Simpel Lineær Regression: Model

Størrelse: px
Starte visningen fra side:

Download "Simpel Lineær Regression: Model"

Transkript

1 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x] = β 0 + β 1 x, dvs. at den gennemsnitlige sammenhæng mellem x og y er beskrevet ved en ret linje.

2 Simpel Lineær Regression: Estimation Vi kan estimere de ukendte regressions-parametre β 0 og β 1 ved OLS estimaterne ˆβ 0 = ȳ ˆβ 1 x og ˆβ 1 = n i=1 (x i x)(y i ȳ) n i=1 (x i x) 2 Disse estimater er centrale under antagelse SLR.1 til SLR.4, dvs. E[ˆβ 0 ] = β 0 og E[ˆβ 1 ] = β 1. Bemærk at stikprøve-korrelationen mellem x og y er n (x i x)(y i ȳ). i=1 Dvs. ingen korrelation mellem x og y er det samme som β 1 = 0.

3 Den estimerede regression-linje skirves ŷ = ˆβ 0 + ˆβ 1 x Den prædikterede værdi for i te observation y i er ŷ i = ˆβ 0 + ˆβ 1 x i. Residualet er forskellen mellem det observerede og prædikterede: û i = y i ŷ i = y i ˆβ 0 ˆβ 1 x i.

4 Ikke-liniær sammenhæng Nogle gange er en liniær sammenhæng ikke den mest passende. Antag at vi har hvor u er et fejlled. y = β 0 β x 1u, Ser vi bort fra u-ledet, så er y ekoponentielt voksende som en funktion af x. Tager vi nu den naturlige logaritme på begge sider af lighedtegnet får vi ln(y) = ln(β 0 ) + ln(β 1 )x + ln(u) = β 0 + β 1 x + ũ Vi kan nu udføre simpel linære regression af ln(y) mod x, bl.a. under antagelse af at E[ũ x] = 0.

5 Fortolkning Vi har den estimerede ligning ln(y) = ˆβ 0 + ˆβ 1 x. Hvor meget ændrer y sig når x ændrer sig? ln(y efter ) ln(y før ) = ˆβ 1 (x efter x før ). Bemærk at ln(y) y 1 når y 1, så vi omskriver: ( ) yefter ln y efter 1 ˆβ 1 x y før y før y efter (1 + ˆβ 1 x)y før. Dvs. når x øges med x, så øges ŷ med cirka (ˆβ 1 x)100%.

6 Multipel Lineær Regression Der er intet, der forhindre os i at have mere end en forklarende variabel, fx. to: y = β 0 + β 1 x 1 + β 2 x 2 + u, hvor fejlledet igen har middelværdi nul uanset værdien af x 1 og x 2, dvs. E[u x 1, x 2 ] = 0. Eksempel: Det kan tænkes at løn ikke kun afhænger af års uddannelse (udd), men også års erfarring (erf ): løn = β 0 + β 1 udd + β 2 erf + u. Vi kan også bruge forskellige tranformationer løn = β 0 + β 1 ln(udd) + β 2 erf + β 3 (erf ) 2 + u.

7 Multipel Lineær Regression: Generelt Antag vi har k forklarende variable x 1, x 2,...,x n, og den enlige afhængige variabel y. Vi vil undersøge hvordan de k x j er kan forklare y ved en multipel lineære regressionsmodel: y0β 0 + β 1 x 2 + β 2 x β k x k + u, hvor β 0 er skæringspunktet. β 1 er regressionsparameteren for x 1, β 2 er regressionsparameteren for x 2, osv. Som ved simpel lineære regression antager vi E[u x 1, x 2,...,x k ], dvs. effekten af andre forklarende variable ud over x 1,...,x k er nul i gennemsnit.

