Hamilton-veje og kredse:

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Hamilton-veje og kredse:"

Transkript

1 Hamilton-veje og kredse: Definition: En sti x 1, x 2,...,x n i en simpel graf G = (V, E) kaldes en hamiltonvej hvis V = n og x i x j for 1 i < j n. En kreds x 1, x 2,...,x n, x 1 i G kaldes en hamiltonkreds hvis x 1, x 2,...,x n er en hamiltonvej. Sætning: Hvis n 3 da har K n en hamiltonkreds. Sætning(Ore): Hvis G er en simpel graf med n 3 punkter så deg(u) + deg(v) n for ethvert par af punkter u og v som ikke er naboer, da har G en hamiltonkreds. Sætning(Dirac): Hvis G = (V, E) er en simpel graf med n 3 og deg(u) n 2 for ethvert punkt u V da har G en hamiltonkreds. 1

2 Kortestevej algoritme: Til dette problem betragtes betragtes kombination af graf og vægtfunktion, som tildeler en vægt w(e) 0 til enhver kant i grafen. Spørgsmål : Hvordan findes den korteste vej mellem to punkter i en graf, når længden af en vej mellem to punkter defineres som summen af vægtene tildelt til kanterne fra vejen. Strategi der kan benyttes hvis alle vægte er ens (w) : 1. lad a være det ønskede startpunkt og lad z være slutpunktet. 2. Lad L = {a}, H := G a og lad dist(a,z)=0. 3. Indtil z L gør følgende: dist(a, z) := dist(a, z) + w, L sættes lig alle punkter i H som er naboer til et punkt fra L, H := H L. 2

3 1. procedure Dijkstra(G: positivt vægtet sammenhængende simpel graf, a,z : punkter) 2. Lad a = v 0, v 1,...,v n = z være punkterne i G og lad w(v i, v j ) være vægten af kanten {v i, v j } hvis den findes og lad ellers w(v i, v j ) =. 3. for i:=1 to n do 4. L(v i ) := 5. L(a):=0 6. while z S do 7. u:= et punkt i S med L(u) minimal 8. S = S {u} 9. for alle punkter v S do 10. if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v). 11. return L(z). 3

4 Ide : punkterne i S er de S punkter tættest på a. Desuden skal L(x) være den korteste afstand mellem a og x hvis x S. Hvis x ikke er i S da skal L(x) betegne den korteste vej af typen a,...,s, x,hvor s er et punkt S, mellem a og x. Sætning: Dijkstra s algoritme finder den korteste vej mellem punkterne a og z (mht. vægten w). Desuden er kompleksiteten af algoritmen O(n 2 ) Traveling salesman problem: Problem : En omrejsende salgsmand skal besøge n byer præcis engang, og derfter vende tilbage til byen han startede i. Der ønskes da en sådan rute af minimal længde (afstanden mellem ethvert par af byer er kendt). 4

5 Planare grafer: Definition: En graf siges at være planar hvis den kan tegnes i planet således ingen kanter krydser hinanden. Sætning: Hvis G er en simpel sammenhængende planar graf med e kanter, v punkter og r regioner da er r = e v + 2. korollar: Hvis G er en simpel sammenhængende planar graf med v 3 punkter da er e 3v 6. korollar: Hvis G er en simpel sammenhængende planar graf med v 4 punkter og ingen region er en trekant da er e 2v 4. Det følger at K 5 og K 3,3 ikke er planare grafer. 4-farvesætningen: Hvis G er en planar graf da kan punkterne i G fraves med fire farver således ingen nabo-punkter farves med samme farve. 5

6 P, NP og NP-fuldstændige problemer Definition : Ved en instans af et problem menes en angivelse af værdier til alle parametre/input til problemet (Derved fås et tilfælde af det givne problem). Eksempel (Isomorfiproblemet): Ved dette problem skal der afgøres om grafer G 1 og G 2 er isomorfe. En instans af problemet er da to grafer. Fornuftig repræsentation af problem : repæsentation af problemet ved en streng hvoraf længden højst er polynomiel i de givne input til problemet. Definition : Et problem π kaldes afgørbart hvis der findes en algoritme for probelmet således der for enhver instans af problemet gives output ja eller nej. Lad D π mængde af alle instanser af π og lad Y π være ja-instanserne. 6

