@math.auc.dk Da denne fordelingsoversigt's første udgave så verdens lys

Læs mere

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Vi ønskede at planlægge og afprøve et undervisningsforløb, hvor anvendelse af

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Sandsynlighedsregning & Statistik

Sandsynlighedsregning & Statistik Sandsynlighedsregning & Statistik for matematikstuderende Jørgen Larsen 2006 Roskilde Universitet Teksten er sat med skriften Kp-Fonts ved hjælp af KOMA- Script og LATEX. Tegningerne er fremstillet med

Læs mere

IMFUFA TEKST NR 435 2004. TEKSTER fra ROSKILDE UNIVERSITETSCENTER BASISSTATISTIK. Jørgen Larsen 2004, 2005

IMFUFA TEKST NR 435 2004. TEKSTER fra ROSKILDE UNIVERSITETSCENTER BASISSTATISTIK. Jørgen Larsen 2004, 2005 TEKST NR 435 2004 BASISSTATISTIK Jørgen Larsen 2004, 2005 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING OG ANVENDELSER

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

3. Trekantsberegninger. Gør rede for cosinusrelationen i vilkårlige trekanter.

3. Trekantsberegninger. Gør rede for cosinusrelationen i vilkårlige trekanter. Matematik B, 2x - sommereksamen 2014 NB! Prøvespørgsmålene kan ændres på foranledning af censor 1. Trekantsberegninger Gør rede for en trekants vinkelsum og areal. Gør endvidere rede for ensvinklede trekanter.

Læs mere