8 OLS ligningen I tilfældet med to forklarende variable, kan OLS ligningen skrives som ŷ = ˆβ 0 + ˆβ 1 x 1 + ˆβ 2 x 2, hvor ˆβ 0 er estimatet af β 0 osv. Estimationen af β 0, β 1 og β 2 baseres på data bestående af n observationer af y, x 1 og x 2. For den i te observation (fx. i te person) observerer vi den afhængige variabel y i, samt de forklarende variable x i1 og x i2. I eksemplet observer vi for den i te person løn i, udd i og erf i : løn i = ˆβ 0 + ˆβ 1 udd i + ˆβ 2 erf i.

9 Resdualer og OLS estimatore Residualet for den i te oberservation er û i = y i ŷ i = y i ˆβ 0 ˆβ 1 x i1 ˆβ 2 x i2 OLS estimaterne ˆβ 0, ˆβ 1, og ˆβ 2 er bestemt sådan at de minimerer ligningen n n ûi 2 = (y i ˆβ 0 ˆβ 1 x i1 ˆβ 2 x i2 ) 2. i=1 i=1 Denne metode kaldes Mindste Kvadraters Metode, deraf navnet Ordinary Least Squares (OLS). I løn eksemplet bliver det til n (løn i ˆβ 0 ˆβ 1 udd i ˆβ 2 erf i ) 2. i=

10 Generelle tilfælde I det generelle tilfælde med k forklarende variable har vi ŷ k = ˆβ 0 + ˆβ 1 x ˆβ k x k, hvor estimaterne ˆβ 0, ˆβ 1,...,β k er fundet ved at minimiere udtrykket n (y i ˆβ 0 ˆβ 1 x i1 ˆβ k x ik ) 2. i=1

11 Fortolkning Fortolkning af regressionsligningen ŷ = ˆβ 0 + ˆβ 1 x 1 + ˆβ 2 x 2 Hvis vi ændrer x 1 med x 1 og x 2 med x 2, så er ændringen i prædiktionen ŷ ŷ = ˆβ 1 x 1 + ˆβ 2 x 2. Hvis vi kun ændrer x 1 med x 1, men holder x 2 fast, så er ændringen ŷ = ˆβ 1 x 1.

12 I tilfældet med k forklarende variable har vi ŷ = ˆβ 0 + ˆβ 1 x ˆβ 2 x 2 Hvis vi ændrer x j med x j og holder alle andrer forklarende variable fast, så er ændringen i prædiktionen af ŷ ŷ = ˆβ j x j.

13 Sammenligning af SLR og MLR Antag vi har afhængig variabel y for to forklarende variable x 1 og x 2. Simpel lineær regression af y mod x 1 giver ỹ = β 0 + β x x 1 Multipel lineær regression af y mod x 1 og x 2 giver ŷ = ˆβ 0 + ˆβ 1 x 1 + ˆβ 2 x 2 Hvornår er β 1 = ˆβ 1, dvs. hvornår er den estimterede effekt af x 1 på y upåvirket af om x 2 er med eller ej? Foretag en lineær regression af x 1 mod x 1, hvilket giver x 2 = δ 0 + δ 1 x 1.

14 Sammenligning af SLR og MLR forts Vi har altså β 1 = ˆβ 1 + ˆβ 2 δ 1. Vi opnår β 1 = ˆβ 1 hvis 1. x 2 ingen (partiel) effekt har på ŷ, dvs. ˆβ 2 = x 1 and x 2 er ukorrelede i stikprøven, dvs. δ 1 = 0.

15 Goodness-of-Fit Som ved simpel lineære regression kan vi definere SST = n i=1 (y i ȳ) 2 (Total Sum of Squares) SSE = n i=1 (ŷ i ȳ) 2 (Explained Sum of Squares) SSR = n i=1 (y i ŷ i ) 2 = n i=1 û2 i (Residual Sum of Squares) Som sidst har vi splitte den totale variation af y i erne op i to dele SST = SSE + SSR, hvor SSE er den forklarede del af variationen og SSR er den uforklarede del af variationen i y i erne.

16 Goodness-of-Fit forts. Vi kan definere determinationskoefficianten R 2 som andelen af den totale variation (SST), der er forklaret (SSE): R 2 = SSE SST = 1 SSR SST. Bemærk: R 2 er også den kvadrede stikprøve korrelation mellem y i og ŷ i. Jo mere korrelerede de prædikterede værdier og der observerede værdier er, jo højere er R 2.