7 Eksempel : Isomorfiproblemet er afgørbart, men stoppeproblemet er ikke afgørbart. Definition : Kompleksitetsklassen P defineres som mængden af afgørbare problemer hvortil der findes en algoritme med polynomiel tidskompleksitet (O(n k ) for et eller andet k). En Non-deterministisk algoritme til et afgørbart problem π: For en instans I af problemet π der ses på gættes en struktur (eller potentiel løsning) kaldet et certifikat, C(I). Derefter ses om dette certifikat C(I) og I kan give os at I Y π. Der skal gælde at hvis I Y π da findes der sådan et certifikat C(I) således at kendskabet til C(I) og I giver os at I Y π. Derimod skal det for ethvert certifikat gælde at C(I) og I ikke giver os at I Y π hvis I Y π. 7

8 Eksempel (Isomorfiproblemet): Her skal certifikatet være en funktion mellem punkterne i de to grafer fra instansen. Det kan da let tjekkes om denne funktion er en isomorfi mellem graferne. Definition : Kompleksitetsklassen NP defineres som mængden af afgørbare problemer π (der under en fornuftig repræsentation) kan løses af en non-deterministisk algoritme med polynomiel kompleksitet. Eksempler på problemer i NP: Isomorfiproblemet, Hamiltonkreds og 3-SAT. 3-SAT : Ved dette betragtes en bolsk formel af typen : (l 1,1 l 1,2 l 1,3 ) (l 2,1 l 2,2 l 2,3 ) (l k,1 l k,2 l k,3 ), hvor l i,j er en af q-variable x 1,...,x q eller x 1,...,x q. Spørgsmålet er da om variablene x 1,...,x q kan tildeles værdier således formlen bliver sand. 8

9 Eksempel på 3-SAT : Lad x 1, x 2, x 3 være variable og betragt : (x 1 x 2 x 3 ) (x 1 x 2 x 3 ) (x 1 x 2 x 3 ). Denne formel er sand hvis x 1 =sand, x 2 = sand og x 3 = falsk. 9

10 Definition (reducerbar) : Vi siger at et problem π 1 er reducerbar til problemet π 2 hvis der findes en algoritme A som for enhver instans I af π 1 giver en instans A(I) af π 2 som output og hvor I Y π1 hvis og kun hvis A(I) Y π2. Hvis A har polynomiel tidskompleksitet da siges at π 1 er polynomielt reducerbart til π 2 hvilket skrives π 1 p π 2. Definition : Et problem π kaldes NP-fuldstændigt hvis π N P og der for ethvert problem π NP gælder at π p π. Sætning : 3-SAT er NP-fuldstændigt. Sætning : Hvis π er NP-fuldstændigt og π NP og π p π da er π NP-fuldstændigt. Sætning : HAMPATH (givet en graf samt to punkter deri er der da en hamiltonvej mellem dem) er NP-fuldstændigt. Sætning : HAMKREDS er NP-fuldstændigt. 10

11 åbent problem : Er NP=P. Sætning : P NP. Sætning : Hvis der findes et NP-fuldstændigt problem (eller NP-hårdt problem) π P da vil NP = P. 11

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)}

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)} Procedure Dijkstra(G = (V, E): vægtet sh. graf,. a, z: punkter) { Det antages at w(e) > 0 for alle e E} For alle v V : L(v) := L(a) := 0, S := while z / S begin. u := punkt ikke i S, så L(u) er mindst

Læs mere

Definition (Pseudo-graf): En pseudo-graf G = (V, E) består af V, en ikke-tom mængde hvis elementer kaldes punkter, en mængde E samt en funktion f : E

Definition (Pseudo-graf): En pseudo-graf G = (V, E) består af V, en ikke-tom mængde hvis elementer kaldes punkter, en mængde E samt en funktion f : E Grafteori Definition (Simpel graf): En simpel graf G = (V, E) består af V, en mængde hvis elementer kaldes punkter, og E, en mængde af uordnede par af forskellige elementer fra V. Et element fra E kaldes