17 Antagelser Som sidst vil vi gerne at vores estimater er centrale. For at opnår dette må vi gøre nogle antagelser. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x β k x k, hvor β 0, β 1, β 2,...,β k er ukendte parametere, og u er et uobserveret fejlled. Bemærk strukturen: En sum af β er, hver ganget med en konstant (1 for β 0 s vedkommende og x j for β j s vedkommede).

18 Antagelser Antagelse MLR.2 (Tilfældig stikprøve) Vi har en tilfældig stikprøve, bestående af n observationer {(x i1, x i2,...,x ik ) : i = 1, 2,...,n}, der følger modellen i MLR.1. Bemærk: Her er den støreste fare, at der opstår en systematik i u erne, fx. hvis observationerne er indsamlet over tid.

19 Antagelser Antagelse MLR.3 (Ingen perfekt kolinearitet) I stikprøven er ingen forklarende variable konstante, og der er ikke en perfekt lineær sammenhæng mellem de forklarende variable. Illustration: Antag k = 2 og at x 1 = ax 2, dvs. der er en perfekt lineære sammenhæng mellem x 1 og x 2. Hvis vi har et sæt OLS estimater: ŷ = ˆβ 0 + ˆβ 1 x 1 + ˆβ 2 x 2, så findes der også endnu et sæt estimater: ( ) ˆβ 1 (1 b) ŷ = ˆβ 0 + (b ˆβ 1 )x ˆβ 2 x 2. β 2 a Faktisk er der uendelig mange lige gode estimater.

20 At opfylde MLR.3 er sædvanligvis ikke et problem; men MLR.3 er aldrig opfyldt, hvis n < k + 1.

21 Antagelser Antagelse MLR.4 (Betingel middelværdi er nul) Fejlledet u er forventet værdi på nul for alle værdier af de forklarende variable E[u x 1,...,x k ] = 0. Sætning 3.1 (OLS estimatorene er centrale) E[ˆβ j ] = β j, j = 1, 2,...,k, for alle værdier af β j. Bemærk: alle værdier af β j inkluderer β j = 0, dvs. den forklarende variabel x j har ingen forklarende betydning for y. Dvs. selv hvis vi inkluderer en ikke-relevant forklarende variabel, så påvirkerer det ikke centraliteteten. Det påvirker derimod variansen...

22 Effekten af at inkludere irrelevant variabel Antag vi har model y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + u, og modellen opfylder MLR.1 til MLR.4. Antag x 3 ikke har nogen effekt når x 1 og x 2 er med, dvs. β 3 = 0. Vi har E[y x 1, x 2, x 3 ] = E[y x 1, x 2 ]. Uvidende om x 2 irrelevans estimerer vi den store model og får ŷ = ˆβ 0 + ˆβ 1 x 1 + ˆβ 2 x 2 + ˆβ 3 x 3. Pga. sætning 3.1 er estimater stadig centrale, dvs. centraliteten er upåvirket af x 3. Variansen er derimod...

23 Effekten af at fjerne relevant variabel Antag den korrekte model er y = β 0 + β 1 x 2 + β 2 x 2 + u. Hvis vi glemmer x 2 og foretager en regression af y mod x 1 får vi Vi ved fra tidligere at derfor får vi ỹ = β 0 + β 1 x 1. β 1 = ˆβ 1 + ˆβ 2 δ 1, E[ β 1 ] = E[ˆβ 1 + ˆβ 2 δ 1 ] = E[ˆβ 1 ] + E[ˆβ 2 ] δ 1 = β 1 + β 2 δ 1. Da x 2 er relevant er β 2 0, dvs. β 1 er unbiased, hvis δ 1 = 0, hvilket sker, hvis stikprøvekorrelationen mellem x 1 og x 2 er nul.