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

Tirsdag 12. december David Pisinger

Tirsdag 12. december David Pisinger Videregående Algoritmik, DIKU 2006/07 Tirsdag 12. december David Pisinger Resume sidste to gang Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret er 1. P = {L : L genkendes af en algoritme

Læs mere

16. december. Resume sidste gang

16. december. Resume sidste gang 16. december Resume sidste gang Abstrakt problem, konkret instans, afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor

Læs mere

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er en unik simpel vej mellem ethvert par af punkter i

Læs mere

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang 16. marts Resume sidste gang Abstrakt problem konkret instans afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret

Læs mere

P2-gruppedannelsen for Mat og MatØk

P2-gruppedannelsen for Mat og MatØk Institut for Matematiske Fag Aalborg Universitet Danmark 1-02-2012 Vejledere Bo Hove E-mail: bh@thisted-gymnasium.dk 3 Mat grupper (semesterkoordinator) E-mail: diego@math.aau.dk. Web page: http://people.math.aau.dk/~diego/

Læs mere

Sprog L : mængden af instanser for et afgørlighedsproblem

Sprog L : mængden af instanser for et afgørlighedsproblem 26. marts Resume sidste to gang Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret er 1. P NP L : L genkendes af en algoritme i polynomiel tid L : L verificeres af en polynomiel tids

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Sommeren 2001, opgave 1

Sommeren 2001, opgave 1 Sommeren 2001, opgave 1 Vi antager at k 3, da det ellers er uklart hvordan trekanterne kan sættes sammen i en kreds. Vi ser nu at for hver trekant er der en knude i kredsen, og en spids. Derfor er n =

Læs mere

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Approximations-algoritmer Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Negativt resultat om generel TSP Approximations-algoritme

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

P2-projektforslag Kombinatorik: grafteori og optimering.

P2-projektforslag Kombinatorik: grafteori og optimering. P2-projektforslag Kombinatorik: grafteori og optimering. Vejledere: Leif K. Jørgensen, Diego Ruano 1. februar 2013 1 Indledning Temaet for projekter på 2. semester af matematik-studiet og matematikøkonomi-studiet

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomielt tid Optimeringsproblemer kan ikke altid verificeres i polynomiel

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomielt tid Optimeringsproblemer kan ikke altid verificeres i polynomiel I dag Løsning af NP -hårde optimeringsproblemer Repetition: branch-and-bound Flere begreber Konkret eksempel: TSP Lagrange relaxering Parallel branch-and-bound 1 Opsummering Løsning af NP -hårde optimeringsproblemer

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid 6 april Løsning af N P -hårde problemer Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid Oversigt Grænseværdier (repetition) Branch-and-bound algoritmens komponenter Eksempler

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 10. juni, 2016. Kl. 9-13. Nærværende eksamenssæt består af 11 nummererede sider med ialt 16 opgaver. Alle opgaver

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Klasserne af problemer, der kan løses i deterministisk og i ikke-deterministisk polynomiel tid; polynomiel reduktion; N P-fuldstændighed

Klasserne af problemer, der kan løses i deterministisk og i ikke-deterministisk polynomiel tid; polynomiel reduktion; N P-fuldstændighed Klasserne af problemer, der kan løses i deterministisk og i ikke-deterministisk polynomiel tid; polynomiel reduktion; N P-fuldstændighed Videregående algoritmik Cormen et al. 34.1 34.3 Fredag den 12. december

Læs mere

Approximations-algoritmer. Løsningsmetoder for NP -hårde opt.problemer

Approximations-algoritmer. Løsningsmetoder for NP -hårde opt.problemer Motivation Definitioner Approximations-algoritme for nudeoverdæning Approximations-algoritme for TSP med treantsulighed Negativt resultat om generel TSP Approximations-algoritme for SET-OVERING Fuldt polynomiel-tids

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Eksempel på muligt eksamenssæt i Diskret Matematik

Eksempel på muligt eksamenssæt i Diskret Matematik Eksempel på muligt eksamenssæt i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet???dag den?.????, 20??. Kl. 9-13. Nærværende eksamenssæt består af 13 nummererede sider med

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Onsdag den. august 200, kl. 9.00.00 Opgave (25%) Lad A = A[] A[n] være et array af heltal. Længden af det længste

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393.

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Broer, skak og netværk Side 1 af 6 Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Eksempler på praktiske anvendelser af matematik og nogle uløste problemer Indledning Figur

Læs mere

Symmetrisk Traveling Salesman Problemet

Symmetrisk Traveling Salesman Problemet Symmetrisk Traveling Salesman Problemet Videregående Algoritmik, Blok 2 2008/2009, Projektopgave 2 Bjørn Petersen 9. december 2008 Dette er den anden af to projektopgaver på kurset Videregående Algoritmik,

Læs mere

Analyse af algoritmer

Analyse af algoritmer Analyse af algoritmer Analyse af algoritmer Køretid Pladsforbrug Asymptotisk notation O, Θ og Ω-notation. Eksperimentiel analyse af algoritmer Philip Bille Analyse af algoritmer Analyse af algoritmer Køretid

Læs mere

Hamiltonkreds, den handelsrejsendes problem, delmængdesum-problemet

Hamiltonkreds, den handelsrejsendes problem, delmængdesum-problemet , den handelsrejsendes problem, delmængdesum-problemet Videregående algoritmik Cormen et al. 34.5.3 34.5.5 Fredag den 19. december 2008 1 N P-fuldstændige problemer 1 N P-fuldstændige problemer 2 Reduktion

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Aalborg University. Synopsis. Titel: Traveling Salesman Problem

Aalborg University. Synopsis. Titel: Traveling Salesman Problem Aalborg University Department of Computer Science. Fredrik Bajers Vej 7E, 9220 Aalborg Ø. Titel: Traveling Salesman Problem Projektperiode: 16. maj 2003 til 20. juni 2003 Semester: BOS03 Gruppebetegnelse:

Læs mere

dks Noter Michael Lind Mortensen, illio 24. juni 2010

dks Noter Michael Lind Mortensen, illio 24. juni 2010 dks Noter Michael Lind Mortensen, illio 24. juni 2010 Indhold 1 P, NP and NPC. 4 1.1 Disposition............................ 4 1.2 Emne detaljer........................... 4 1.2.1 Def. Problemer, Sprog,

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet Torsdag den 9. august, 202. Kl. 9-3. Nærværende eksamenssæt består af 9 nummererede sider med ialt 2 opgaver.

Læs mere

Grafer / Otto Knudsen 20-11-06

Grafer / Otto Knudsen 20-11-06 Grafer / Otto Knudsen -- Grafer Definition En graf er pr. definition et par G = (V, E). Grafen består af en mængde knuder V (eng: vertices) og en mængde kanter E (eng: edges), som forbinder knuderne. A

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 21. august 2015 Nærværende eksamenssæt består af 10 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Tirsdag 18. december David Pisinger

Tirsdag 18. december David Pisinger Videregående Algoritmik, DIKU 00-08 Tirsdag 8. december David Pisinger Approximations-algoritmer Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP trekantsulighed)

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

K 7 - og K 4,4 -minors i grafer

K 7 - og K 4,4 -minors i grafer Aalborg Universitet Det Teknisk-Naturvidenskabelige Fakultet Institut for Matematiske Fag K 7 - og K 4,4 -minors i grafer Aalborg Universitet Det Teknisk-Naturvidenskabelige Fakultet Institut for Matematiske

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første studieår ved Det Teknisk-Naturvidenskabelige Fakultet 23. august, 2016, 9.00-13.00 Dette eksamenssæt består af 11 nummerede sider med 16 opgaver. Alle opgaver er multiple

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312 Flugtveje [1] A312 Jens Stokholm Høngaard Kristian Pilegaard Jensen Thomas Birch Mogensen Niels Asger Aunsborg Nicolai Vesterholt Søndergaard Daniel Agerskov Heidemann Jensen 26. maj 2010 I II Det Teknisk-Naturvidenskabelige

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 5 (fem) Eksamensdag: Fredag den 10. august 007, kl.