24 Antagelser Antagelse MLR.5 (Homoskedastiske fejlled) Fejlledet u har samme varians for alle værdier af de forklarende variable. Mao. Var[u x 1, x 2,...,x k ] = σ 2. En konsekvens af antagelserne MLR.1 til MLR.4 er at E[y x 1, x 2,...,x k ] = β 0 + β 1 x β k x k og antagelse MLR.5 medfører desuden at Var[y x 1,...,x k ] = σ 2

25 Variansen af Estimatorene Sætning 3.2 (Variansen af OLS estimatorerne) Under antagelse MLR.1 til MLR.5, og betinget på stikeprøvens forklarende variable, har vi for j = 1,...,k, hvor Var[ˆβ j ] = σ 2 SST j (1 R 2 j ), SST j = n (x ij x j ) 2 i=1 er den totale variation af x j erne i stikprøven, og R 2 j er determinations-koefficenent opnået ved at foretaget en multipel lineære regression af x j mod de andre forklarende variable.

26 Variansen af Estimatorene Variasen af estimatoren ˆβ j er altså Var[ˆβ j ] = σ 2 SST j (1 R 2 j ). Vi vil gerne have at variansen er så lille som mulig, da det er ensbetydense med mere præcise estimater. Vi kan mindske variansen Var[ˆβ j ] på to måder: 1. Vi kan øge SST j. Det kan ske enten ved at i) have en større variation i x j erne eller ii) øge antallet af observationer n. 2. Vi kan reducere Rj 2, hvilket typisk svært. Fx. ved at fjerne forklarende variable, men det er i sig selv ikke uden problemer... Bemærk: Jo nærmere x j er på en perfekt lineær relation til de andre forklarende variable, jo nærmere er R 2 j på 1, hvilket forøger variansen af ˆβ j markant. Dvs., hvis vi tilføjer en ny variabel til model, som intet nyt tilføjer, så vi stadig centralitet, men variansen af estimatorene vil typisk

27 Estimation af σ 2 Sætning 3.3 (Central estimator for fejlleds-varaisen σ 2 ) Under Gauss-Markov antagelserne MLR.1 til MLR.5 er n ˆσ 2 i=1 = û2 i n k a en central estimator af σ 2, dvs. E[ˆσ 2 ] = σ 2. Bemærk: Antal frihedsgrader, n k 1 er antallet af observationer (n) minus antal parametere i modellem (k + 1, dvs. β 0, β 1,...,β k ).

28 Lineære estimatore Vores estimatore ˆβ 0,..., ˆβ k er såkaldte lineære estimatore. Generelt er en estimator β j lineær, hvis den er på formen β j = n w ij y i, i=1 hvor hver af w ij erne kan være en funktion af alle x ij erne. Eksempel: Ved simpel lineær regression har vi n i=1 ˆβ 1 = (x i x)y i n n i=1 (x i x) 2 = w i y i, i=1 hvor w i = (x i x) n i=1 (x i x) 2.

29 Gauss-Markov Sætningen Under antagelserne MLR.1 til MLR.5 er OLS estimatorene de bedste centrale, lineære estimatore. Med bedste mener vi her, at for alle unbiased, centrale estimatore β j gælder Var[ˆβ j ] Var[ β j ], dvs. OLS estimatorene har mindst varians. På engelsk BLUE (Best Linear Unbiased Estimator).

30 Gauss-Markov Sætningen Sætning 3.4(Gauss-Markov Sætningen) Under antagelserne MLR.1 til MLR.5 er ˆβ 0, ˆβ 1,..., ˆβ n bedste lineære, centrale estimatore af β 0, β 1,...,β n.

Økonometri: Lektion 2 Multipel Lineær Regression 1/33

Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data.

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. 1 / 32 Motivation Eksempel: Savings = β 0 + β 1 Income + u Vi ved allerede, hvordan vi estimerer regresseionlinjen:

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 2. maj 2007 KM2: F22 1 Program Specifikation og dataproblemer, fortsat (Wooldridge kap. 9): Betydning af målefejl Dataudvælgelse: Manglende observationer

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data)

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data) Dagens program Økonometri 1 Specifikation, og dataproblemer 10. april 003 Emnet for denne forelæsning er specifikation (Wooldridge kap. 9.-9.4)! Proxy variable! Målefejl! Manglende observationer! Dataudvælgelse!