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312 Flugtveje [?] A312 Jens Stokholm Høngaard Kristian Pilegaard Jensen Thomas Birch Mogensen Niels Asger Aunsborg Nicolai Vesterholt Søndergaard Daniel Agerskov Heidemann Jensen 22. maj 2010 I II Det Teknisk-Naturvidenskabelige

Læs mere

Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal

Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal Datalogisk Institut Aarhus Universitet MasterClass Matematik, Mærsk Mc-Kinney Møller Videncenter, Sorø, 29-31. oktober 2009 Algoritmer: Matricer

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312 Flugtveje [1] A312 Jens Stokholm Høngaard Kristian Pilegaard Jensen Thomas Birch Mogensen Niels Asger Aunsborg Nicolai Vesterholt Søndergaard Daniel Agerskov Heidemann Jensen 25. maj 2010 I II Det Teknisk-Naturvidenskabelige

Læs mere

Videregående Algoritmik. Version med vejledende løsninger indsat!

Videregående Algoritmik. Version med vejledende løsninger indsat! Videregående Algoritmik DIKU, timers skriftlig eksamen, 1. april 009 Nils Andersen og Pawel Winter Alle hjælpemidler må benyttes, dog ikke lommeregner, computer eller mobiltelefon. Opgavesættet består

Læs mere

Geometrisk skæring. Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter

Geometrisk skæring. Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter Planfejning 1 Skæring 2 Geometrisk skæring Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter Løsningsmetoder: Rå kraft Planfejning (eng. plane sweep)

Læs mere

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312 Flugtveje [?] A312 Jens Stokholm Høngaard Kristian Pilegaard Jensen Thomas Birch Mogensen Niels Asger Aunsborg Nicolai Vesterholt Søndergaard Daniel Agerskov Heidemann Jensen 23. maj 2010 I II Det Teknisk-Naturvidenskabelige

Læs mere

P vs. NP. Niels Grønbæk Matematisk Institut Københavns Universitet 3. feb. 2012

P vs. NP. Niels Grønbæk Matematisk Institut Københavns Universitet 3. feb. 2012 P vs. NP Niels Grønbæk Matematisk Institut Københavns Universitet 3. feb. 2012 Den handelsrejsendes problem Kan det lade sig gøre at besøge n byer forbundet ved et vejnet, G, inden for budget, B? Hvad

Læs mere

Kursusgang Rekursive definitioner. 14. april Mystiske eksempler. Hvad er en rekursiv definition egentlig? Partielle ordninger

Kursusgang Rekursive definitioner. 14. april Mystiske eksempler. Hvad er en rekursiv definition egentlig? Partielle ordninger Kursusgang 15 14. april 2011 1 Rekursive definitioner Hvad er en rekursiv definition egentlig? Partielle ordninger cpo er (fuldstændige partielle) ordninger Monotone og kontinente funktioner Sætning om

Læs mere

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312 Flugtveje [1] A312 Jens Stokholm Høngaard Kristian Pilegaard Jensen Thomas Birch Mogensen Niels Asger Aunsborg Nicolai Vesterholt Søndergaard Daniel Agerskov Heidemann Jensen 26. maj 2010 I II Det Teknisk-Naturvidenskabelige

Læs mere

Noget om en symmetrisk random walks tilbagevenden til udgangspunktet

Noget om en symmetrisk random walks tilbagevenden til udgangspunktet Random Walk-kursus 2014 Jørgen Larsen 14. oktober 2014 Noget om en symmetrisk random walks tilbagevenden til udgangspunktet Dette notat giver et bevis for at en symmetrisk random walk på Z eller Z 2 og

Læs mere

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign 28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par

Læs mere

4.1 Lineære Transformationer

4.1 Lineære Transformationer SEKTION 41 LINEÆRE TRANSFORMATIONER 41 Lineære Transformationer Definition 411 ([L], s 175) Lad V, W være F-vektorrum En lineær transformation L : V W er en afbildning, som respekterer lineær struktur,

Læs mere

Perspektiverende Datalogikursus

Perspektiverende Datalogikursus Perspektiverende Datalogikursus Uge 1 - Algoritmer og kompleksitet Gerth Stølting Brodal 27. august 2004 1 Indhold Mere om Eksempler på beregningsproblemer Algoritmer og deres analyse Korrekthed af algoritmer

Læs mere

Skriftlig Eksamen Beregnelighed (DM517)

Skriftlig Eksamen Beregnelighed (DM517) Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 1 November 212, kl. 1 14 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af computer

Læs mere

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312

Synopsis: Titel: Flugtveje. Tema: Algoritmer og netværk. Projektperiode: P2, forårssemesteret 2010. Projektgruppe: A312 Flugtveje [1] A312 Jens Stokholm Høngaard Kristian Pilegaard Jensen Thomas Birch Mogensen Niels Asger Aunsborg Nicolai Vesterholt Søndergaard Daniel Agerskov Heidemann Jensen 18. maj 2010 I II Det Teknisk-Naturvidenskabelige

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

DM72 Diskret matematik med anvendelser

DM72 Diskret matematik med anvendelser DM72 Diskret matematik med anvendelser En hurtig gennemgang af de vigtigste resultater. (Dvs. ikke alle resultater). Logik Åbne udsagn 2 + 3 = 5 Prædikater og kvantorer P (x) := x er et primtal x N : n

Læs mere

Perspektiverende Datalogi Klassiske Algoritmer

Perspektiverende Datalogi Klassiske Algoritmer Perspektiverende Datalogi Klassiske Algoritmer Gerth Stølting Brodal 1 Indhold Eksempler på beregningsproblemer Algoritmer og deres analyse Korrekthed af algoritmer Ressourceforbrug for algoritmer Kompleksitet

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

Matlab script - placering af kran

Matlab script - placering af kran Matlab script - placering af kran 1 Til at beregne den ideelle placering af kranen hos MSK, er der gjort brug af et matlab script. Igennem dette kapitel vil opbygningen af dette script blive gennemgået.

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træer

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen lukket kreds af kanter

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 25. juni 200, kl. 9.00-.00

Læs mere

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er Ugens emner FA minimering [.-.] MyHill-Nerode-sætningen en algoritme til minimering af FA er En karakteristik af de regulære sprog Et sprog L er regulært hvis og kun hvis L beskrives af et regulært udtryk

Læs mere

M=3 kunde forbindelse. oprettet lokation Steinerkant

M=3 kunde forbindelse. oprettet lokation Steinerkant M=3 åben facilitet kunde forbindelse lukket facilitet oprettet lokation Steinerkant v Connected facility location-problemet min i f i y i + d j c ij x ij + M c e z e (1) j i e hvorom gælder: x ij 1 j (2)

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives. Type Expr = Sumèplus, minus, times, div: Args, const: Int, name: Textè

Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives. Type Expr = Sumèplus, minus, times, div: Args, const: Int, name: Textè Opgave 1 è20èè Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives af fçlgende rekursive Trine-type: Type Expr = Sumèplus, minus, times, div: rgs, const: Int, name: Textè Type

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Finn Nordbjerg 1/9 Indledning I det følgende introduceres et par abstrakte

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag:

Læs mere

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid Philip Bille Mål. At bestemme og forudsige resourceforbrug og korrekthed af algoritmer Eks. Virker min algoritme til at beregne korteste veje i grafer? Hvor hurtigt kører min algoritme til at søge efter

Læs mere

Perspektiverende Datalogikursus

Perspektiverende Datalogikursus Perspektiverende Datalogikursus Uge 1 - Algoritmer og kompleksitet Gerth Stølting Brodal 2. september 2005 1 Afleveringsopgaver... /\.. // \\ / \ / [] \ \\_// / \ / \ []._. ---------------- _ 2 Øvelse

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

DMG Bachelor Maj/Juni 2002

DMG Bachelor Maj/Juni 2002 Indholdsfortegnelse 1 INDLEDNING... 2 1.1 PROBLEMFORMULERING... 2 1.2 FORMÅL... 2 1.3 MÅL... 2 2 PROBLEMANALYSE... 3 2.1 INDLEDNING... 3 2.2 TRANSPARENTE BROER I COMPUTERNETVÆRK... 3 2.3 ROUTERE I COMPUTERNETVÆRK...

Læs mere