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program Dagens program Økonometri 1 FunktioneI form i den lineære regressionsmodel 19. oktober 004 Mere om funktionel form (kap 6.) Log transformation Kvadratisk form Interaktionseffekter Goodness of fit (kap.

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1 Økonometri 1 Prediktion. Dummyvariabler 9. oktober 2006 Økonometri 1: F9 1 Program frem til efterårsferien Om goodness-of-fit, prediktion og residualer (kap. 6.3-4) Kvalitative egenskaber i den multiple

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ

Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Per Bruun Brockhoff, DTU Compute, Claus Thorn Ekstrøm, KU Biostatistik, Ernst Hansen, KU Matematik January 17, 2017 Abstract

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion Dagens program Økonometri 1 Dummy variable 4. marts 003 Emnet for denne forelæsning er kvalitative variable i den multiple regressionsmodel (Wooldridge kap. 7.5-7.6+8.1)! Husk at udfylde spørgeskema 3!

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata

1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata 1 Intoduktion Før man springer ud i en øvelse om paneldata og panelmodeller, kan det selvfølgelig være rart at have en fornemmelse af, hvorfor de er så vigtige i moderne mikro-økonometri, og hvorfor de

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I Oversigt Økonometri 1 Mere om dataproblemer Gentagne tværsnit og panel data I Info om prøveeksamen Mere om proxyvariabler og målefejl fra sidste gang. Selektion og dataproblemer Intro til nyt emne: Observationer

Læs mere

Perspektiver i Matematik-Økonomi: Linær regression

Perspektiver i Matematik-Økonomi: Linær regression Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: jlj@imf.au.dk Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Fokus på Forsyning. Datagrundlag og metode

Fokus på Forsyning. Datagrundlag og metode Fokus på Forsyning I notatet gennemgås datagrundlaget for brancheanalysen af forsyningssektoren sammen med variable, regressionsmodellen og tilhørende tests. Slutteligt sammenfattes analysens resultater

Læs mere

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k Dagens program: Likelihoodfunktion, begreber : Mandag den 4. februar Den generelle lineære model score-funktion: første afledede af log-likelihood har middelværdien nul observeret information: anden afledede

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

Økonometri 1. Gentagne tværsnit (W ): Opsamling. Gentagne tværsnit og paneldata. Gentagne Tværsnit og Paneldata II.

Økonometri 1. Gentagne tværsnit (W ): Opsamling. Gentagne tværsnit og paneldata. Gentagne Tværsnit og Paneldata II. Gentagne tværsnit (W 13.1-): Opsamling. Økonometri 1 Gentagne Tværsnit og Paneldata II Kombinerer tværsnit indsamlet på forskellige tidspunkter. Partial pooling: Tillader koefficienterne til nogle af variablerne

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

Nanostatistik: Lineær regression

Nanostatistik: Lineær regression Nanostatistik: Lineær regression JLJ Nanostatistik: Lineær regression p. 1/41 Sammenhænge Funktionssammenhæng: y er en funktion af x. Ex: Hvis jeg kender afstanden mellem to galakser så kender jeg også

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Gentagne tværsnit og paneldata Kvantitative metoder 2 Gentagne tværsnit og panel data II 9. maj 2007 I dag: To-periode panel data: Følger de samme individer over to perioder (13.3-4) Unobserved effects

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com Matrix Algebra med Excel Forelæsningsnoter til FR86 Jesper Lund mail@jesperlund.com http://www.jesperlund.com 28. august 2002 1 Indledning Matrix algebra er et uundværligt redskab til økonometri, herunder

Læs mere

Bilag 12 Regressionsanalysens tabeller og forklaringer

Bilag 12 Regressionsanalysens tabeller og forklaringer Bilag 12 Regressionsanalysens tabeller og forklaringer Regressionsanalysens tabeller og forklaringer Regressionsanalysen vil være delt op i 2 blokke. Første blok vil analysere hvor meget de tre TPB variabler

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Vi sætter. (Signal støj- forhold) Poul Thyregod, 25. april Specialkursus vid.stat. foraar Lad Y i angiver observationer fra i te udtagne balle.

Vi sætter. (Signal støj- forhold) Poul Thyregod, 25. april Specialkursus vid.stat. foraar Lad Y i angiver observationer fra i te udtagne balle. Modellens parametre Mandag den 25 april Hierarkiske normalfordelingsmodeller Dagens program: Resume af ensidet variansanalysemodel med tilfældig effekt estimation af tilfældige effekter, fortolkning som

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression Indhold 1 Multipel lineær regression 2 1.1 Regression med 2 eksponeringsvariable......................... 2 1.2 Fortolkning og estimation................................ 3 1.3 AnovaTabel og multipel R

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Institut for Matematiske Fag Aalborg Universitet 1/1 Vægtet

Læs mere

Module 9: Residualanalyse

Module 9: Residualanalyse Mathematical Statistics ST6: Linear Models Bent Jørgensen og Pia Larsen Module 9: Residualanalyse 9 Rå residualer 92 Standardiserede residualer 3 93 Ensidig variansanalyse 4 94 Studentiserede residualer

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression 1 Multipel lineær regression Regression med 2 eksponeringsvariable Fortolkning og estimation AnovaTabel og multipel R 2 Ensidet variansanalyse: Dummy kodning Kovariansanalyse og effektmodifikation Tosidet

Læs mere

Kursus 02402/02323 Introducerende Statistik

Kursus 02402/02323 Introducerende Statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Opgave fra sidst (Gauss-Markov teoremet) Kvantitative metoder Inferens i den lineære regressionsmodel 7. marts 007 Opgave: Vis at hvis M = I X X X X ( ' ) ' er M idempoten dvs der gælder gælder M = M '

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen Vægte motiverende eksempel Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@mathaaudk Institut for Matematiske Fag Aalborg Universitet Højdeforskellen mellem punkterne P

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i Da er r i = e i ˆσ ei t(n 3) (tæt på N(0,1) hvis n ikke alt for lille). Program 1. lineær regression: opgave 3 og 13 (sukker-temperatur). 2. studentiserede residualer, multipel regression. Tommelfinger-regel:

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt enote 5: Simpel lineær regressions analse Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression To variable: og Beregn mindstekvadraters estimat af ret linje Inferens med

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Test for strukturelle ændringer i investeringsadfærden

Test for strukturelle ændringer i investeringsadfærden d. 6.10.2016 De Økonomiske Råds Sekretariat Test for strukturelle ændringer i investeringsadfærden Dette notat redegør for de stabilitetstest af forskellige tidsserier vedrørende investeringsadfærden i

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

Statistik Formelsamling. HA Almen, 1. semester

Statistik Formelsamling. HA Almen, 1. semester Statistik Formelsamling HA Almen, 1. semester Statistik - Formelsamling Indholdsfortegnelse Hvordan kan formelsamlingen bruges?... 5 Værd at vide... 5 Oversigt Mest brugte symboler... 5 Disclaimer... 5

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 7. marts 2007 regressionsmodel 1 Opgave fra sidst (Gauss-Markov teoremet) Opgave: Vis at hvis M = I X X X X 1 ( ' ) ' er M idempoten dvs der

Læs mere

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2 Økonometri 1 Afslutningsforelæsning 19. maj 2003 Økonometri 1: Afslutningsforelæsning 1 Evalueringer Kun 23 har udfyldt evalueringsskemaerne ud af ca. 120 tilmeldte til eksamen Resultatet kan ses på hjemmesiden

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 30. april 2007 KM2: F21 1 Program for de to næste forelæsninger Emnet er specifikation og dataproblemer (Wooldridge kap. 9) Fejlleddet kan være korreleret

Læs mere